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Abstract—Forecast combination integrates information from
various sources by consolidating multiple forecast results from
the target time series. Instead of the need to select a single optimal
forecasting model, this paper introduces a deep learning ensem-
ble forecasting model based on the Dirichlet process. Initially,
the learning rate is sampled with three basis distributions as
hyperparameters to convert the infinite mixture into a finite one.
All checkpoints are collected to establish a deep learning sub-
model pool, and weight adjustment and diversity strategies are
developed during the combination process. The main advantage
of this method is its ability to generate the required base learners
through a single training process, utilizing the decaying strategy
to tackle the challenge posed by the stochastic nature of gradient
descent in determining the optimal learning rate. To ensure
the method’s generalizability and competitiveness, this paper
conducts an empirical analysis using the weekly dataset from the
M4 competition and explores sensitivity to the number of models
to be combined. The results demonstrate that the ensemble model
proposed offers substantial improvements in prediction accuracy
and stability compared to a single benchmark model.

Index Terms—Forecast combinations, Dirichlet process, En-
semble learning

1. INTRODUCTION

In the early stages of time series forecasting development,
the prevailing approach centered around constructing a single
best-performing model as the ultimate solution. Whether it
was a traditional model rooted in statistical theory or a result
derived from a neural network within the machine learning
paradigm, relying solely on a single forecast carried inherent
limitations, including inadequate information extraction, the
inability to capture intricate data features, and susceptibility
to the influence of random factors.

The "no free lunch” theorem also underscored the impossi-
bility of a universal model that could be flawlessly applied
to all datasets [[1]. Consequently, the concept of ensemble
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learning swiftly gained prominence in various prediction appli-
cations. Forecast combinations, in particular, began to exhibit
their superiority when confronted with high parameter un-
certainty. Simultaneously, the realm of probability forecasting
drew upon Bayesian statistics principles, leveraging prior dis-
tributions to calculate posterior probabilities and enabling den-
sity comparisons and non-parametric regression techniques.

A. Importance of forecast combination

The exponential surge in data volume presents a formidable
challenge in the realm of big data forecasting technology. Con-
sequently, for the majority of time series data, although trend
decomposition may precede model construction, it frequently
proves arduous for a single model to successfully capture
all requisite target features within a brief training period.
To address this issue, the concept of forecast combinations
emerged. This approach involves constructing multiple models
within a single sequence of data and integrating the results
obtained from various forecasting methods. Since its formal
introduction in 1969, the concept of forecast combination has
garnered attention. Furthermore, forecast combinations offer
significant computational cost savings. In general, while the
forecast accuracy of an individual weak learner may fall short
of desired standards, it comes with reduced modeling com-
plexity and substantially shorter training times. Theoretical
evidence indicates that an ensemble of multiple weak learners
outperforms the best individual learner when integrated into a
unified framework [2]. Simultaneously, different learners can
leverage diverse sources of information from the training data,
leading to improved accuracy and enhanced generalization
performance at a minimal cost [3]].

Through the ensemble of multiple forecasting models, fore-
cast combinations not only leverage the strengths of indi-
vidual models but also mitigate their respective limitations.
Furthermore, the pivotal role of trimming in the combination



framework enhances its resistance to outliers and erratic data
points [4].

B. Limitations of finite mixture model

The number of models included in the combination process
directly impacts its overall performance. In an ideal scenario,
having an infinite number of models at the disposal would
theoretically lead to significantly improved results. However,
the practical limitations of data availability, computational
resources, and time constraints make it impossible to work
with an infinite number of models in reality.

Finite mixture model(FMM) assumes a fixed number of
mixture components, and ascertaining the appropriate number
of components can pose a significant challenge. Opting for
too few components can lead to under-fitting, resulting in
inadequate model performance while an excessive number
of components may induce over-fitting, causing the model
to fit noise in the data [5[]. Secondly, FMM operates under
the assumption that all components within the mixture adhere
to the same parametric form, typically Gaussian distributions.
However, this assumption may not hold when confronted with
highly heterogeneous or multimodal data distributions, neces-
sitating the exploration of alternative modeling approaches [6].
Furthermore, FMMs may encounter difficulties in handling
high-dimensional data, thereby requiring the application of
dimension reduction techniques or consideration of alternative
modeling strategies to ensure tractability [7]].

