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Abstract—There are several algorithms for measuring fairness
of ML models. A fundamental assumption in these approaches
is that the ground truth is fair or unbiased. In real-world
datasets, however, the ground truth often contains data that
is a result of historical and societal biases and discrimination.
Models trained on these datasets will inherit and propagate
the biases to the model outputs. We propose FAIRLABEL, an
algorithm which detects and corrects biases in labels. The goal
of FAIRLABELis to reduce the Disparate Impact (DI) across
groups while maintaining high accuracy in predictions. We
propose metrics to measure the quality of bias correction and
validate FAIRLABEL on synthetic datasets and show that the label
correction is correct 86.7% of the time vs. 71.9% for a baseline
model. We also apply FAIRLABEL on benchmark datasets such
as UCI Adult, German Credit Risk, and Compas datasets and
show that the Disparate Impact Ratio increases by as much as
54.2%.

I. INTRODUCTION

With ML models playing a fundamental role in many
decisions such as job applications, loan applications, and
criminal justice decisions, Algorithmic Fairness has emerged
as an important aspect of ML modeling. Typically, societal
bias and historical discrimination manifest both in adverse
decisions against the minority group and favorable decisions
for the majority group. In this paper, we refer to the majority
group as receiving favorable treatment and the minority group
as receiving unfavorable treatment. The biases in decisions,
whether conscious or unconscious, lead to biased data. ML
models trained on these data, if steps are not taken to mitigate
the inherent bias contained within them, can lead to biased
model outputs and decisions. This leads to further propagation
of bias.

In Algorithmic Fairness, there are several metrics such as
Disparate Impact Ratio (DIR) that are defined to quantify
the fairness of ML models. The U.S. Equal Employment
Opportunity Commission has established a guideline termed
the Four-Fifth’s or 80% Rule which states that the selection
rate for the minority class should not be less than four-fifths
(80%) of that of the majority group. See [1] and [2]. Real
world datasets such as UCI Adult dataset has a DIR ratio
of male/female (salaries above $50K USD per annum) of
0.353 which is well below the acceptable threshold of 0.8
for disparate impact.

Manually correcting ground truth labels in real-world
datasets is an impossible task as this means re-assessing his-
torical decisions (such as loan and job applications) for which

detailed data and information are no longer available. Instead,
we propose an algorithm, FAIRLABEL, to correct biased labels
directly. We propose a data generation framework to validate
FAIRLABELin which we inject bias into the synthetic data and
measure the algorithm’s ability to find and correct the bias.
We then, we show the performance of FAIRLABEL on ML
benchmark datasets such as UCI Adult, German Credit Risk,
and Compas.

The contributions of the paper are as follows.
1) We propose FAIRLABEL, an algorithm to identify and

correct biases in labelled data.
2) We propose a framework to generate biased synthetic

data to validate FAIRLABEL. We also propose relevant
metrics for the task.

3) We demonstrate the performance of FAIRLABEL on UCI
Adult, German Credit Risk, and Compas datasets and
report improvements in DIR. The improvements range
from 13.4% to 54.2%.

The paper is organized as follows. Section II discusses
related work in the area of algorithmic fairness. Section III
describes FAIRLABEL algorithm. Section IV outlines the syn-
thetic data generation framework which introduces noise and
bias to mimic real-world data and Section V defines relevant
metrics for the debiasing task. Section VI contains details of
synthetic and real-world datasets used and the performance
of FAIRLABEL in terms of the debiasing metrics as well as
Disparate Impact. Section VII concludes the paper.

II. RELATED WORK

There is rich research work on Algorithmic Fairness. A
recent review on Bias and Fairness [3] lists the sources of
bias as well as techniques to improve fairness. The sources of
bias are often listed as biased features, selection bias, and label
imbalance. Algorithmic bias is defined as bias is not present
in the data and is added purely by the algorithm. Hence the
problem of label bias has not received been addressed widely.
For another, more recent survey, see [4]. The book [5] provides
a broad as well as deep coverage of the topic.

The standard framework for achieving algorithmic fair-
ness is either using pre-processing, mid-processing, or post-
processing to achieve target fairness metrics. As mentioned
earlier, all these frameworks assume that the data is unbiased
and the unfairness springs mainly from feature representations
or ML models. [6] discusses prevention of discrimination in
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data mining. Pre-processing approaches include messaging [7],
preferential sampling [8] [9], disparate impact removal [10] to
remove biases from the data. Papers like [10] change features
but keep labels intact while removing data biases. FAIRLABEL
is complementary in the sense that it removes label bias.

