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Abstract—Blockchain technology revolutionizes the Internet,
but also poses increasing risks, particularly in cryptocurrency
finance. On the Ethereum platform, Ponzi schemes, phishing
scams, and a variety of other frauds emerge. Existing Ponzi
scheme detection approaches based on heterogeneous transaction
graph modeling leverages semantic information between node
(account) pairs to establish connections, overlooking the semantic
attributes inherent to the edges (interactions). To overcome
this, we construct heterogeneous Ethereum interaction graphs
with multiple triplet interaction patterns to better depict the
real Ethereum environment. Based on this, we design a new
framework named multi-triplet augmented heterogeneous graph
neural network (MAHGNN) for Ponzi scheme detection. We
introduce the Conditional Variational Auto Encoder (CVAE) to
capture the semantic information of different triplet interac-
tion patterns, which facilitates the characterization on account
features. Extensive experiments demonstrate that MAHGNN is
capable of addressing the problem of multi-edge interactions in
heterogeneous Ethereum interaction graphs and achieving state-
of-the-art performance in Ponzi scheme detection.

Index Terms—Ponzi scheme detection, Ethereum, Heteroge-
neous graph, Feature augmentation

I. INTRODUCING

Ponzi schemes, identified as a form of fraudulent investment
scheme [1], have witnessed an escalating prevalence within
Ethereum [2]. Typically enticing investors with promises of
substantial returns, these schemes operate by redistributing in-
vestments from new participants rather than generating profits
through legitimate business activities. Such deceptive practices
invariably collapse when there is an insufficient influx of new
investors to sustain payouts for previous participants, resulting
in substantial financial losses for those involved. On November
4th, 2022, the United States Securities and Exchange Commis-
sion (SEC) filed charges against Trade Coin Club for operating
a fraudulent cryptocurrency Ponzi scheme and raising $295
million1. The SEC further alleges that investor withdrawals are
solely funded by new investor deposits, indicating a consistent
pattern of a Ponzi scheme. Therefore, the detection of Ponzi
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schemes in Ethereum is an urgent and crucial matter requiring
immediate attention.

Existing methods for detecting Ponzi schemes in Ethereum
typically focus on constructing code-level features [3] and
transaction-level features [4], which are then combined with
machine learning methods or graph algorithms for detection.
Code-level features often rely on statistical opcode charac-
teristics, which may not be universally accessible for all
contract codes and suffer from a cumbersome extraction
process. Additionally, existing graph approaches tend to model
Ethereum data as homogeneous graphs, disregarding the dis-
tinct roles of accounts and transactions, thereby leading to
information loss and an inadequate depiction of actual account
interaction patterns. The aforementioned issues constrain the
detection performance of Ponzi schemes in Ethereum. To
address these limitations, various detection approaches based
on heterogeneous graph modeling [5] have emerged. These
approaches consider the diverse types of both accounts and
transactions, thereby improving the performance of account
representation learning and Ponzi scheme detection. However,
in most cases, these heterogeneous graph modeling approaches
can only depict a single type of interaction between different
node types. Conversely, within Ethereum, multiple types of
interactions occur even between two specific account types,
such as Ether transfers and contract calls between externally
owned accounts and contract accounts.

In this regard, to better characterize complex Ethereum
interaction scenarios, we propose a Heterogeneous Graph
Neural Network method based on Multi-triplet Feature Aug-
mentation (MAHGNN), which can effectively capture multiple
triplet interaction patterns between target accounts and their
surrounding accounts, enabling better characterization of the
complex behavioral patterns exhibited by target accounts and
facilitating powerful detection of Ponzi schemes. The main
contributions of this work are summarized as follows:

• We construct a heterogeneous Ethereum interaction graph
that contains multiple triplet interaction patterns.

• We propose a Multi-triplet Augmented Heterogeneous
Graph Neural Network (MAHGNN), which can enrich
the characteristics of target accounts by simulating the
complex multi-triplet interactions around them.

• Extensive experiments show that MAHGNN consistently
outperforms existing Ponzi scheme detection methods.
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The rest of this paper is summarized as follows. Sec. II
provides a review of previous work on Ethereum scheme
detection. Sec. III describes the details of heterogeneous
Ethereum interaction graph. Sec. IV introduces the details of
proposed MAHGNN method. Sec. V presents the experimental
setup and result analysis. Finally, Sec. VI concludes this paper
and provides an outlook.