C. Ensemble Learning

Ensemble learning methods harness the power of multiple
individual models to improve predictions, often surpassing
the performance of any single model. This approach has
shown remarkable success across various domains, including
classification, regression, anomaly detection, and recommen-
dation systems. For instance, the N-BEATS model enhances
time series forecasting by altering loss functions and pre-
diction windows within a deep neural network structure [S]].
In contrast, the Heterogeneous Deep Forest model (Heter-
DF) simultaneously selects decision trees, random forests,
XGBoost, and LightGBM for class distribution estimation at
each layer [9]. To address volatility and variability, Zhang
applied a dynamic error correction approach and employed a
multi-objective optimization algorithm (NSGA-II) to achieve
accurate and stable time series prediction [[10].

The Bias-Variance decomposition proposed highlights the
balance between accuracy and diversity [11]]. An increase in
individual base model accuracy often leads to reduced ensem-
ble diversity [12]. To measure higher-order diversity, Brown
introduced a decomposition formula based on information
theory and entropy to explore correlations among three or
more models in the overall ensemble. In neural networks,
Yang and Wang used the weight vector of the last fully
connected layer to calculate the Euclidean Distance between
models, inversely proportional to similarity [|13]. Effectively
managing the trade-off between accuracy and diversity is a

critical aspect of ensemble learning, determining the final
prediction portfolio’s performance.

Trimming algorithms play a crucial role in reducing the size
of the ensemble model, simplifying synthesis complexity, and
enhancing robustness [14]. Typically, the number of models
left at the end must be predetermined when trimming. A well-
established ranking algorithm can also be used to select the
top K models for the final prediction portfolio [[15]. Diversity
Regularized Ensemble Pruning (DREP) is a pruning technique
that applies regularization through the promotion of diversity,
which is considered closely associated with the complexity
of the hypothesis space, revealing the impact on the gen-
eralization performance of voting within the PAC learning
framework [[16]. The model pool trimming method defines
the range of combined forecasts, while the share of a base
learner’s prediction results determines overall accuracy.

II. METHODOLOGY

This section details the process of building an ensemble
model based on the Dirichlet process and proposes a general
framework in terms of the construction of the base learner and
the setting of the ensemble strategy, in which the selection
of neural networks and sampling parameters can be adjusted
according to the actual needs. Figure [T] depicts the workflow
for establishing the ensemble model. The sampling outcomes
from the Dirichlet process determine the learning rate strat-
egy for the base models and contribute to the weighting
scheme of the ensemble model. Therefore, the selection of
hyperparameters for the base distribution of the Dirichlet
process is of utmost importance in this context. Additionally,
the ensemble framework undergoes experiments related to
diversity trimming to further investigate the two key factors
affecting ensemble performance: diversity and accuracy. In
contrast, the single model, serving as the control group, simply
maintains a fixed learning rate and utilizes its prediction errors
as the baseline level in this experiment.

A. Theoretic foundation

1) Combination with tuning parameters: With the rapid
expansion of computing resources and devices, the domain
of forecasting has witnessed a surge in the adoption of
complex machine learning algorithms (ML). These advanced
machine learning methods have been widely applied in practi-
cal analyses and predictive competitions. They offer scalability
and sophisticated adaptability, surpassing traditional statistical
methods. However, this increased capability comes at the cost
of reduced interpretability [[17]. Within this array of machine
learning approaches, neural networks distinguish themselves
by their capacity to systematically analyze complex data
through self-adjustment and autonomous learning. The multi-
layer neural architecture equips them with exceptional infor-
mation synthesis abilities, although it does pose challenges
when it comes to parameter tuning. [[18]].