There is relatively less research focus on biases in data.
Biases in data often means selection or curation bias and biases
in features in terms of missing features or missing values. One
challenge in data collection is data skews [11] [12] [13] [14].
Analysis often happens on slices of data and patterns in
individual slices and aggregates can be different. This is
called Simpson Paradox [15]. [16] [17] [18] address Simpson
Paradox related issues. [19] propose having labels to catego-
rize data quality. Previous work has leveraged different loss
function [20] instead of correcting data bias.

Real-world data often has biased labels. Getting the data
relabeled is usually not an option. At the same time, it is
essential to use historical data to build models. However,
the issue of bias in ground truth labels and debiasing them
has received relatively less research focus. Synthetic data
generation has been used to mitigate the problem [21] [22].
However, these methods care more about privacy than bias.

Counterfactual Analysis is a popular causal analysis ap-
proach. Research on Counterfactual Fairness [23] mentions
the issues of biased ground truth. The approach taken in
Counterfactual Fairness is changing feature values to achieve
fairness. The approach is based on structural models with
latent variables. The challenge with this approach is the is
the validation. [24] also uses causal approaches.

FairSMOTE [25] is an algorithm to detect biased labels.
FairSMOTE is based on ’situation testing’: flip the sensitive
attribute and check if the label has changed. The paper does
not propose metrics to define the effectiveness of the approach.
It is interesting to note that only the training data is debiased
and not the test data. The reason is that the model solving the
task is also used for debiasing. We decouple the two tasks and
use a separate model for label debiasing.

The challenge with these approaches is that they do not
consider the fact that bias is asymmetric or directional and
unbalanced. In other words, one demography is penalized and
the other demography is advantaged (asymmetry) and one of
the demography is often under-represented (unbalanced). We
need principled approaches to deal with these issues.

Appendix A lists metrics used in Algorithmic Fairness.
We primarily use Disparate Index Ratio from an application
perspective. For the newly defined task of label debiasing, we
define metrics in Section V.

III. FAIRLABEL

The intuition behind FAIRLABEL is simple. In the minority
class, a biased decision occurs when the decision maker makes
a negative decision despite the person having the requisite
qualifications. The decision maker in this case would make
the opposite decision if the person belonged to the majority
class. The decision maker, whether conscious or subconscious,
is acting in a biased manner against the minority class where

the probability of a favorable outcome for the minority group is
less than that of the majority group. Expressed mathematically
this is:

P (y = 1|p = minority) < P (y = 1|p = majority)

Thus, ground truth labels in certain applications become
biased. Measuring the performance of a machine learning
model against biased labels without any bias mitigation poses
problems of perpetuating bias downstream.

The first goal of FAIRLABELis to debias ground truth labels.
This is an inherently ill-posed problem because (1) the real
unbiased ground truth is not known and (2) asking human
experts to relabel is either infeasible (e.g., prohibitive cost
and insufficient data to make decisions) or not advisable
(i.e., biases may still be present) or both. The recommended
approach in the literature is Situation Assessment (SA). SA
can correct the labels of both majority and minority groups. We
propose a variant of this based on the fundamental observation
that we first want to correct labels only of the minority group
in only one direction (0 → 1). This is inline with the real-
world biases acting against minority group. This process also
ensures the positive biases received by the majority group
are reflected in the correction for minority group. We call
this process FAIRMIN because the minority group’s data is
corrected. The process is as follows:

1) Split data into majority and minority groups: Cre-
ate training and validation data consisting only of the
majority group.

2) Train a classifier on majority group: Build a model
using only the majority group’s data. This can be an
ensemble of classifiers or any single classification algo-
rithm. This ensures the model only learns the patterns
from the majority group.

3) Run inference on minority group: Get predictions for
minority class using the trained model in the previous
step.

4) Flip labels of minority group: For a given data point
where the ground truth label is 0 and the model predicts
1, flip the label, i.e. the label transforms ‘0 → 1’ for all
instances where prediction=1. We can can use a hold-
out set to determine threshold for ‘0 → 1’ label change
so that DIR is close to 1.

5) Concatenate majority and minority datasets: After
flipping labels in the minority dataset, combine the
majority dataset with the modified/debiased minority
dataset. The resulting dataset can be considered to be
debiased.

In several scenarios, not only does the bias manifest against
the minority group, the data also has bias in favor of the
majority group. To remove such bias, we complement the
above process and debias the majority group dataset. Similar
to FAIRMIN, we split the dataset by majority/minority groups,
but train a classifier only on the minority dataset and flip the
labels of the majority group from 1 to 0 if the prediction=0.