II. RELATED WORK

Fraud detection in blockchain continues to attract significant
attention, with detection methods advancing from manual fea-
ture engineering to more powerful transaction graph analysis.

Chen et al. [6] constructed manual features for accounts
and then fed them into downstream machine learning models
to identify Ponzi schemes. However, this approach heavily
relies on expert knowledge and can only target schemes that
conform to the pre-established transaction characteristics. To
accurately capture the interaction patterns among accounts in
transactions, graph embedding techniques based on random
walk have been extensively employed. For instance, Wu
et al. [7] proposed a novel network embedding algorithm
called trans2vec, which leverages transaction amounts and
timestamps within an Ethereum transaction graph. Similarly,
Tan et al. [8] employed the transaction amounts on edges
to compute walking probabilities using Node2vec [9], and
subsequently utilized the resulting embeddings in downstream
detection. However, the aforementioned methods primarily
focus on extracting information from the graph structure and
do not effectively utilize the valuable node features. With the
emergence of graph neural networks (GNNs), several detection
algorithms based on graphs have been developed to capture
both node features and structural information simultaneously.
Yu et al. [10] initially employed a graph convolutional network
(GCN) [11] for identifying Ethereum Ponzi schemes, yielding
promising results. However, the proposed approach relies on
manual features as input, which may impose limitations on
its expressiveness. Therefore, Tan et al. [12] employ a graph
embedding method to generate embeddings as input, followed
by the utilization of GCN for fraud detection.

All the aforementioned methods are based on homoge-
neous graph modeling, overlooking the importance of ac-
count type and interaction type. In an early attempt to
introduce heterogeneity in Ponzi detection, Jin et al. [13]
enhanced the existing homogeneous Ponzi detection tech-
nique by constructing heterogeneous graphs and employing
metapaths. Concurrently, anomaly detection algorithms that
leverage heterogeneous graphs emerge. Based on heteroge-
neous embedding techniques, Wang et al. [14] employed a
biased random walk to acquire the embedding representation
using transaction amounts and timestamps, and utilized a
normalized heterogeneous softmax function based on node
type. However, similar to homogeneous embedding methods,
the heterogeneous embedding approach also exhibits certain
limitations. Consequently, there is a growing trend towards
adopting heterogeneous neural networks that offer promising
solutions to address these drawbacks. Liu et al. [15] employed

the transformer network for acquiring the paths linking multi-
hop connected nodes and generated a metapath correlation
matrix, which is subsequently fed into a convolutional neural
network to procure the node embedding.

III. ETHEREUM INTERACTION GRAPH MODELING

In this section, we mainly introduce the Ethereum data and
the construction of heterogeneous Ethereum interaction graph.

A. Ethereum Data

In Ethereum, an account represents an entity that holds
Ether and can be classified into two types: Externally Owned
Accounts (EOAs) and Contract Accounts (CAs). EOAs are
managed by their respective private key holders, who have the
capability to initiate transactions on the Ethereum network.
CAs are governed by their underlying smart contract code
and can only be triggered to execute functions defined within
the contract. Interactions between Ethereum accounts can be
classified into two categories: transactions (trans) and contract
calls (call). Transactions primarily involve the transfer of
Ether. Contract calls obtain various services by triggering
functions within the smart contract. Further analyzing these
interactions can provide deeper insights into the functioning
of the Ethereum network and uncover risks.

B. Heterogeneous Ethereum Interaction Graph

Heterogeneous graphs encompass diverse types of edges and
nodes, serving as an effective means to represent complex
interactive systems in reality. However, in existing hetero-
geneous graph datasets such as ACM [16], DBLP [17] and
IMDB [18], the types of edges between two specific types
of nodes are also determined. Taking ACM as an example,
there are three types of nodes: author (A), paper (P) and
subject(S), but only two types of edges: author of the paper
(P-A) and subject of the paper (P-S). However, in Ethereum,
there will be multiple types of interactions even between
two specific account types. Here we construct heterogeneous
Ethernet interaction graphs to further illustrate this difference.

