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Abstract—As the popularity of hierarchical point forecast
reconciliation methods increases, there is a growing interest in
probabilistic forecast reconciliation. Many studies have utilized
machine learning or deep learning techniques to implement
probabilistic forecasting reconciliation and have made notable
progress. However, these methods treat the reconciliation step
as a fixed and hard post-processing step, leading to a trade-off
between accuracy and coherency. In this paper, we propose a new
approach for probabilistic forecast reconciliation. Unlike existing
approaches, our proposed approach fuses the prediction step and
reconciliation step into a deep learning framework, making the
reconciliation step more flexible and soft by introducing the
Kullback-Leibler divergence regularization term into the loss
function. The approach is evaluated using three hierarchical time
series datasets, which shows the advantages of our approach over
other probabilistic forecast reconciliation methods.

Index Terms—Forecasting, Hierarchical time series, Probabilis-
tic forecast reconciliation

I. INTRODUCTION

Multivariate time series in many practical applications are
often arranged in hierarchies, i.e., time series at upper levels
of the hierarchy are aggregates of those at lower levels, which
can be represented by a tree diagram. When tackling the hi-
erarchical time series forecasting problem, for interpretability
and better helping downstream tasks to make decisions, we
require that the forecasts meet the coherency, i.e. forecasts of
aggregated time series are the sum of forecasts of the corre-
sponding disaggregated time series. To achieve coherency, a
rich literature has emerged on forecast reconciliation, such as
bottom-up (BU), top-down (TD), and MinT [1].

Currently, most reconciliation methods are based on point
forecasts, and there is little research on probabilistic forecast
reconciliation. However, probabilistic forecast is very impor-
tant in practical applications and is helpful for risk manage-
ment and decision-making. Especially in the power, wind,
and other new energy industries, data is very unstable, and
the probabilistic forecast is more practical than point forecast,
which helps staff allocate energy rationally and maximize the
efficiency of energy use [2]. Probabilistic forecast reconcili-
ation is very challenging because it does not just reconcile
the mean prediction values but reconciles multiple related
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predictive distributions. Most of the probabilistic forecast rec-
onciliation methods proposed in existing research are realized
by sampling, reordering, specifying hierarchical dependencies,
and choosing reconciliation weights by optimizing a scoring
rule [3]. These approaches have two drawbacks: First, the
whole process contains too many artificial assumptions and
is not totally data-driven. Second, the prediction and recon-
ciliation steps are regarded as two separate independent pro-
cesses, which is not conducive to parameter tuning and model
updating under data mode conversion, and the reconciliation
step cannot be adjusted accordingly for different prediction
methods. Although Rangapuram et al. proposes an end-to-end
framework to solve this problem, the reconciliation step in this
framework is actually a hard mapping step and not flexible and
soft enough [4].

Recently, deep learning has shown great potential in the
field of time series forecasting. Deep neural networks can
learn complex data representations, which reduces the need
for manual feature engineering and model design. Outputs
and loss functions are flexible, allowing for the customization
of different aims, such as point forecasting, probabilistic
forecasting, and other special requirements. Some novel deep
learning architectures developed for time series forecasting
include DeepAR [5], N-BEATS [6], and Temporal Fusion
Transformer [7]. However, the application of deep learning in
the field of probabilistic forecast reconciliation is still lacking.

Inspired by the end-to-end method proposed by Ranga-
puram et al. [4], we propose a new probabilistic forecast
reconciliation method based on deep learning to solve the
above problems. First, we use a deep learning model to predict
multivariate time series and introduce the KullbackLeibler
divergence (KLD) regularization term into the loss function,
which measures the “distance” between multiple distributions,
i.e. the distance between the parent node distribution and
the sum of the child node distributions. In this way, the
prediction and reconciliation steps are fused into a deep
learning framework, instead of treating reconciliation as a
post-processing step, the KLD regularization term will help
the model achieve approximate coherency of the predictive
distribution at training time. We set a coefficient for the KLD
regularization term to control the degree of reconciliation,
which can be tuned as a hyperparameter based on different
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Fig. 1. A hierarchy example.

objectives. For example, we can select the optimal coefficient
based on the accuracy of a validation set to avoid sacrificing
accuracy for the sake of coherency. Second, the multivariate
predictive distribution given by the trained model does not
meet the complete coherency, so the idea of bottom-up can
be used to transform the incompletely coherent multivariate
distribution into a strictly coherent multivariate distribution.

