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Abstract—Asynchronous time series, also known as temporal
event sequences, are the basis of many applications throughout
different industries. Temporal point processes(TPPs) are the
standard method for modeling such data. Existing TPP models
have focused on parameterizing the conditional distribution of
future events instead of explicitly modeling event interactions,
imposing challenges for event predictions. In this paper, we
propose a novel approach that leverages Neural Relational
Inference (NRI) to learn a relation graph that infers interac-
tions while simultaneously learning the dynamics patterns from
observational data. Our approach, the Contrastive Relational
Inference-based Hawkes Process (CRIHP), reasons about event
interactions under a variational inference framework. It utilizes
intensity-based learning to search for prototype paths to contrast
relationship constraints. Extensive experiments on three real-
world datasets demonstrate the effectiveness of our model in
capturing event interactions for event sequence modeling tasks.
Code will be integrated into the EasyTPP* framework.

I. INTRODUCTION

Asynchronous time series, also named temporal event se-
quence data in some literature, is ubiquitous in daily life, con-
taining discrete events with varying marks and irregular inter-
event time intervals. In this work, we focus on the task of event
sequence forecasting, which leverages historical sequences to
uncover interactions between successive events and predict
future events’ marks and arrival times. Recently, neural TPPs
[1], [2] begin to show advantages in modeling event sequence,
but existing methods mainly focus on parametrizing the con-
ditional distribution of the next event [3], [4], and do not fully
discuss how to model the relational structure between events.
RNN-based TPPs [1], [5], [6] achieve significant progress in
event forecasting task, but related methods ignore the explicit
modeling of the relationship between events, which is difficult
to help us intuitively understand the interactions between
events. The Attention-based TPPs [7], [8] use the matching
function to construct the similarity coefficient between events,
which is not a direct description of the interactions between
events. Recently, some work has begun to focus on the
relational Inference between events, methods based on Causal
Inference [9]–[13] define the interaction between events by
establishing granger causality, but such models usually make
strong assumptions and are difficult to learn different types
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of influence relationships. Methods based on Graph Neural
Networks (GNN) [14]–[17] typically construct static graphs
according to the mark information. However, in real-world
systems, the interactions between events evolve dynamically
over time. Existing GNN-based methods struggle to model
such dynamic changes in relationships.
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Fig. 1: In the asynchronous time series forecasting model, different
types of neural temporal point processes (including RNN-based
model, Attention-based model and our proposed model) model the
correlation between events in the historical sequence .

To address the problems above, we propose the Contrastive
Relational Inference-based Hawkes Process (CRIHP), utilizing
Neural Relational Inference to dynamically model the mutual
interactions between events. We formulate the relational infer-
ence as a latent variable model, which is learned by variational
inference. The latent variables describe the type and strength
of interactions between the events [18]. Due to the flexibility
of latent variable models, a relation graph can be generated
as a multi-view graph, which can represent different kinds
of interactions, and the generation process is dynamic. To
ensure the reliability of the inferred relation graph, we design
Contrastive Relational Inference architecture(CRI), which con-
structs contrasting relationship constraints in the latent space,
ensuring that event sequences with similar dynamic patterns
also possess similar relation structures [19], [20]. Furthermore,
to accurately identify intent signals during sampling for CRI,
we employ intensity-based learning to recognize prototypical
paths, which represent the dynamic patterns of event sequence.
Our method builds a bridge between the fields of TPP and
NRI. A comparison of our proposed model with existing mod-
els is shown in Figure 1. Extensive experiments on three real-
world datasets demonstrate the effectiveness of our proposed
model.
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Fig. 2: Our framework for asynchronous time series forecasting, Contrastive Relational Inference-based Hawkes Process (CRIHP).