Definition 1 (Heterogeneous Ethereum Interaction Graph,
HEIG). We treat Ethereum accounts as nodes and interactions
between accounts as edges, constructing a Heterogeneous
Ethereum Interaction Graph (HEIG), symbolized as G =
(Veoa, Vca, Etrans, Ecall, Y ), where Veoa and Vca represent the
sets of EOAs and CAs respectively, Etrans and Ecall represent
the sets of transactions and contract calls respectively, and
Y = {(vi, yi) | vi ∈ Vca} represents the label set of partial
CA nodes with known identity information.

Based on this definition, we further discuss the different
interaction patterns in Ethereum. According to the rules of
Ethereum, the target of a call edge must be a CA, while the
source and target of a transaction edge are not restricted. Fig. 1
illustrates the multiple triplets formed by different account
pairs and different types of interactions in HEIG. Through a
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Fig. 1. The framework of heterogeneous Ethereum interaction graph including
multiplex triplet subgraphs.

comprehensive analysis of account interactions in Ethereum,
we can derive six triplet interaction patterns as follows:

Rc
cc : CA call−→ CA, Rt

cc : CA trans−→ CA

Rt
ce : CA trans−→ EOA, Rc

ec : EOA call−→ CA

Rt
ec : EOA trans−→ CA, Rt

ee : EOA trans−→ EOA

(1)

C. Account Feature Initialization

When we apply graph-related algorithms, especially graph
neural networks, to analyze HEIG, the initial node (account)
features are indispensable. However, the account interaction
graph defined in Definition 1 is devoid of account features.
Therefore, in this paper, we construct manual features for
accounts to serve as their initial features. Specifically, for each
account vi (CA or EOA), we construct manual features based
on different interactions (trans or call) as follows:

• Investment and returns generated under specific inter-
action types (including total and average, a total of
2× 2× 2 = 8 types).

• Balance obtained under specific interaction types (a total
of 2× 1× 1 = 2 types).

• Number of initiations and receptions under specific inter-
action types (a total of 2× 2× 1 = 4 types).

The 14 manual features defined above are widely used to
characterize the transaction features of accounts in blockchain.
After statistical computation, we use them to construct a 14-
dimensional initial feature vector Xi ∈ R14 for each account
vi in HEIG.

D. Dataset Construction

We retrieve a total of 191 labeled Ponzi accounts and 1,152
non-Ponzi accounts from various Blockchain data platforms,
including Xblock1, Etherscan2. Since the raw data in Ethereum
is so massive, we scale down the data by filtering the relatively
unimportant second-order neighbors of the target accounts.
Remarkably, edges have count and sum features. The former
is the number of occurrences indicating the interaction fre-
quency, the latter is the total amount indicating the size of

1http://xblock.pro/ethereum/
2https://cn.etherscan.com/accounts/label/ponzi
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Fig. 2. The framework for second-order neighborhood filtering based on edge
features.

TABLE I
STATISTICS FOR DIFFERENT DATASETS WITH DIFFERENT top-k SAMPLING.

Datasets k CA EOA Rc
cc Rt

cc Rt
ce Rc

ec Rt
ec Rt

ee

Version-0
0.01 72,721 850,745 71,254 4,679 13,316 774,329 401,026 99,960

0.001 65,412 696,721 65,559 4,669 12,538 738,983 398,545 10,061

Version-1
0.01 109,777 796,556 102,022 511 13,316 679,870 135,680 96,457

0.001 100,089 616,276 101,798 501 12,538 662,329 133,323 9,708

Version-2
0.01 63,373 738,356 57,759 1,142 13,316 656,823 353,638 101,467

0.001 53,333 585,485 53,841 1,132 12,538 621,501 351,121 10,212

the interaction. We categorize the second-order neighbor data
by the count and subsequently retain top-k% of edges within
each group that possess higher sum features, as illustrated in
Figure 2, thus ensuring attention to edges involving higher
values and retaining the nearly original structural features.

We randomly sample 191 accounts from the labeled non-
Ponzi accounts three times, and then filter their neighbors with
k=0.01 and k=0.001 as the above method. As a result, we
obtain six different datasets, as specified in Table I. As an
example, the filtered graph of Version-0 contains only 5% CA
of the corresponding raw data.