Compared with the existing probabilistic forecast reconcil-
iation methods, our proposed method has the following ad-
vantages: First, the prediction step and reconciliation step are
integrated into a deep learning framework, which is conducive
to direct optimization of the target, avoiding error accumula-
tion and facilitating model updating. Second, MinT and other
traditional reconciliation methods have limited consideration
of the correlation between multiple time series. However,
the deep learning model is more able to capture relevant
information. Third, the coefficient in the KLD regularization
term is adjustable, which is conducive to adjusting the degree
of reconciliation. Sometimes, there is a trade-off between
coherency and accuracy, and we can set a reasonable degree
of reconciliation to meet different research goals.

The rest of the paper is organized as follows. In Section
II, we introduce the notation and review the existing common
forecast reconciliation methods. We then demonstrate our new
probabilistic forecast reconciliation method in Section III. In
Section IV, we conduct experiments on three data sets to com-
pare our approach with existing common probabilistic forecast
reconciliation methods. We conclude the paper and discuss
future work in Section V. The code for reproducing the results
is available at https://github.com/guanyu0316/Probabilistic-
Forecast-Reconciliation-with-DL.

II. PRELIMINARIES

A. Key Terms and Definitions

Let yt denote an n-vector containing observations at time t
of all nodes in a hierarchical structure. Let bt be an m-vector
with the observations at time t of bottom nodes. In the field of
hierarchical forecasting, an important matrix is the summing
matrix S, which is able to map the bottom time series to yt,
i.e. yt = Sbt. Once the hierarchical structure is determined,
S is determined. Taking the hierarchical structure shown in
Figure 1 as an example, a company can organize its five SKUs
into two categories, then



yh
yA,h

yB,h

yAA,h

yAB,h

yAC,h

yBA,h

yBB,h


=



1 1 1 1 1
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




yAA,h

yAB,h

yAC,h

yBA,h

yBB,h

 .

The goal of point forecast is to estimate the h period-ahead
conditional expectation

E [yT+h | y1, . . . ,yT ] .

We can compute forecasts for all series at all levels, which we
call base forecasts ŷh. However, these forecasts may not meet
coherency, i.e. ŷh = Sb̂h, so we need to transform the base
forecasts to meet the coherency, and this process is called
reconciliation. ỹh represents forecast after being reconciled,
which must meet coherency.

While the goal of probabilistic forecast is to estimate, for
each node in the hierarchy, the h period-ahead conditional
cumulative distribution function

Fi,T+h (y | y1, . . . ,yT ) = P (yi,T+h ≤ y | y1, . . . ,yT ) .

In the field of probabilistic forecast, coherency is defined as
follows: Let Xi ∼ F̂i for i = 1, ..., n and let i1, . . . , ink

denote the nk children of series i. The forecasts F̂i are
probabilistic coherent if Xi

d
= Xi1 + · · · + Xink

for i =

1, ..., r, where d
= denoted equality in distribution [8]. In other

words, the forecast is coherent if the predictive distribution
of each aggregate series is equal to the distribution of the
sum of the children series. The process of generating coherent
probabilistic forecasts using a specific method is referred to
as probabilistic forecast reconciliation, which is the focus of
this study.

B. Benchmark Models

In this subsection, we will introduce the benchmark models
used for comparison. For illustrative purposes, we take the
hierarchical structure shown in Figure 1 as an example. In
order to clearly introduce the existing probabilistic forecast
reconciliation methods, let’s first introduce point forecast
reconciliation methods. Common point forecast reconciliation
methods include bottom-up, top-down, and MinT. The essence
of these reconciliation methods is the linear transformation

ỹh = SP ŷh.