The choice of learning rate plays a pivotal role as it is
a critical factor in gradient descent during the optimization
of the loss function and determines the overall training time
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Fig. 1: Ensemble model based on Dirichlet process.

and the convergence to a local minimum. Due to the inherent
randomness in the iterative process, even with identical mod-
els and datasets, results may exhibit variations, rendering it
challenging to pinpoint the optimal learning rate [[19].

To address this issue, our approach in this study involves
selecting a neural network as the single model and fixing
the learning rate at a constant value for the majority of the
experimental groups, to ensure the reliability of our research
while maintaining control over variables. The base learner’s
framework remains consistent with the single model, except
for the learning rate, forming the control group within the
integrated neural network model.

2) Dirichlet process: Bayesian nonparametric Models are
a class of statistical models that allow for a flexible approach
when modeling complex data patterns, without the need for
predefined parameters and can capture intricate data patterns
but might need more data for good performance [20]]. In this
paper, we introduce an infinite mixture representation utilizing
the Dirichlet process. The Dirichlet process (DP) is a stochas-
tic process extensively employed in Bayesian nonparametric
estimation. It generates samples from various distributions,
earning it the moniker “a distribution of distributions” [21]].
The mathematical definition of the Dirichlet process is as
follows:

G ~ DP(a, H). (D

The DP allows us to generate probability distributions with in-
finite dimensions. As a positive scale parameter, & determines
the dispersion of the base distribution H. When a = 0, the
sample taken is degenerated as one value; @ — oo, it can be
equated to the base distribution H. Thus, each sampling of

its samples is a distribution, hence it is also referred to as ’a
distribution of distributions’.

B. Ensemble prediction model based on Dirichlet process

Schnaar et al. (1991) highlighted a two-stage process in the
selection of base learners: firstly, selecting a suitable algorithm
to create a model pool based on data features, and secondly,
devising screening rules to enhance the final prediction [22].
According to Eq. [1} it is evident that the samples drawn from
the Dirichlet process are determined by the scaling parameter
a and the base distribution H. Thus, the learning rate and
the combination weight of the base learner m; are derived
from Dirichlet process sampling and correspond to 5; and ;
parameters in the stick-breaking process (i = 1,2,..., p).

1) Combination strategies: Upon the conclusion of the
training phase, the straightforward procedure entails loading
the previously stored weight parameter files to reconstruct
the neural network architectures of the base models in the
prediction stage. Consequently, for each data sequence, an
ensemble of p prediction results is generated, and the ultimate
prediction for that sequence is calculated by computing the
weighted average value.

Indeed, as inferred from the previously outlined construction
process, both the learning rate and combined weights are
subject to sampling via the Dirichlet process. In other words,
by specifying the number of base models p, we can ascertain
a corresponding set of learning rates represented as [ and
a combination weight vector denoted as w. As a result, the
ensemble model E can be represented as:

E =E(m,a,H, p). 2)

Under the condition of ensuring the validity and usability of
the posterior computation, this paper provides a relevant the-
oretical research basis for the infinite extension of the hybrid
model based on probability distribution. The contribution of
this paper can be exhibited as follows:

« To tackle the problem of instability in results produced by
neural networks trained with gradient descent, this paper
generates base models by employing a segmented decay
approach for learning rates, so that an ensemble model
is constructed to mitigate uncertainties related to model
selection and parameters.

« This paper combines statistical distributions and stochas-
tic processes to sample learning rates and weights through
a Dirichlet mixture model and explores the application
of threshold settings in the transformation of infinite into
finite models.

« Based on the concept of ensemble learning, this study ex-
amines the impact of base distribution diversity trimming
and weight assignment strategies on prediction perfor-
mance, and successfully harnesses the characteristics of
multiple data patterns to optimize forecast combinations,
achieving both robustness and accuracy simultaneously.