IV. METHODOLOGY

In this section, we introduce the MAHGNN model, which
utilizes multi-triplet interaction patterns to enhance the charac-
terization of target accounts, The main framework is illustrated
in Fig. 3.

A. Triplet-level Information Generation Model

For HEIG, the neighborhood of each account exhibits a di-
verse range of triplet interaction patterns, which are primarily
influenced by the target account. To effectively capture these
distribution features and provide insights into the behavioral
patterns of the target node, we propose a triplet-level informa-
tion generation model.

Specifically, our triplet-level information generation model
can be regarded as a feature augmentation strategy, which can
generate more neighborhood features based on triplet starting
from target account, thereby helping to improve the expressive
power of Ponzi detection model. Specifically, we first consider

http://xblock.pro/ethereum/
https://cn.etherscan.com/accounts/label/ponzi
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Fig. 3. The framework of Multi-triplet Augmented Heterogeneous Graph Neural Networks. The CVAE model, tailored to multi-triplet interactions, is utilized
to generate the corresponding triplet-level augmentation features. Following the model training process, the prediction loss (Lpred) is obtained.

the initial features of target account (Xv) as the conditional
information and the initial features of all neighbor accounts
(Xu) as the input data. Then we utilize a conditional varia-
tional auto-encoder (CVAE) [19], [20] to takes the conditional
information and input data to generate new neighborhood
features for the target account. The CVAE consists of two
parts: an encoder and a decoder. The encoder learns how to
map the input data Xu and conditional information Xv to
the latent space, and outputs the distribution parameters of the
latent variable z:

µ,σ = Encoder(Xv,Xu) (2)

where the mean µ and standard deviation σ are used to de-
scribe the posterior probability distribution qϕ (z | Xu,Xv).
The decoder takes the sampled latent variable z and condi-
tional information Xv as input and generates features for the
target node v:

z = µ+ ϵ⊙ σ

X̂v = Decoder(z,Xv)
(3)

where ϵ ∼ N (0, I) and ⊙ is the element-wise multiplication.

During the training phase, the goal of CVAE is to learn the
neighborhood information distribution of the target node using
neighbor pairs (Xv,Xu, u ∈ Nv) as input, which is achieved
by maximizing the evidence lower bound (ELBO) as follows:

L (Xu,Xv; θ, ϕ) =− KL (qϕ(z | Xu,Xv) ∥ pθ(z | Xv))

+
1

L

L∑
l=1

log pθ(Xu | Xv, z)

(4)
where qϕ (z | Xu,Xv) is the latent distribution generated
by the encoder, pθ(z | Xv) is the prior distribution of
neighborhood information, pθ(Xu | Xv, z) is the generative
distribution conditioned on z and Xv , ϕ and θ represent the
variational parameters and generative parameters respectively,

L is the number of neighbors of node v. By minimizing the
ELBO, the CVAE can learn appropriate parameters for both
the encoder and decoder, thus reducing the reconstruction error
of the input data under a given condition. At the same time,
it ensures that the latent distribution generated by the encoder
is similar to the prior distribution.

B. Multi-triplet Feature Augmentation for Ponzi Detection

According to Eq. (1), there exists at least one and at
most three different forms of interactions around any target
node in HEIG. In order to characterize the triplet information
distribution of the target node in a more fine-grained way and
generate more diverse triplet-level augmentation features, we
perform different triplet-level information generation models
specified to types of interactions separately.

Specifically, for each type of target node v (CAs or EOAs),
we first obtain its neighbor pairs (Xv,Xu, u ∈ Nv(R

∗))
based on different triplet interaction patterns R∗, where

R∗ ∈

{
{Rc

cc, R
t
cc, R

t
ce} if u ∈ Vca

{Rc
ec, R

t
ec, R

t
ee} if u ∈ Veoa

(5)

and then use these neighbor pairs to pre-train a CVAE model
fcvae. This CVAE model can generate triplet-level augmen-
tation features for specific types of nodes based on specific
triplet interaction patterns. Finally, for CAs or EOAs, we can
pre-train three CVAE models and finally generate three types
of triplet-level augmentation features:

For CAs : X̂
c
cc, X̂

t
cc, X̂

t
ce ∈ Rnc×d

For EOAs : X̂
c
ec, X̂

t
ec, X̂

t
ee ∈ Rne×d

(6)

where n denotes the number of nodes and d denotes the
dimension and is of the same length as the initial feature.