We call this process FAIRMAJ and the detailed steps are as
follows:

1) Split data into majority and minority groups: Cre-
ate training and validation data consisting only of the
minority group.

2) Train a classifier on minority group: Build a model
using only the minority group’s data. This can be an
ensemble of classifiers or any single classification algo-
rithm. This ensures the model only learns the patterns
from the minority group.

3) Run inference on majority group: Get predictions for
majority class using the trained model in the previous
step.

4) Flip labels of majority group: For a given data point
where the ground truth label is 1 and the model predicts
0, flip the label, i.e. the label transforms ‘1 → 0’ for all
instances where prediction=0. We can can use a hold-
out set to determine threshold for ‘1 → 0’ label change
so that DIR is close to 1.

5) Concatenate majority and minority datasets: After
flipping labels in the majority dataset, combine the
minority dataset with the modified/debiased majority
dataset. The resulting dataset can be considered to be
debiased.

For FAIRLABEL, we first run FAIRMIN and then, optionally,
run FAIRMAJ. Depending on the level of bias inherent in the
data, whether it is present in the minority decisions or majority
decisions, we can choose to run FAIRMIN or FAIRMAJ, or
both.

IV. SYNTHETIC DATASET FOR CLASSIFICATION

We validate the label flipping using synthetically generated
data. By injecting bias into synthetic data, we have the ability
to track where the bias was added, an attribute of the synthetic
data that is not possible in real-world datasets. Consider a
classification problem which has some protected attributes like
gender and race. To generate biased synthetic data for this, we
need the following.

• Independent Variables: These are the aspects of data
such as numerical, categorical, and textual features. The
variables necessarily include protected attributes

• Data Model: This is the underlying data generation
process. The data generation depends on all the indepen-
dent variables excluding protected attributes. Inclusion
of protected attributes is optional. We can use a range
of techniques like linear regression, mixture models,
decision trees, etc. to generate clean and unbiased data.

• Noise: Real-world data is noisy. Both features and labels
can be noisy. We use a noise model to introduce noise
in non-protected attributes and run the model to generate
noisy labels. If the data model is simple, this may not
introduce noise in labels. So also introduce noise in
labels. The noise is independent of protected attributes.

• Bias: Bias can be considered systematic label noise which
depends on protected attributes. The noise is systematic

in the sense that it is unidirectional: either 0→1 (for
majority) or 1→0 (for minority) based on protected
attributes. The severity of bias is given by bias probability.

A. Synthetic Data Generation

Real-world datasets have both bias and noise. Noise can
affect both features and labels. Noise is independent of the
protected class. We quantify noise as ϵ. Bias can be considered
noise except that bias is based on the protected attribute and
is unidirectional. See Figure 1 for Synthetic data generation
as well as its use in FAIRLABEL evaluation.

B. Linear Synthetic Data Generation Example

Clean Data: As an example, let us consider 10 unprotected
numerical features (x) and 1 protected categorical feature (z)
for a linear classification problem.

y = f(aTx+ b)

where a are the coefficients, b is the intercept, and f(·) is
the logistic function. The model is specified by 11 random
coefficients for x and b. We now randomly generate N data
points based on random x. The protected attribute z is also
randomly generated (with certain distribution) but not fed into
the model.

Noisy Data: We now introduce noise to the data.

y′ = f(aTx′ + b+ ϵ)

where x′ and ϵ are noisy versions.
Biased Data: We now fix the protected attribute value (v),

bias direction (d) and bias severity (p).

1) Loop over records with protected attribute value, z = v.
a) Choose a record with probability p.
b) Change the label in the direction d.

2) Store the changes as metadata.

V. METRICS FOR DEBIASING TASK

Assume that the ground truth is known. Assume negative
bias based on the unprotected attribute. In this case, FAIRLA-
BEL recommends 0 → 1 flips for the minority class. Some
of the flips are correct and TPR is the fraction of correct
flips. TNR is the fraction of missed flips. FPR and TNR are
not applicable. We rename these metrics as Correct Flip Rate
(CFR) and Missed Flip Rate (MFR). We report CFR and MFR
for the majority class too. In case of the majority class, the
metrics are reported for 1 → 0 flips.