The P matrix can map the base forecast ŷh to the forecast on
the bottom level, then S can restore this bottom level forecast
to the forecast vector of all nodes. Once the hierarchical
structure is determined, S is determined, while P depends on



different reconciliation methods. For example, in the bottom-
up approach

P =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,

i.e., the reconciled forecast is obtained by aggregating the
bottom-level forecast. In the top-down method

P =


p1 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0
p3 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0

 ,

i.e. the forecast of the top node is disassembled to the bottom
level according to a certain proportion vector, and the bottom
level forecast will then be aggregated into the forecast of all
nodes using S. Wickramasuriya et al. proved that when P
takes the next formula, the trace of the variance-covariance
matrix Vh of the reconciled prediction error is the smallest
[9]. Therefore, the optimal reconciliation method is also called
MinT (Minimize Trace).

P =
(
S′W−1

h S
)−1

S′W−1
h ,

Vh = Var [yT+h − ỹh] = SPWhP
′S′,

where Wh = Var [(yT+h − ŷh)] is the variance-covariance
matrix of base forecast error, which is unknown and difficult
to be estimated accurately. In practice, it is common to make
simplifying assumptions about Wh. A commonly used as-
sumption is Wh = khΛ,Λ = diag(S1), i.e. the base forecast
error variance of a node is proportional to the number of child
nodes it contains, which is called STRUCT assumption.

Compared with the research on point forecast reconciliation,
few studies on probabilistic forecast reconciliation exist. Jeon
et al. proposed a relatively complete probabilistic forecast
reconciliation approach [3]. Specifying the hierarchical sample
arrangement form, the point forecast reconciliation methods
can be applied to probabilistic forecast reconciliation. Suppose
we can obtain a sample from the predictive joint distribution:

Ŷ =
(
ŷ
t+h|t
1 , . . . , ŷ

t+h|t
N

)
.

Every column of Ŷ is a sample vector from the predictive
joint distribution. We can apply the formula of point fore-
cast reconciliation to probabilistic forecast as follows. Point
forecast reconciliation is to reconcile a forecast vector, while
probabilistic forecast reconciliation is to reconcile a matrix:

Ỹ = SP Ŷ s.

Jeon et al. proposed three ways to construct joint distribu-
tion samples, which are abbreviated as stack, rank and random
[3]. The stack method refers to that we sample from the

predictive distribution of all nodes separately, and then the
samples are concatenated directly:

Ŷ S =


Ẑ1

Ẑ2

...
ẐL

 ,

where Ẑl is vector of N samples from predictive distribution
of node l. The essence of this approach is to assume that the
time series of all nodes are independent. The rank method
means that the values of column i of the constructed joint
distribution sample Ŷ S are all the (i/N) quantiles of the
predictive distributions of all nodes. The rank method assumes
that the series of all nodes or all levels are highly correlated.
The random method refers to the random rearrangement of the
samples drawn from each node and then concatenating them
together like the stack method. The implicit assumption of
the random method is that the series of all nodes are weakly
correlated.

After obtaining the joint distribution samples through dif-
ferent permutation methods, we can use MinT or BU methods
to reconcile the predictive joint distribution samples just like
point forecast reconciliation, which can be understood as
treating each column of Ŷ as a point forecast sequence and
reconciliating them separately.

Currently, both the point forecast reconciliation method and
the probabilistic forecast reconciliation method can be re-
garded as a two-step process, i.e., the first step is to obtain the
base forecast, and the second is to reconcile the base forecast.
This idea is not conducive to tuning parameters and model
adjustment under data mode transformation. In addition, the
above probabilistic forecasting reconciliation method implies
too many artificial assumptions of hierarchical dependence and
is not flexible enough.

III. PROBABILISTIC FORECAST RECONCILIATION WITH
KULLBACK-LEIBLER DIVERGENCE REGULARIZATION

In this section, we present a probabilistic forecast rec-
onciliation approach based on deep learning with Kullback-
Leibler divergence regularization, with the objective of over-
coming some of the aforementioned limitations of the existing
probabilistic forecast reconciliation method. Our approach can
realize end-to-end training and ensure the coherency of prob-
abilistic forecast results. In our approach, the deep learning
method is not specified, all global probabilistic forecasting
models for multivariate time series based on deep learning
can be used in our approach.