Based on the aforementioned triplet-level augmentation
features, we additionally incorporate the initial features Xc

and Xe to create integrated feature groups Xc and Xe.



Furthermore, in order to obtain comprehensive triplet-level
information, we employ a multi-view approach by iteratively
repeating the feature augmentation M times. Ultimately, the
feature groups can be represented as follows:

XM
c : {X̂

c
cc, X̂

t
cc, X̂

t
ce, Xc}M

XM
e : {X̂

c
ec, X̂

t
ec, X̂

t
ee, Xe}M

(7)

where M is the number of views. Moving forward, we
commence with the process of training the model to further
improve the multi-view triplet-level features.

Essentially, various node types assume distinct roles within
the graph. To capture diverse semantic information associated
with each node type, we utilize fully connected (FC) layers.
Concurrently, we incorporate an activation function to learn
intricate interaction information within the triplet-level aug-
mentation features in Eq. (7). The formulation is depicted as:

hM
i = σ (XM

i ·Θi) (8)

where i ∈ {c, e} represents two node types, XM
i ∈ XM

i

is the matrix in the i feature group, Θi is parameter weight
matrix customized for node types. And HM

i is the projected
feature group specific to the i type, composed of HM

c :

{ĥ
c

cc, ĥ
t

cc, ĥ
t

ce,hc}M and HM
e : {ĥ

c

ec, ĥ
t

ec, ĥ
t

ee,hc}M.

After obtaining the projected feature groups, we con-
catenate the intra-group matrices to obtain the unique pro-
jected feature matrix for various types, which are repre-
sented as ĥc = [ĥ

c

cc|| ĥ
t

cc|| ĥ
t

ce|| hc] ∈ Rnc×4d′
and

ĥe = [ĥ
c
ec|| ĥ

t
ec|| ĥ

t
ee|| he] ∈ Rne×4d′

, where || denotes the
concatenation and d′ is the dimension of projected features.
After joining multi-views information, writing as ĥ

M
i .

To obtain a more comprehensive feature representation, we
merge various triplet-level features along with initial node
features through a concatenation operation. This integration
enables the incorporation of multi-triplet information, resulting
in a richer and more comprehensive feature representation.
Nevertheless, problems also arise along with concatenation,
which firstly leads to an extension of feature dimensions,
making the subsequent learning process require more run-time
memory. Therefore, we use the FC layer to learn the linear
relationships in the input features to achieve dimensionality
reduction. The formulation is as follows:

h̃
M
i = ĥ

M
i · Θ̃i (9)

where h̃
M
i ∈ Rni×d′′

represents the feature matrix obtained
after the fully connected layer, incorporates a weighted combi-
nation of the input vectors. This process effectively integrates
each triplet-level augmentation feature. Then we use HGNN
to process features pertaining to different node types and edge
types. For the first layer, we can employ a general HGNN as
backbone, e.g. Heterogeneous Graph Transformer (HGT) [21],
denoted as:

H̃
M

= FHGNNM (h̃
M
,A) (10)

where FHGNNM(·) is the model specified to the Mth view,

A is the heterogeneous adjacent matrix with all triplet types.
Subsequently, we utilize an average pooling layer to fuse

information from multiple views and obtain the holistic rep-
resentation H = MeanPooling(H̃

1
, H̃

2
, · · · , H̃M

). The
intermediate representation is then fed into another HGT layer
to obtain the final representation:

H = FHGNN (H,A) (11)

where H is the final representation for the downstream detec-
tion task.

V. EXPERIMENTS

A. Baselines

We compare our MAHGNN with various categories of
Ponzi detection approaches based on graph representation
models, including unsupervised learning (UL) [22] and semi-
supervised learning (SSL) [23]. The UL category comprises
conventional homogeneous graph embedding models and con-
ventional heterogeneous graph embedding models, while the
SSL category encompasses GNNs for homogeneous graphs
and GNNs for heterogeneous graphs. We utilize homogeneous
approach for the homogeneous graph associated with the
heterogeneous Ethereum interaction network, the baselines are
as follows:

• Node2Vec [9] introduces two parameters, p and q, to
Deepwalk [24] for regulating the random walk procedure.