II. BACKGROUND

A. Generative Modeling of Event Sequences

Following the notations in [21], [22], given a time interval
[0, T ], we assume n events are observed, composing an asyn-
chronous time event sequence s[0:T ] = [e1@t1, · · · , en@tn]
within the time interval. Each event is denoted mnemonically
ei@ti, where, ei ∈ {1, ....E} is the discrete event type, and ti
represents the timestamp at which the event occurs, satisfying
0 < t1 < · · · < tn < T . TPPs model the probability of
the next event occurrence by defining a conditional intensity
function λ(t) and build λe for each event type e, with the
objective function defined as follows:

Lll =

N∑
i=1

logλei(ti|s[0,ti))−
∫ T

t=0

E∑
e=1

λe(t|s[0,t)])dt, (1)

the first term can be regarded as the log-likelihood of observed
events, while the second term represents the log-likelihood
of non-events. Neural TPP does not involve pre-defined pa-
rameterized conditional intensity functions, instead, it utilizes
neural networks to learn.

B. Neural Point Processes with GNN

GNNs provide a direct way to model the dynamics of event
sequences. Since the edges in the graph can represent the
dependencies between nodes during message passing, GNN-
based models naturally realize the relational inference in
the event sequence. Existing GNN-based TPPs are mainly
divided into two types based on the different node types:
including relational graph models based on marks [16], [23]
and complete events [14], [17], [24]. The first type of method
only constructs relation connections between marks and as-
sumes that events with the same mark information in different

historical sequences have the same relationships. This type
of method cannot handle the problem of dynamic changes
in relationships over time. The second type of method builds
relationships based on complete event information. Due to the
consideration of dynamic changes in influence relationships,
this type of method can construct more realistic relation
structures. Similar to the second type of method, our method
proposes a generative model for dynamic inference.

III. METHODOLOGY

In this section, we present the proposed Contrastive Rela-
tional Inference-based Hawkes Process (CRIHP) framework.
As illustrated in Figure 2, similar to variational inference mod-
els, CRIHP consists of an encoder and decoder. The encoder
performs contrastive relational inference on the input event
sequence to generate a relation graph capturing the structure
of the events. This inferred relation graph is then utilized by
the decoder to forecast future events in a hierarchical manner.

A. CRIHP Framework

TPPs aim to model the mechanisms that give rise to the
dynamics of the recurrence of events. Due to the inherent
difficulty in directly observing the interactions between events,
in this paper, we dynamically model the interactions within
the framework of variational inference. The proposed CRIHP
models the relation graph between different events in the his-
torical sequence in the encoder, providing reliable event struc-
tures for the decoder. Since the complexity of the relationships
between events, it is difficult to achieve effective inference by
direct inference. Therefore, we propose a CRI architecture that
constrains the generated relation graph in the latent space.
Following the curriculum learning, we construct a simpler
Front Graph before performing inference, which allows the
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model to reason the relation graph in increasing complexity.
Specifically, we introduce a temporal similarity graph [17]
as the Front Graph. For any two events ei@ti and ej@tj in
the historical sequence s[0,T ), we calculate the interval time
between them and encode it with a kernel function. We employ
the Gaussian kernel function for construction :

K (ti, tj) = exp(−∥ti − tj∥2

2σ2
). (2)

On the basis of a front graph Φfro, we utilize Graph
Convolutional Network to learn the feature embedding of
events Hfro by C, which is the original feature of event
sequence obtained by the embedding layer. Then, CRIHP uses
the Hfro and Φfro to further infer the relation graph. The
inference process consists of two steps: edge embedding and
contrasting relationship inference. In the first step, we merge
the embeddings of two adjacent nodes in the front graph and
then encode for the connecting edges:

HNdi = Reaeg→nd(
∑
i ̸=j

HEg(i,j)),

HEg(i,j) = Reand→eg ([HNdi,HNdj ]) ,

(3)

HNdi represents the embedding of the i-th event, HEg(i,j)

represents the embedding of the connected edge between the i-
th and the j-th events. We perform two rounds of node-to-edge
and edge-to-node passing processes to aggregate information
from multi-hop nodes. Based on this, we obtain the inference
results:

qϕ
(
Φrel | Φfro

)
= softmax(CRI (HEg)) , (4)

where Φrel is the relation graph.
In the decoding stage, CRIHP utilizes Φrel and C to realize

the message passing on the relation graph through GNN and
make predictions. To demonstrate the effectiveness of the
inferred relation graph, we employ a two-layer GCN [25].
During the prediction stage, the Intensity Layer generates the
conditional probability distribution for future events.