A. Proposed approach

Taking the hierarchical structure in Figure 1 as an example,
there are eight time series in total, and the value of the
time series i at time t is defined as yi,t, [1, t0 − 1] is the
history period or conditioning range, [t0, T ] is the prediction
range. Suppose we use a deep learning model for producing
probabilistic forecasts, which can model multiple time series



simultaneously. In this deep learning model, the input to the
network is history information and available covariates, and
the output is the parameter of the predictive probabilistic
distribution. Given a data set of time series and associated
covariates, the parameters of this deep learning model can be
learned by minimizing the loss:

L =

N∑
i=1

T∑
t=t0

l (yi,t, θi,t) .

Where θi,t is the parameter of the predictive probabilistic
distribution, and N is 8 in the example of Figure 1. l can
be the negative log-likelihood function. In order to meet the
coherency of multiple series probabilistic forecasts, we add a
KLD regularization term to the loss function:

L =

N∑
i=1

T∑
t=t0

l (yi,t, θi,t) +KLreg.

Taking the hierarchical structure in Figure 1 as an example,
KLreg can be represented by the following equation:

KLreg = λ1DKL (FY.t
∥FYA.t+YB.t

)

+λ2DKL (FYA.t
∥FYAA.t+YAB.t+YAC.t

)

+λ3DKL (FYB.t
∥FYBA.t+YBB.t

) ,

where Yi,t ∼ FYi,t . Multiple KLD terms are added, and each
term is the KLD between the distribution of a parent node and
the distribution of the sum of its child nodes. In mathematical
statistics, the KLD denoted DKL(P∥Q), measuring how one
probabilistic distribution P differs from a second, reference
probabilistic distribution Q. The specific definition of KLD
is: for discrete probabilistic distributions P and Q defined on
the same sample space, the KLD from Q to P is defined to
be

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

For distributions P and Q of a continuous random variable,
KLD is defined to be the integral:

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx.

So KLD is not symmetric in the two distributions. When calcu-
lating KLD, we swap positions between the two distributions
and calculate the mean of the two KLDs. Taking the first item
in KLreg as an example, let’s amend it to

Dsymmetric =

[DKL

(
FY,t∥FYA,t+YB,t

)
+DKL

(
FYA,t+YB,t

∥FY,t

)
]/2.

The KLD regularization term will help the model achieve
approximate coherency of the predictive probabilistic dis-
tribution at training time. The point is how to guarantee
the differentiability of the regularization term in the neural
network. KLD is usually calculated using samples from the
two distributions. In order to ensure the differentiability of
the sampling step, we use the reparameterization technique
to make the sampling step independent of the model, so

that the sample from the two distributions is only related
to the distribution parameters, i.e. only related to parameters
in the whole neural network, which ensures the differen-
tiability of this step. For example, suppose the predictive
distribution is Gaussian distribution. Before training, we draw
samples from the standard multivariate normal distribution, i.e.
z ∼ N(0, I). When we want to sample from the predictive
distribution, we do the reparameterization:

yt = µt +Σ
1/2
t z,

then the sampling step is outside of the network, which ensures
the differentiability. When calculating the distribution of the
sum of child nodes, we assume that the time series of each
child node is independent of each other, but this does not mean
that our method does not consider the correlation information
between each time series, because the deep learning method
itself has taken into account the correlation, which is the
advantage of deep learning.

The λ coefficient in the KLD regularization term is used
to control the degree of reconciliation. In practice, coherency
usually improves accuracy [9], and subsequent experiments in
this paper confirm this. However, for deep learning models,
adding regularization terms to the loss function may affect
the accuracy, and there is a trade-off between accuracy and
coherency, so we set λ as a hyperparameter. λ close to zero
does not enforce coherency, while larger λ make predictions
more coherent. Depending on the practical application, we can
choose a soft penalty version or a hard constraint version. In
our experiment, we set the same λ for all items in KLreg .
However, different λ can be set if having sufficient GPU
computing power.

In the actual training process, it is necessary to specify
the batch size as an integer multiple of the total number of
nodes in the hierarchical structure, i.e. each training batch
must exactly contain the time series of all nodes so that
the KLD regularization term can be calculated. We need to
be careful to generate multiple training instances and mark
the node corresponding to each instance, which facilitates
the construction of batches and the calculation of loss. The
forecast given by the above model after training is not entirely
coherent, because the penalty term only helps the model give
an approximately coherent forecast. One more step of bottom-
up aggregation is required to give coherent forecasts.

