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Abstract—Designing predictive models for subjective problems
in natural language processing (NLP) remains challenging. This
is mainly due to its non-deterministic nature and different
perceptions of the content by different humans. It may be solved
by Personalized Natural Language Processing (PNLP), where
the model exploits additional information about the reader to
make more accurate predictions. However, current approaches
require complete information about the recipients to be straight
embedded. Besides, the recent methods focus on deterministic
inference or simple frequency-based estimations of the probabil-
ities. In this work, we overcome this limitation by proposing
a novel approach to capture the uncertainty of the forecast
using conditional Normalizing Flows. This allows us to model
complex multimodal distributions and to compare various models
using negative log-likelihood (NLL). In addition, the new solution
allows for various interpretations of possible reader perception
thanks to the available sampling function. We validated our
method on three challenging, subjective NLP tasks, including
emotion recognition and hate speech. The comparative analysis
of generalized and personalized approaches revealed that our
personalized solutions significantly outperform the baseline and
provide more precise uncertainty estimates. The impact on the
text interpretability and uncertainty studies are presented as well.
The information brought by the developed methods makes it
possible to build hybrid models whose effectiveness surpasses
classic solutions. In addition, an analysis and visualization of the
probabilities of the given decisions for texts with high entropy of
annotations and annotators with mixed views were carried out.

Index Terms—artificial neural networks, natural language
processing, human profile modelling, probabilistic technique

I. INTRODUCTION

Human affective states, including emotions, strongly depend
on the individual, the stimulant eliciting them, and the as-
sociated context [1]. Therefore, the reasoning of a person’s
perception based on machine learning bears a significant
degree of uncertainty. It refers to the reaction to any content,
including text reading. We can say that disagreements in
human textual inferences are inherent [2]. Most solutions to
subjective problems in natural language processing (NLP),
like recognition of emotions, hate speech, sarcasm, sense
of humor, sentiment, and many others, rely on generalized
perspectives. They consider only text and its single generalized
interpretation. Then, the commonly used solution is to simplify
multiple distinct views, i.e., annotations provided by many
annotators using majority voting or other methods to achieve

†These authors contributed equally to this work.

a sole perception. Overall, we can identify two sources of
uncertainty: (1) humans, who are unsure and imprecise in their
annotations (this is a hidden factor), and (2) a community of
annotators. The latter refers to discrepancies between people
in understanding the problem, and perception of a given
text [3]–[5]. The standard measures for inter-rater agreement
are Krippendorff’s alpha [6] or Fleiss’ kappa [7]. However,
they provide only a single value characterizing the set of all
annotations for all texts. Yet another (3) source of uncertainty:
the trained model itself. It means that the model is not capable
of precisely learning about concepts (what is joy or hate
speech?) and relations from the available learning samples.
This leads to errors and proximate reasoning. Simultaneously,
emotions can be considered multidimensional objects, which
requires multi-task learning [8] and further complicates the
problem of uncertainty modeling. Most of the proposed ap-
proaches for subjective modeling in the NLP domain focus on
deterministic predictions. In this work, we propose to enrich
the family of emotional methods by introducing Emotional
Normalizing Flow – an entirely probabilistic framework that
utilizes conditional Normalizing Flows to model uncertainty.
We postulate to represent the considered tasks as multivariate
regression problems and represent the distribution of the
outputs with conditional flows. This approach allows us to
model complex multimodal distributions of multidimensional
outputs. The experiments and validation were carried out on
emotion detection (ten tasks) and hate speech (two tasks).
We examine various choices of flow models and compare
their performance with the mixture of Gaussians, showing
the superiority of Emotional Normalizing Flow compared to
the selected baseline. Moreover, we show that incorporating
personalization into our model leads to better distribution ad-
justment measured with negative log-likelihood (NLL) value.