III. EmpIRIcAL EXPERIMENTS
A. M4 Competition dataset

Over the years, forecasting competitions have had a sig-
nificant impact on the empirical domain, providing a solid
foundation for assessing various inference methods and learn-
ing from experience to advance the practice of forecasting.
The M4 competition dataset includes both high-frequency and
low-frequency data and consists mostly of long sequences,
providing more opportunities for complex methods that require
extensive data for training. Therefore, we select it as the
dataset for experimental research [23]]. Figure [2|illustrates the
histogram distribution of the length of the weekly series. The
majority of series fall within the range of approximately 2000
weeks. The longest sequence spans up to 50 years, while the
shortest sequence has a length of 276 weeks.

0 500 1000 1500 2000 2500
Length

Fig. 2: Histogram of weekly series length distribution.

B. Base models

It is noteworthy that deep learning has become one of the
most dynamic technologies across various research domains.
Typically, machine learning tasks involve the stacking of
multiple layers of neural networks and rely on stochastic
optimization techniques to enhance generalization capabilities
and improve predictive performance. In particular, Long Short-
Term Memory Recurrent Neural Networks (LSTM), initially
proposed by Hochreiter and Schmidhuber in 1997, have gar-
nered significant attention in the field of time series analysis
[24]. LSTM differs fundamentally from traditional feedfor-
ward neural networks in its ability to establish correlations
between past information and the current state, making it a
sequence-based model. This implies that actions taken at —1th
step can impact decisions made at fth time steps.

The above process will continue in the 7+ 1th step, repeating
until the network construction is complete. Consequently,
LSTM can adjust its parameters based on data characteristics
to store and maintain information over different time steps,
ultimately influencing the output of future modules.

Figure [3| illustrates the schematic framework of the base
model, where a lag of 7 steps is configured. It incorporates

two LSTM modules and a Dropout layer, followed by a Dense
layer and two activation functions to minimize the differences
in weights and biases. To maintain consistency across other
variables, a single model S is designated as the experimental
group, the structure of which mirrors that of base models,
except for a fixed learning rate set at 0.001.

C. Data Preprocessing

Considering the sensitivity of LSTM layers to data scaling,
it’s necessary to merge data from train and test files and then
scale it to [0, 1]. For univariate time series, the output value
is the prediction at rth time step, and the corresponding input
comes from ¢ — bth to ¢ — 1th time step, where b represents
the lag steps. Thus, each row in the input matrix represents
scaled features with a lag of b time steps. The selection of b
typically depends on the practical periodicity of the sequence.
For instance, in weekly data, b might be set to values like 7
or 14.

Hence, the training dataset undergoes a format transforma-
tion, obtaining a (7 — b) - b input matrix and a (T — b) output
variable vector, where T represents the sequence length. In
the prediction phase, the input takes the form of an 4 — b data
frame, with A denoting the desired prediction horizon.

D. Evaluation metric

To illustrate the versatility of the ensemble framework in im-
proving predictive performance it is essential to conduct error
analysis across the entire weekly dataset Y (yx, k = 1,2, ..., N).
When comparing the predictive accuracy of the ensemble
model E and the single model S, we define the prediction
error of E for the kth sequence y; as Mstric(E,y;) and S as
M stric(S,yr). Subsequently, we calculate the average predic-
tion errors for all sequences to derive the overall prediction
errors on the weekly dataset Y:

N
1
Metric(E.Y) = ; Metric(E, y), 3)
1 N
Metric(S,Y) = N Z Metric(S, yy). 4)
k=1

The evaluation of accuracy in time series forecasting typically
involves the assessment of error deviation metrics, including
root mean square error (RMSE) and mean absolute error
(MAE):

RMSE = [ £L, 0 - 30| /T, 3)
MAE = (21, by, = $u) /T. (6)

Algorithm [T|reveals the specific implementation of the ensem-
ble model E based on the Dirichlet process.