The following subsection presents one deep learning model,
DeepAR, in this study for reconciliation. The basic idea of
DeepAR, training mode, and details of implementation will
be given.

B. DeepAR

DeepAR is a time series probabilistic forecast method
based on deep learning proposed by Flunkert et al. [5].
It has been applied to various forecasting problems with
excellent results. DeepAR is a nonlinear form of the clas-
sical autoregressive model, which can be applied to single
time series or extended to multiple time series. DeepAR is
based on Recurrent Neural Network (RNN). The objective
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Fig. 2. DeepAR training and prediction process.

of DeepAR is to obtain the joint conditional probabilistic
distribution P (yi,t0:T | yi,1:t0−1,xi,1:T ), i.e. according to the
existing data yi,1:t0−1 and covariates xi,1:T , modeling the
future sequence yi,t0:T . The above distribution can be written
in the following likelihood form:

QΘ (yi,t0:T | yi,1:t0−1,xi,1:T ) =

T∏
t=t0

QΘ (yi,t | yi,1:t0−1,xi,1:T )

=

T∏
t=t0

ℓ (yi,t | θ (hi,t,Θ)) ,

where hi,t = h (hi,t−1, yi,t−1,xi,t,Θ) is the output of RNN.
We input the hidden state hi,t−1 at the last moment and data
yi,t−1, as well as covariate xi,t, then RNN will output hi,t,
which is then transformed into the parameters of a given
distribution by a specific transformation θ(·), and then the
likelihood function is obtained. In the experiment of this
paper, we use Gaussian distribution to calculate the likelihood
function. The mean value µ of Gaussian distribution is given
by the affine function of network output, and the standard
deviation σ is obtained by applying affine transformation and
softplus activation function to ensure σ > 0, i.e.

µ (hi,t) = wT
µhi,t+bµ, σ (hi,t) = log

(
1 + exp

(
wT

σhi,t + bσ
))

.

Then the negative log-likelihood loss function is as follows:

L = −
N∑
i=1

T∑
t=t0

log ℓ (yi,t | θ (hi,t)) .

We use multivariate DeepAR, so the likelihood function is
multiplied by the likelihood function of all nodes. When
applying DeepAR to our proposed reconciliation method, we
add KLD regularization term to this loss function.

The training and prediction process of DeepAR can be
represented by Figure 2. There is a difference between the
training process and the prediction process, the label values
are known at the time of training, so each network input is the
time lag term of the real value. For the prediction process, the
input of each round of the network is derived from the mean
of the distribution of the previous round of network output.

In subsequent experiments, we apply DeepAR to our pro-
posed reconciliation method for probabilistic forecasting and
name it DeepAR-Hier.

IV. EXPERIMENTS

A. Data
In order to verify the effectiveness of the proposed approach,

we conduct experiments on three classical data sets in the field

of hierarchical forecast, i.e. the Australian infant mortality data
set, the Australian tourism data set, and the Wikipedia page
view data set. The background and features of these data sets
are detailed below.

The Australian infant mortality data set, abbreviated as
Infant, is from the Australian Social Science Data Archive
and includes infant mortality rates across eight Australian
states: New South Wales (NSW), Victoria (VIC), Queensland
(QLD), South Australia (SA), Western Australia (WA), North-
ern Territory (NT), Australian Capital Territory (ACTOT), and
Tasmania (TAS). This data set is grouped by gender and state.
The time range of available data is from 1901 to 2003. The
data set is publicly available in R’s addb package [10]. Due
to missing values, we use annual data from 1933 to 2003 in
our analysis, and the forecast horizon is 4.

The Australian tourism data set, abbreviated as Tourism,
contains overnight trips in Australia from the first quarter
of 1998 to the fourth quarter of 2016 [11]. The data are
quarterly and grouped by three variables: tourism region, eight
Australian states, and purpose of travel. For this data set, the
forecast horizon is set to 4.

Wikipedia page views data set, abbreviated as Wiki, gives
the daily page views of 145,000 different Wikipedia articles
from 2015-07-01 to 2016-12-31, from which we sample 32
bottom time series and aggregate them to get the upper time
series. Specifically, the data are grouped by three variables:
agent type, access type, and country code. In the experiment,
the forecast horizon is set to 15 days.