It is not possible to measure CFR and MFR in real-world
datasets. Instead, we consider standard observational metrics
related to bias and fairness. Definitions are as follows:

Demographic parity or statistical parity: it suggests that
a predictor is unbiased if the prediction ŷ is independent of
the protected attribute p so that:

Pr(ŷ|p) = Pr(ŷ)



Fig. 1. Synthetic data generation and validation of FAIRLABEL

Fig. 2. Evaluation of DI metrics

Disparate Impact Ratio (DIR): The ratio of the demo-
graphic parity:

Pr(ŷ = 1|p = minority)

Pr(ŷ = 1|p = majority)

Disparate Impact Difference (DID): The difference in
demographic parity:

Pr(ŷ = 1|p = minority)− Pr(ŷ = 1|p = majority)

VI. EXPERIMENTAL RESULTS

A. Synthetic Dataset

We ran several experiments comparing FAIRLABEL to a
Naive ML model for debasing using three different synthetic
datasets listed below. The baseline Naive approach is described
in Section VI-B.

• Linear: Linear dataset created by logistic function as
described in section IV-B.

• Clusters around n-hypercubes: This initially creates
clusters of points normally distributed (std=1) about
vertices of an n-informative-dimensional hypercube and
assigns an equal number of clusters to each class. It
introduces interdependence between these features and
adds various types of further noise to the data. We use
8-dimensional hypercube with an edge length of 0.5.

• Gaussian Quantiles: This classification dataset is con-
structed by taking a multi-dimensional standard normal
distribution and defining classes separated by nested
concentric multi-dimensional spheres such that roughly
equal numbers of samples are in each class (quantiles of
the distribution).

Additional details of the data generation are listed in Ap-
pendix B. For each of the synthetic datasets, we generated
100,000 samples with 10 features and a binary class for the
label. In addition, we experimented with Logistic Regression,
Random Forest, and Gradient Boosted Tree algorithms for the
underlying ML ensemble model, with an 80/20 random split
between train and test sets. We vary the bias injection rate
in the synthetic data to understand how the amount of bias
inherent in the data affects FAIRLABEL.

B. Baseline for Debiasing

The baseline for the debiasing does not take directionality of
bias into consideration. The debiasing is based on training an
ML model on the full data and flipping labels of the minority
class from 0 to 1 based on classifier prediction. We call this
the Naive approach. Figure 1 shows how we perform the
baselining.

C. Benchmark Datasets

We use three benchmark datasets: UCI Adult, German
Credit Risk, and Compas.

• UCI Adult: The dataset has 14 attributes and task is
to predict whether income exceeds $50K/yr based on
census data. Also known as ”Census Income” dataset.The
protected attributes in the dataset are age, gender, and
race. We use gender as the protected attribute.

• German Credit Risk: The dataset contains 20 attributes
and the task is to classify people described by a set
of attributes as good or bad credit risks. The protected
attribute is sex.



• Compas: The dataset has 10 attributes and the target
is prediction of two-year recidivism. The protected at-
tributes are race and sex. For our purpose, we used
race binarized to ‘Caucasian’ (majority) and ‘African-
American’ (minority).

Table I summarizes the data sets.

D. Results

1) Results on Synthetic Datasets: We compare the Correct
Flip Rate (CFR), Missed Flip Rate (MFR) of datasets D2 and
D3, and F1-score (of Models M1 and M2) across multiple
synthetic datasets where the debiased datasets produced by
FAIRLABEL and the Naive models (D2 and D3) are compared
against the dataset with known bias (D1). Table II summarizes
the results of FAIRLABEL across these metrics with the
bias injection rate held constant at 0.2. Results show that
FAIRLABEL corrects more bias than the Naive model. Also,
FAIRLABEL does not sacrifice accuracy in order to capture
more bias flips as it outperforms the Naive model on F1-score.
This is true across the entire range of synthetic datasets. Bias
acts as noise to an ML model and FAIRLABEL is not adversely
affected by bias in the minority class because the FAIRLABEL
is only trained on the majority class.

FAIRLABEL incorrectly flips labels at a slightly higher
rate than the Naive approach. This pattern holds true across
datasets and model types. i.e there is a penalty for flipping la-
bels in a unidirectional manner. In real world-applications, this
means some people in the minority class will be ”incorrectly”
boosted.

In general, FAIRLABEL is more robust to the amount of
bias present in the data in terms of CFR and F1-score vs. the
Naive models across different levels of bias. For the data in
Figures 3, 4, and 5, we add bias to the synthetic datasets at
various proportions to see how the bias proportion affects the
CFR, MFR, and F1-score, respectively.