B. Contrastive Relational Inference

In the encoding stage, CRI architecture infers the relation
graph Φrel based on the front graph. To ensure the reliability of
the inferred relation graph, we make the relational consistency
assumption. Specifically, we posit that event sequences with
similar dynamic patterns exhibit similarity not only in the core
events that reflect these patterns but also in the relationship
distributions among them. Building upon this assumption, we
construct a contrastive learning paradigm in the latent space.
As the original event sequences reflect implicit and noisy
intention signals, they may not sufficiently capture the actual
dynamic patterns of the system. Therefore, the CRI leverages
intensity-based learning to search for prototype events in the
original sequence and describe the dynamic patterns of the
event sequence using the prototype path. The CRI consists
of two steps: prototype search and contrasting relationship
constraints.

In the prototype search stage, we train an intensity-based
TPP as the prototype model to generate the intensity distri-
bution of observed events in sequence. Since the intensity
function reflects the probability of an event to a certain
extent, we select historical events with higher intensity scores
as prototype events ˆei@ti by intensity threshold γI , and
use these prototype events to construct the prototype path
PT = { ˆe1@t1, . . . , ˆenPT

@tnPT
}. Based on the prototype path

for describing dynamic patterns, we introduce the Optimal
Transport Distance (OTD) [26] to measure the similarity of
dynamic patterns between different event sequences, denoted
as dotdi,j = OTD(PTi, PTj). We sample positive samples for
the input sequence sinput by dotd.

After sampling, we apply contrastive relationship constraints
in the latent space. The positive samples s+ and negative
samples s− are encoded to obtain relation graphs and event
embedding, denoted as zi = {Φrel

i , Ci}. We introduce the
normalized temperature-scaled cross-entropy loss (NT-Xent)
[27] as the contrastive loss function :

LCRI = −log
exp(sim(zi, z

+)/τ)∑K
j=0 exp(sim(zi, z

−
j )/τ)

, (5)

sim(·) represents the cosine similarity function:

Sim(zi, zj) = z⊤i zj/||zi||||zj ||, (6)

and τ denotes the temperature parameter. The contrastive loss
is computed in the minibatch.

C. Model Learning

Since our proposed CRIHP model is based on the frame-
work of variational inference, its objective function follows
the evidence lower bound:

L = Lll +KL
[
qϕ

(
Φrel | Φfro

)
||pθ

(
Φrel

)]
+ LCRI , (7)

which consists of three parts. The first part is the recon-
struction error, defined as the log-likelihood of the TPP. The
second part is the KL divergence, which can be regarded as
a regularization for the base posterior distribution, and we
consider a uniform distribution [28]. If the discrete distribution
is sampled, the derivatives can not be backpropagated, so we
use the Gumbel Reparametrization [29] to train the model
normally.

IV. EXPERIMENTS

A. Experimental Setup

We validate the performance of our CRIHP on multiple real-
world asynchronous time series forecasting datasets, including
ATM [30], IPTV [31], and Weeplace [32]. The ATM dataset
was provided by 1554 ATMs at a bank in North America,
and their event logs of error reporting were recorded. The
IPTV data set is provided by China Telecom, which records
the sequence of users’ viewing behaviors on the network TV.
The log information includes the start and end timestamps of
each viewing record, the names of the TV programs, and the
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TABLE I: Performance comparison with neural TPP baselines across three datasets. Higher accuracy (ACC) and lower root mean squared
error (RMSE) indicate better model performance.

Models RNN-based Attention-based GNN-based
Datasets RMTPP NHP THP SAHP Att-NHP GeoHP GCHP-GCN CRIHP