• Metapath2Vec [25] creates node sequences by employ-
ing meta-paths to limit the sequence of node access,
thereby more efficiently capturing the associations be-
tween distinct node types in a heterogeneous network. We
adopt the well-defined meta-paths in the past work [26]
and take the optimal result.

• GCN [11] generates a node embedding representation by
executing a convolution operation on the graph, merging
the node features with those of its adjacent nodes.

• GAT [27] employs an attention mechanism to evalu-
ate the relevance between nodes and their neighbors,
thereby more efficiently capturing information regarding
the graph structure.

• GT [28] advances upon the Transformer [29] by con-
verting graph data into a sequence of node vectors,
which are subsequently aggregated and interacted with
using a multi-layer self-attentive mechanism to acquire a
comprehensive representation of the entire graph.

• RGCN [30] leverages relationship-specific weight ma-
trices in the convolutional layer to perform node con-
volution, which is able to handle multiple types of
relationships in heterogeneous graphs.

• HAN [31] incorporates the meta-path relationships be-
tween different types of entities in the attention mecha-
nism to compute attention coefficients, which enhances
the model’s ability to capture the dependencies between
entities. The used meta-path is the same as Metapath2Vec.



TABLE II
THE RESULTS OF PONZI SCHEME DETECTION IN TERMS OF MICRO-F1(%) AND STANDARD DEVIATION(%). BOLDFACE LETTERS ARE USED FOR THE

SUPERIOR RESULT.

Datasets k N2V MP2V GCN GAT GT RGCN HAN HGT MAHGNN

Vesion-0
0.01 72.99 ± 3.01 83.64 ± 4.24 84.42 ± 3.48 72.47 ± 6.54 86.23 ± 2.26 88.57 ± 1.51 87.79 ± 0.64 87.79 ± 1.76 90.91 ± 2.32

0.001 74.55 ± 4.07 82.08 ± 4.68 87.27 ± 3.80 74.03 ± 9.02 90.91 ± 2.72 86.23 ± 1.76 87.79 ± 1.76 87.53 ± 1.76 90.91 ± 1.61

Vesion-1
0.01 78.96 ± 2.52 83.64 ± 4.54 89.09 ± 1.76 75.32 ± 5.06 89.09 ± 2.11 89.61 ± 1.64 86.75 ± 2.38 89.35 ± 1.72 91.69 ± 2.54

0.001 80.26 ± 2.23 81.30 ± 3.35 86.75 ± 0.97 71.69 ± 6.22 89.61 ± 2.32 90.39 ± 3.45 88.57 ± 0.52 88.57 ± 0.52 92.99 ± 1.04

Vesion-2
0.01 77.14 ± 3.54 83.64 ± 3.45 83.12 ± 2.17 71.95 ± 3.14 83.64 ± 6.90 95.32 ± 1.32 88.83 ± 1.94 90.39 ± 1.32 95.58 ± 1.94

0.001 80.26 ± 3.01 83.90 ± 1.76 83.12 ± 5.39 73.51 ± 6.01 88.05 ± 3.01 92.99 ± 0.64 91.17 ± 0.52 91.43 ± 0.64 95.58 ± 1.04

• HGT [21] uses the relationships between different types
of entities in Graph Transformer to calculate the attention
factor to better capture the dependencies between entities.

The homogeneous and heterogeneous baselines demonstrate
a direct correspondence between them. Specifically, the
Node2Vec (N2V) aligns with the Metapath2Vec (MP2V), the
GCN aligns with the RGCN, the GAT aligns with the HAN,
and the Graph Transformer (GT) aligns with the HGT.