IV. Discussion

This paper aims to tackle the challenge of determining the
optimal learning rate through ensemble methods. Therefore,
the sampled learning rate list should fluctuate around the



kernal <100x128>

kernal <7x400>

recurrent kernal <100x400>

bias <128>

bias <400>

implementation = 2 implementation = 2

input 7

recurrent_ativication = sigmod

return_sequences = true time_major = false

units = 32

time_major = false

units = 100

recurrent kernal <32x128>

recurrent_ativication = sigmod

kernal <32x1>

activation
activation = linear D

bias <1>

units = 1

Fig. 3: Neural network architecture of the base model.

Algorithm 1 Ensemble prediction model based on Dirichlet
process

Input: Time series data Y (Length 7"), Number of base models
p, Hyperparameters (aH), Neural network M, Number of
iterations /, Lag steps b.

Output: Base model m;, Ensemble model E.

1: Obtain a (T — b) - b training input matrix and a (T — b)
dependent variable vector after normalizing Y.

2: Derive a set of learning rates / and combination weight
vectors w with the length of p based on Eq. [I]

3: Insert the descending learning rate list / into the optimizer
of M and at every [ iterations save Checkpoint files using
the decay algorithm, thereby completing the training of
all base learners m;(i = 1,2, ..., p).

4: Incorporate diversity trimming and weighting strategies
to construct an ensemble prediction model and calculate
prediction errors. The overall objective function is as:
argminMetric(E,l,w, p).

experimental group (0.001). Additionally, considering diver-
sity trimming, three base distributions are set as hyperpa-
rameters for the Dirichlet process: exponential distribution
EXP(0.001), Gaussian distribution N(0.001,0.01) and beta
distribution Beta(1,1000). The corresponding ensemble mod-
els are denoted as E,,,, Ey and Ep., with scale parameters
set to 1000 for each.

A. Analysis of the impact of model number on prediction
accuracy

The Dirichlet process exhibits infinite possibilities, suggest-
ing that the sample size p can be extended to infinity in a single
draw. However, to translate the infinite concept into a finite
context for practical empirical analysis, this paper initiates
experiments exploring how the number of models impacts
the ensemble effect. This investigation serves as a crucial
theoretical foundation for subsequently improving prediction
accuracy.

Fig. 4] depicts the changes in prediction error as a function
of the number of models, considering three different base
distributions. Drawing insights from the above two figures,
it becomes evident that when the number is 10 or less, the
predictive performance of ensemble model E significantly lags
behind that of the single model S. However, as the number
of base models increases, the forecast errors of the three en-

semble models gradually diminish. Notably, the enhancement
in performance is slightly more pronounced for E,., and Epq
compared to Ey. The most substantial reduction in MAE and
RMSE occurs in the range from 20 to 50 of p, resulting in a
nearly 50% decrease in errors compared to the single model
S. However, it is noteworthy that after reaching 60 models, the
rate of improvement in forecast accuracy tends to slow down.
This indicates that having a greater number of models does
not necessarily lead to a proportionate increase in forecast
accuracy. It further underscores the necessity of employing
a model pool pruning strategy. Excessively large numbers of
base models can result in wasteful pre-training computation
costs and a significant increase in storage demands, all without
achieving the desired prediction precision. Therefore, the
selection of base learners remains a crucial component of
constructing an ensemble framework.

B. Analysis of the impact of model diversity on prediction
accuracy

Based on the foundational concept of the variance-bias”
decomposition formula [11], it becomes apparent that accuracy
and diversity are the two main factors that should be taken into
account when designing an ensemble model. The theoretical
framework introduced by Kang et al. (2020) through ambiguity
decomposition serves as empirical evidence that a combination
strategy exhibiting higher diversity yields a smaller overall er-
ror. In other words, a more diverse pool of base models directly
contributes to an elevation in general prediction accuracy.