The US Equal Employment Opportunity Commission states
that bias is acceptable when DIR is between 0.8 and 1.0.
Checking DIR in our models trained on synthetic datasets,
we see that models trained on debiased datasets produced
by FAIRLABEL does better than those trained on the original
(biased) datasets, regardless of the amount of bias in the data,
with DIR close to 1 and DID difference to be close to 0. See
Figure 6.

2) Results on Benchmark Datasets: The advantage or run-
ning analyses on synthetic datasets is the ability to measure
CFR and MFR because we know with certainty which labels
are biased. Real-world datasets, however, do not have this
advantage. Instead we look at aggregate-level metrics, such
as as demographic parity and disparate impact.

We ran FAIRLABEL on the datasets Adult, German Credit
Risk, and Compass. Figure 2 shows the evaluation setup.
We then ran the AI Fairness Package (aif360) and checked
Disparate Impact Ratio both on models trained on the debiased
dataset created by FAIRLABEL and on models trained on
the original datasets. The results are in Table III. Across
each dataset, the DIR improved from +0.356 (UCI) to +0.542

(Compas), showing that FAIRLABEL has the ability to reduce
disparity between groups.

VII. CONCLUSIONS

In this paper, we have considered the fundamental issue of
bias in ground truth labels and have proposed an intuitive ap-
proach to address the issue: bias is directional and affects sub-
sets of data differently. The algorithm to codify the intuition
has to parts: FAIRMIN and FAIRMAJ. FAIRMIN addresses the
problem of negative bias for minority attribute while FAIRMAJ
addresses the potential positive bias for majority attribute.
The final algorithm, FAIRLABEL, applies both FAIRMIN and
FAIRMAJ iteratively to remove bias. We have defined metrics
to characterize the performance of the algorithms and have
proposed a synthetic data generation framework for validating
the approaches. We show that FAIRLABEL reduces DIR by
almost 55% in some cases. We believe the results presented
in the paper will inspire the adoption of FAIRLABEL to
other fairness problems. We also hope that the synthetic data
generation will stimulate other data generation as well as label
debiasing approaches because it makes benchmarking feasible.
Our own goal is to extend FAIRLABEL to other modalities like
text and images.
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Fig. 4. MFR vs bias injection rate

Fig. 5. F1-score vs bias injection rate
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Appendix

APPENDIX A
FAIRNESS MEASURES

Table IV summarizes standard fairness metrics.

APPENDIX B
DETAILS OF SYNTHETIC DATA GENERATION

N hypercubes and Gaussian quantiles are from the
sklearn package and the linear dataset was a custom
function shown in C



TABLE IV
METRICS USED AS FAIRNESS CRITERIA

Metric Definition
EO Equalized Odds P(Ŷ=1|A=0,Y =y) = P(Ŷ=1|A=1,Y =y) , y∈{0,1}
DP Demographic Parity P(Ŷ |A = 0) = P(Ŷ|A = 1)

DI Disparate Impact
TPp+FPp

Np
TPu+FPu

Nu

EOO Equal of Opportunity TPp

TPp+FNp
− TPu

TPu+FNu

KNNC K-Nearest Neighbors Consistency
ABAD Absolute Balanced Accuracy Differ-

ence

∣∣ 1
2
[TPRp + TNRp]− [TPRu + TNRu]

∣∣
AAOD Absolute Average Odds Difference

∣∣∣∣ (FPRu+FNRp)−(TPRu+TPRp)
2

∣∣∣∣
AEORD Absolute Equal Opportunity Rate

Difference
|TPRp − TPRu|

SPD Statistical Parity Difference TPp+FPp

Np
− TPu+FPu

Nu



APPENDIX C
LINEAR SYNTHETIC DATA GENERATION CODE

def generate_linear_dataset(n_samples, n_features, p_noise, seed):
import pandas as pd

#compute sample counts
n_samples_perfect = int(n_samples*(1-p_noise))
n_samples_noise = n_samples - n_samples_perfect

#weights of the model
w = generate_random_coefficients(n_features,seed=seed)

#random X’s
X = generate_random_x(n_features,n_samples_perfect,seed=seed+20)
b = 0

#compute y (perfect y)
probs = sigmoid(np.dot(X,w) + b)
y = np.array([1 if i > 0.5 else 0 for i in probs]).reshape(n_samples_perfect,)

#noisy data
X_noise = generate_random_x(n_features,n_samples_noise,seed=seed+40)
y_noise = generate_random_binary(n_samples_noise, seed=50)

#combine perfect data with noisy data
X_full = np.concatenate((X,X_noise))
y_full = np.concatenate((y,y_noise))

return X_full, y_full
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