B. Experimental Setup

In order to better showcase the effectiveness of the aug-
mentation module, we fine-tune the parameters of the baseline
methods to their optimal values. In the case of the unsuper-
vised random walk method, we set the walk length to 50,
window size to 10, walk length per node to 5, and p and q
values in Node2Vec to the optimal value are selected from the
set {0.25, 0.4}. The hidden dimension and learning rates for
the semi-supervised learning methods, including GCN, GAT,
GT, RGCN, HAN, HGT and our MAHGNN are selected from
sets {16, 32, 64} and {0.01, 0.001}, respectively. Additionally,
for RGCN, num bases is set to 50. For all methods involving
the multi-head attention, the head is fixed at 4. For our method,
the multi-views parameters M is chosen from {1, 2, 3, 4},
backbone HGNN is HGT, and activation function σ(·) is
Tanh(·). For all experiments, we split the dataset into 6:2:2
and report the average Micro-F1 performance after 5 runs.

When working with the Ponzi dataset, training directly on
the entire graph can be challenging due to memory limitations.
To address this, we utilize a neighbor sampling approach
to train in smaller batches. Our process involves randomly
selecting a fixed number of neighbors for each edge type at
each layer, for a given target node. Then, we allow the node to
gather messages from the selected neighbors layer by layer. To
ensure consistency, we set the number of sampled neighbors to
100 for each edge type at each layer. This sampling strategy
is conveniently available in the PyG3 package. Notably, the
pre-training process utilizes the entire graph as it enables the
model to undergo separate pre-training based on distinct triplet
while keeping memory demands low.

C. Detection Performance

The results of Ponzi scheme detection are reported in
Table II, from which we can observe that our method achieves
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the state-of-the-art performance. Our method focuses on ob-
taining triplet-level augmentation features through extracting
multi-triplet information, and then aggregating neighborhood
information using a heterogeneous neural network model.
This method consistently achieves best detection performance
across various versions of the Ponzi datasets compared to other
methods. Specifically, the improvement rate of MAHGNN
ranges from 0.00% ∼ 2.88% compared to the best results
of baselines cross different dataset versions. Based on the
research, it seems that the MAHGNN model is more effective
in identifying Ponzi schemes than the HGT model. This arises
from the MAHGNN model’s capacity to generate and gather
rich triplet-level structural features. This capability facilitates
the acquisition of precise structural properties within the graph,
ultimately yielding a high-quality representation beneficial for
downstream detection tasks. Additionally, it underscores the
significance of discerning these triplet types in heterogeneous
graphs when learning graph structure representations.

At the same time, we find that the utilization of hetero-
geneous methods is indisputably more effective than the uti-
lization of homogeneous methods in detecting Ponzi schemes
on most of the various datasets. This is because heteroge-
neous graphs contain an abundance of essential information
that enables learning of specific properties of Ponzi interac-
tion behavior. Our approach of modeling Ethereum data as
Ethereum heterogeneous interaction graphs, while considering
the multilateral relationships within these interaction graphs,
is thus strongly supported by these findings.

Moreover, upon analyzing the results across different
datasets, we discover that the version-2 dataset demonstrates
significantly greater effectiveness in detection. This obser-
vation suggests the existence of crucial structures in the
Ethereum interaction network that facilitate the detection of
Ponzi schemes. Consequently, it is worth considering how to
extract these structures from large-scale Ethereum data in fu-
ture research. Additionally, the minimal variation in detection
results for different values of k highlights the efficacy of our
approach to second-order neighbor filtering in preserving the
underlying graph structure. Furthermore, it also indicates that
low transaction volume nodes in the second-order neighbor-
hood provide limited assistance in Ponzi scheme detection.
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VI. CONCLUSION

The current detection model for Ethereum Ponzi schemes
primarily relies on homogeneous design. While existing het-
erogeneous models show power in detecting Ponzi schemes,
they still lack efficient heterogeneous graph augmenta-
tion strategies. To address this limitation, we propose the
MAHGNN for Ponzi scheme detection. In detail, our approach
leverages the presence of multi-triplet interactions within the
HIG. Then we pre-train a CVAE model for different triplet
types to capture individual triplet-level structure informa-
tion. Experimental results demonstrate the effectiveness of
our approach, which is better than existing detection model.
However, considering the time-consuming nature of the pre-
training process, we are motivated to explore an end-to-end
framework that can achieve more efficient detection of Ponzi
schemes in the future.
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