To provide a more concrete understanding, we consider a
specific time series denoted as y, and assign the hth step
prediction generated by the ith base learner in the kth time
series as fiy,. Furthermore, DIV;; signifies the measure of
diversity between the ith and jth base models within the
prediction method pool. This diversity metric is rigorously
defined as follows:

N H
DIViy= 223" 3 an ~ fin) )
k=1 h=1
where i,j = 1,2,...,p, and h represents the prediction step
with values spanning from 1 to H, while N signifies the total
number of series, k = 1,2,...,N. A higher value of DIV,
indicates a greater degree of diversity within the ensemble
model. Fig. 5] shows the diversity correlation matrices, and
it can be seen that as the number of models increases, the

diversity among the base learners steadily intensifies. This
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Fig. 5: Ensemble model diversity heatmap.

observation aligns with the earlier discussed trend of decreas-
ing prediction error. Specifically, at a model number of 10,
the lack of diversity renders E unable to enhance prediction
accuracy. However, when p reaches 20, there is a significant
order of magnitude increase in diversity, resulting in a remark-
able reduction in prediction error. The previous experiments
primarily concentrated on establishing an ensemble model
with the same base distribution for forecast combinations. It’s
worth noting that the homogeneity in base model training
often results in a higher likelihood of positive correlation
among outcomes. Hence, the augmentation of diversity plays a
pivotal role in determining the predictive quality. Furthermore,
it ensures that each base learner scrutinizes data features
from a distinct perspective, thus contributing positively to
the overall effectiveness. In line with the principle of diversy
trimming, this paper introduces a mixed strategy. Specifically,

base models under each base distribution are selected and
combined to create a more intricate ensemble model E’. E’
is then compared with the average prediction errors of E,,,,
Epes and Ey.

Table [l and Table present the average performance
metrics calculated over weekly data: It can be seen that E’
leverages three distinct base distributions to bolster the existing
combination approach and obtain the expansion of the pre-
diction pool’s membership structure, significantly broadening
the spectrum of available parameter settings and ultimately
leading to substantial improvements in forecast performance
when contrasted with a single-sampling approach. Fig. [ com-
plements these findings by presenting the diversity correlation
matrix of E’, illustrating how the mixed strategy bolsters
diversity within the ensemble framework. Simultaneously, with
the proliferation of models, the trajectory of prediction errors



TABLE I: MAE of E’ and the average MAE of E,.,, Ep.;q and Ey.

Number of base models 10 20 30

40 50 60 70 80 90 100

Mixed ensemble model E’

0.3308 0.2762 0.2520 0.2402 0.2368 0.2317 0.2262 0.2217 0.2197 0.2172

Average MAE of E,y,, Epeq and Ey  0.3310 0.2768 0.2524 0.2407 0.2369 0.2318 0.2264 0.2219 0.2196 0.2171

TABLE II: RMSE of E’ and the average RMSE of E,,,, Epe and Ey.

Number of base models 10 20 30

40 50 60 70 80 90 100

Mixed ensemble model E’

0.1365 0.0991 0.0847 0.0782 0.0765 0.0740 0.0712 0.0690 0.0679 0.0666

Average RMSE of E.y,, Epers and Ey  0.1369  0.0996 0.0851 0.0787 0.0770 0.0745 0.0718 0.0696 0.0685 0.0672
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Fig. 6: Mixed ensemble model diversity heatmap

follows a pattern akin to our earlier analysis. However, it’s
essential to acknowledge that the associated computation costs
rise exponentially. Hence, it becomes imperative to consider
the limitations imposed by computational resources, ensuring
a judicious balance between precision and diversity.