B. Experimental set-up
We choose DeepAR as the deep learning model in our

proposed approach. We conducted a grid search for some
important hyperparameters of DeepAR-Hier, including the hid-
den recurrent size between (10,30), the number of RNN layers
between (2,5), dropout rate between (0.1,0.2), the number of
epochs (20,60) and the coefficient of the KLD regularization
term λ between(0,1). According to the time length of different
data sets, we use cross validation with a specific number of
folds to search parameters.

TABLE I
ALL METHODS AVAILABLE FOR COMPARISON.

DeepAR-Hier Arima-Random-Bu-None
Pure-DeepAR Ets-Stack-MinT-Struct
Arima-Stack-MinT-Struct Ets-Stack-Bu-None
Arima-Stack-Bu-None Ets-Rank-MinT-Struct
Arima-Rank-MinT-Struct Ets-Rank-Bu-None
Arima-Rank-Bu-None Ets-Random-MinT-Struct
Arima-Random-MinT-Struct Ets-Random-Bu-None

We compare the proposed approach with the existing proba-
bilistic forecast reconciliation method mentioned in section II.
In a word, there are 14 models participating in the comparison
summarised in Table I. For example, Arima-Stack-MinT-Struct
means that the base forecast is given by Arima, the joint
distribution sample is constructed by stack, and the reconcilia-
tion method is MinT in which error covariance is constructed



by STRUCT. The BU method does not need to assume the
error covariance, which is represented by None. Pure-DeepAR
refers to the original DeepAR method without changing the
loss function. We use PyTorch to implement DeepAR-Hier
and Pure-DeepAR, use Python’s Sktime library to implement
Arima and ETS, and automatically tune the model parameters
of Arima and ETS.

We evaluate the forecasting performance of these methods
in terms of Continuous Ranked Probability Score (CRPS).
CRPS is a commonly used evaluation metric in the field of
probabilistic forecasting. The definition of CRPS is as follows:

CRPS
(
F f , F 0

)
=

∫ +∞

−∞

[
F f (x)− F 0(x)

]2
dx,

where F f is predictive CDF and F 0 is real CDF. CRPS mea-
sures the differences between predictive distribution and real
distribution. The lower the CRPS, the more accurate the prob-
abilistic forecast results. In most cases, the real distribution is
unknown, and we only know the observation value. If we have
real observations of prediction steps ξ1, ξ2, . . . . . . , ξn, and
the corresponding predictive distributions F1, F2, . . . . . . , Fn,
CRPS can be estimated by the following equation:

CRPS(F, ξ) =
1

n

n∑
i=1

crps (Fi, ξi)

=
1

n

n∑
i=1

∫ +∞

−∞
[Fi(x)− ε (x− ξi)]

2
dx,

where ε(t) is unit step function. There is no fixed threshold
for how small the CRPS is to be a more accurate probabilistic
forecast and it depends on different practical applications.
The CRPS values under the same situation or data set are
comparable.

C. Result

TABLE II
AVERAGE CRPS.

Method
Dataset Tourism Infant Wiki

DeepAR-Hier 23.854 8.468 3187.048
Pure-DeepAR 28.909 12.155 3841.136
Arima-Stack-MinT-Struct 25.036 11.532 18758.610
Arima-Stack-Bu-None 27.140 12.136 28156.813
Arima-Rank-MinT-Struct 23.364 15.140 17829.531
Arima-Rank-Bu-None 24.206 16.349 27377.863
Arima-Random-MinT-Struct 25.329 11.527 18587.533
Arima-Random-Bu-None 27.138 12.161 27913.228
Ets-Stack-MinT-Struct 21.312 11.609 16312.947
Ets-Stack-Bu-None 26.589 12.996 23884.263
Ets-Rank-MinT-Struct 20.724 15.563 15663.066
Ets-Rank-Bu-None 23.998 16.545 23162.240
Ets-Random-MinT-Struct 21.072 11.602 16386.476
Ets-Random-Bu-None 26.673 12.960 23055.768

Using the average CRPS of all series in one data set as the
evaluation metric, the performance of each method is shown in
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Fig. 3. MCB result of Tourism dataset.