IPTV ACC 56.67 50.06 72.10 71.83 73.12 43.05 75.35 76.72
RMSE 22.574 18.812 12.780 13.211 11.256 20.087 10.866 10.131

ATM ACC 76.70 73.67 70.71 67.20 75.92 21.62 90.88 91.95
RMSE 6.221 7.031 3.820 4.591 4.130 9.014 2.612 2.598

Weeplace ACC 21.97 25.17 29.10 28.65 29.38 19.22 31.81 32.06
RMSE 7.320 6.719 6.695 6.889 6.775 25.330 6.493 6.452

corresponding category. Weeplace is a Point of Interest (POI)
dataset published by Twitter users, and each POI data contains
information on geographical location, including latitude and
longitude, and area category labels. We extensively compare
the CRIHP model with seven existing neural point process
models in three categories, including two RNN-based TPP
models (including RMTPP [5], NHP [1]), three Attention-
based TPP models (including THP [8], SAHP [7], Att-NHP
[21]), and two GNN-based TPP models (including GeoHP [33]
and GCHP-GCN [17]). We use ACC and RMSE to evaluate
the predictive performance of the model for mark information
and occurrence time of the next event, and train 200 epochs
for each experiment.

(b) 𝑴𝑷𝑻 in ATM and IPTV IPTV

(a) 𝒏𝑷𝑻 in ATM and IPTV

Fig. 3: Sensitivity analysis of nPT and MPT on ATM and IPVE.

B. Main Results

Table I compares the performance of CRIHP against seven
baseline models on different datasets. The results show that
CRIHP outperforms the other models in predicting the next
event marks and times across all three datasets. This advantage
stems from CRIHP’s effective modeling of interactions be-
tween events. The experiments demonstrate inference of event
relations enables superior predictive performance compared to
RNN and attention-based models lacking relational reasoning.
By incorporating variational inference and contrastive learn-
ing, CRIHP exhibits greater expressiveness than existing GNN
models. Moreover, the advantages of CRIHP over baselines are
most pronounced on the IPTV dataset. The richer event marks
in IPTV increase the difficulty of forecasting, which CRIHP
handles well through its relational approach to event structure

modeling. Overall, CRIHP’s relational modeling of complex
inter-event effects underlies its strong performance on event
sequence prediction tasks.
TABLE II: Ablation study of the latent variable model, front graph,
and CRI.

Dataset ATM IPTV
Model ACC RMSE ACC RMSE

w/o LVM 90.60 2.636 75.21 10.878
w/o front graph 89.33 3.292 74.73 11.342

w/o CRI 89.56 3.174 74.65 11.002
w/o prototype search 90.72 2.832 75.40 10.432

Ours 91.95 2.598 76.72 10.131

C. Ablation Study

To demonstrate the effectiveness of our proposed CRIHP,
we conduct ablation studies using two benchmark datasets:
ATM and Weeplace. First, we evaluated the effectiveness of
the latent variable model and the front graph. Based on the
CRIHP model, we remove the NRI and temporal kernel graph
respectively, As shown in Table II, our proposed relational
Inference method makes the model infer inter-event relation-
ships more effectively and has better predictive performance.
We also verified the effectiveness of the proposed CRI and
completely removed the CRI. Additionally, to demonstrate
the effectiveness of the sampling method based on the proto-
type path, we retained the contrastive relationship constraints
but removed the prototype search. Instead, we directly con-
structed the OTD distances between original event sequences
for contrastive learning sampling. The experimental results
demonstrate that, compared to not using this structure, CRI
effectively enhances the reliability of relational inference.

We evaluated the sensitivity of CRIHP to two key param-
eters: the length of prototype path nPT and the type of the
prototype model MPT . Regarding nPT , as shown in Figure 3,
on the ATM, the model’s performance starts to decrease from
nPT = 6; on the IPTV, the performance starts to decrease
from nPT = 10. This indicates that as the nPT increases, the
prototype path becomes more similar to the original sequence.
Additionally, the inflection point of CRIHP on the ATM
dataset occurs earlier than on IPTV, which is related to the
shorter average sequence length in ATM. We also analyzed
the sensitivity of CRIHP to the choice of prototype model. We
selected NHP, Att-NHP, and THP as the base TPP model. As
shown in Figure 3, when selecting Att-NHP, CRIHP exhibits
the best predictive performance.
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V. CONCLUSION

This paper introduces CRIHP, a novel framework for re-
lational inference in asynchronous time series forecasting.
CRIHP incorporates a contrastive relational inference archi-
tecture to model interactions between events without needing
additional information. Experiments in real-world settings
demonstrate that CRIHP achieves superior performance for
this task.
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