C. Analysis of the impact of combination weights on predic-
tion accuracy

While in most cases, simple averaging serves as a fast and
effective ensemble method, weighted averaging aims to go
beyond uniform allocation by considering the varying impor-
tance of each base learner and determining their contribution
to the terminal outcome. As mentioned above, the weights
w = (Wi, wy,..,w,) are derived from the sampling of the
Dirichlet process. Therefore, the weight assigned to m; is
defined as:

W= — (8)

i Iz ]
i=1 Wi

Fig.[7} [ and [0] show the error analysis for E.y, Epera and Ey
on weekly data using simple and weighted averages respec-
tively. To illustrate the universality of the results, Table [Tl and
[[V] present a unified comparison by averaging the MAE and
RMSE of the three ensemble frameworks under both simple
averaging and weighted averaging methods: As evident
from the figures and tables above, the inclusion of weighted

averaging in the ensemble method not only enhances forecast
accuracy but also boosts the efficiency of ensemble learning
compared to a single model. To contextualize this, when
the number of models is small, the ensemble model might
not outperform a single model. However, the weight strategy
guarantees a reduction in error by nearly 50% even when the
number of models falls short, signifying that enhancements
in weights can substantially curtail training time and storage
requirements and ultimately yield low prediction error.

V. CONCLUSION

In this paper, we introduce an ensemble framework leverag-
ing the Dirichlet process for time series forecast combinations.
Our approach involves utilizing sampling to derive a set of
learning rates and weights, which are then incorporated as new
parameter inputs in the base models. This innovative strategy
leads to a substantial enhancement in forecast accuracy. In
contrast, the stochastic nature of gradient descent not only falls
short of maintaining consistently high forecast accuracy but
also introduces instability into the iterative backward process.
Therefore, the primary objective of this study is to address the
challenge faced by neural networks in determining the optimal
learning rate.

To assess the empirical effectiveness of the ensemble model,
this study selects the weekly dataset from the M4 competition
for analysis. The data preprocessing involves merging the
training and test sets for each time series, followed by normal-
ization. Subsequently, a lag step of 7 is applied to transform
the data format into an input matrix. Finally, the average Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
are calculated across all series data, enabling a comparison
between the prediction performance of the ensemble model
and the single model.

The findings reveal the following insights: (1) The ensemble
model with equal weights significantly reduces forecast error,
with a reduction of nearly 50% observed when the number
of models reaches 20 and above; However, the rate of error
reduction tends to stabilize after reaching 60 models. (2)
Utilizing the weighted averaging method proves to be more
efficient in enhancing forecast accuracy; Remarkably, even
with only 10 base models, the ensemble model demonstrates
a considerable reduction in forecast error. (3) Embracing the
concept of diversity, the implementation of a mixed strategy
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TABLE III: Average MAE of E.y,, Epera and Ey.

Number of base models 10 20

70

80 90 100  Single model

Simple average

Weighted average

0.331 0.277 0.252 0.241 0.237 0.232 0.226 0.222 0.220 0.217
0.137 0.100 0.085 0.079 0.077 0.074 0.072 0.070 0.069 0.067

0.294

TABLE 1V: Average RMSE of E,,,, Ep., and Ey.

Number of base models 10 20

70

80 90 100  Single model

Simple average

Weighted average

0.137 0.100 0.085 0.079 0.077 0.074 0.072 0.070 0.069 0.067
0.083 0.075 0.071 0.069 0.070 0.069 0.065 0.064 0.064 0.063

0.137
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Fig. 9: Forecast error variation with the model number of Ey.

contributes to the construction of a more intricate framework;
Combining three smaller ensemble models, to some extent,
positively enhances the quality of combination forecasts.

By the fundamental “variance-bias” decomposition principle
[11], addressing the trade-off between diversity and accu-
racy has consistently presented a formidable challenge for
ensemble learning. This challenge arises from two critical
factors: Firstly, the cornerstone of combination forecasting is
the formation of model pools. When training data exhibits
substantial similarity, it naturally leads to homogeneity and
strong correlation among base learners. The key issue here is
to extract data features from diverse perspectives, highlighting
the essential role of diversity. Secondly, as the accuracy of an
ensemble model improves, the required training time and costs
grow exponentially.

In our future research efforts, we intend to In future work,
the article will select other ensemble models as benchmark
models for comparison and implement a data-driven approach
to establish a sampling threshold.
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