Table II, where the minimum average CRPS value of each data
set has been bolded. For Infant and Wiki data sets, DeepAR-
Hier is the best approach compared with other probabilistic
forecast reconciliation methods. For the Tourism data set, the
performance of DeepAR-Hier is worse than Ets-Rank-MinT-
Struct.

TABLE III
AVERAGE CRPS AT EACH LEVEL.

Dataset Level λ DeepAR-Hier

Tourism

1

0.006

1014.807
2 241.295
3 35.892
4 12.685

Infant

1

0.12

32.280
2 9.694
3 6.366

Wiki

1

0.24

31991.549
2 6273.763
3 2469.683
4 2001.627

We calculated the average CRPS at each level for the three
data sets, i.e. the mean of CRPS values of all time series at a
certain level. The results are shown in Table III, where the λ
column gives the optimal λ value determined on the validation
set of each data set. The CRPS value in bold indicates that
DeepAR-Hier is the best method at this level. It can be seen
that for the Tourism data set, although DeepAR-Hier is not as
good as other methods in terms of the average CRPS of all
nodes, at the bottom level, the average CRPS of the DeepAR-
Hier is the smallest. For the Wiki and Infant data set, DeepAR-
Hier outperforms the other methods at all levels. In general,
DeepAR-Hier is better than other probabilistic forecast recon-
ciliation methods in most situations, but specifically, DeepAR-
Hier can improve the probabilistic forecast accuracy of the
bottom level, and performance at upper levels is not as good
as that at lower levels.

In order to evaluate the performance of each method more
appropriately, we use multiple comparisons with the best
(MCB) proposed by Koning et al. to test the statistical sig-
nificance of the performance differences of multiple methods.
MCB focuses on the average rank, i.e. the average rank of
the evaluation metrics of all nodes [12]. MCB calculates the
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Fig. 4. MCB result of Infant dataset.
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Fig. 5. MCB result of Wiki dataset.

average rank and a confidence interval for each method to be
compared. In Figure 3, 4 and 5, we present the average rank
of each method and its confidence interval, and the results for
each data set are shown in different panels. The best method
for each data set is shown at the bottom of the panel, and the
worst-performing method is shown at the top of each panel.
If the intervals do not overlap, it indicates that the difference
between the two methods in forecasting performance is statis-
tically significant. It can be seen that for the Infant and Wiki
datasets, the DeepAR-Hier method performs best. Although
the average CRPS of DeepAR-Hier for the Tourism dataset
is not the smallest, the forecast performance of DeepAR-
Hier does not differ significantly from that of other methods
because of interval overlapping.

V. CONCLUSIONS AND DISCUSSION

In this paper, we propose a probabilistic forecast reconcil-
iation method based on deep learning with Kullback-Leibler
divergence regularization. We use a deep learning model to
predict multivariate time series and introduce the Kullback-
Leibler divergence regularization term into the loss function.
This approach can fuse the prediction step and reconciliation
step into a deep learning framework, instead of treating the
reconciliation step as a fixed and hard post-processing step,
making the reconciliation step more flexible and soft.

In our approach, the deep learning method is not specified,
all global probabilistic forecasting models for multivariate time
series based on deep learning can be used in our approach.
We apply DeepAR to our proposed reconciliation method for
probabilistic forecasting and conduct experiments on three

hierarchical time series data sets. The experiment result shows
that our approach is better than other probabilistic forecast
reconciliation methods in most situations, but specifically, our
approach can improve the probabilistic forecast accuracy of
the bottom level, and performance at upper levels is not as
good as that at lower levels.

There are several valuable directions worthy of further
investigation. First, the approach we propose is aimed at cross-
sectional data, in the future, we can try to apply the idea
to temporal hierarchy and cross-temporal hierarchy. Second,
DeepAR-Hier performs best on the Wikipedia page views
data set, which is related to the fact that deep learning
methods are suitable for large-volume data. In the future, deep
learning frameworks suitable for small sample size data should
be studied, and the minimum length of training time series
should also be explored. It can be considered to conduct an
experiment to test the trend of accuracy change relative to the
training scale to determine the optimal training length. Finally,
in our experiments, we assume that the predictive distribution
is Gaussian distribution and we can try to replace the predictive
distribution in the future.
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