To summarize, the contributions of this work are as follows:

• We introduce a novel approach for probabilistic modeling
in subjective NLP-based problems;

• We examine the impact of personalization on the quality
of the model and show that in most of the considered ex-
perimental cases, additional information about the reader
leads to better probability adjustment;

• We show that our approach outperforms the standard
baseline that utilizes a mixture of Gaussians;
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• We propose a hybrid approach utilizing Normalizing
Flows and personalization that outperform previous mod-
els.

II. RELATED WORK

Initial work on emotion recognition in the text was based
mainly on frequency analysis of words defined in lexicons
of emotions [9], [10]. These lexicons contained words with
assigned categories of basic emotions, e.g., joy, anger, sadness
[11], [12]. Emotions occurring most frequently at the lexical
level were then assigned to the entire text. With the develop-
ment of text classification methods based on machine learning,
datasets containing texts manually annotated with emotions
began to emerge [13]–[20]. Due to annotators’ subjective per-
ception of emotions, and thus low inter-annotator agreement,
it was common to assign emotion labels to text based on
majority voting [13], [18]. Based on such prepared data, text
classification models were trained. Initially, such models as
SVM [21], BiLSTM, and GRU [22] were used. Currently,
transformer-based models such as BERT perform best in the
task of emotion recognition [18], [23]. The aforementioned
approaches require data for which the inter-annotator agree-
ment is high. However, there are some data sets such as
Wiki-Detox [24], Sentimenti [16] or Measuring Hate Speech
[25], which contain an annotator identifier linked to their
affective annotation. They also include multiple annotations
for a given text from multiple annotators. For such data,
new personalized approaches have recently been developed, in
which the context of the annotator is taken into account in the
model learning process [26]–[36]. This makes it possible, for
example, to answer the question of what emotions a particular
text evokes for a particular user. Recent method proposals
also focus on neuro-symbolic approaches to explain decisions
made [37], usage of large-scale pre-trained language model
(PLM) for prompt-based classification tasks such as sentiment
analysis and emotion detection [38], using recently popular
large language models (LLMs) [39], or methods of complex
persona attribute extraction [40]. However, the methods men-
tioned above do not model the uncertainty associated with the
community’s subjective perception of emotions and the degree
of indecision of the annotators themselves.

In this paper, to model uncertainty described in the In-
troduction we adapt the concept of Normalizing Flows. The
best-known Normalizing Flow models such as NICE [41],
RealNVP [42], MAF [43], and CNF [44] were originally
used for density estimation and image generation tasks. These
models were further extended and used as components for
more sophisticated tasks or even for other domains of ap-
plications. In Computer Vision, there were proposed mod-
els such as RegFlow [45] for probabilistic future location
prediction, Flow Plugin Network [46], PluGeN [47], and
StyleFlow [48] models for conditional image generation. For
the tabular data, recently, TreeFlow [49] was proposed that
utilizes a combination of tree-based models with conditional
Normalizing Flows to estimate uncertainty for uni- and multi-
variate regression problems. In terms of Natural Language

Processing and Normalizing Flows, only Discrete Flow [50]
was proposed to model character-level datasets using Nor-
malizing Flows dedicated to the discrete data. To the best of
our knowledge, no probabilistic approach has been proposed
to model distributions of uncertainty in personalized natural
language processing, and our Emotional Normalizing Flow is
the first probabilistic model proposed for multi-task prediction
of personalized emotions.

III. BACKGROUND

a) Generalized and Personalized Approach to Subjective
NLP Problems.: In the classic approach to the task of text
classification or regression, we assume a training set of the
form D = {(ti,yi)}Ni=1, where ti ∈ T is the i-th text
document and yi is its annotation. However, many NLP tasks,
such as recognizing emotions in a text or detecting hate
speech, can be subjective because each person perceives these
phenomena. This leads to a situation when we can have more
than one annotation y for the same text t, as different people
may annotate the same texts differently. Therefore, a training
set is in the form of D = {(ti,pi,yi)}Ni=1, where yi is the
annotation given by person pi ∈ P for text ti ∈ T .

One approach to subjective tasks in NLP is the so-called
generalized. It assumes that the model predicts the result based
solely on the text and returns the same prediction for every
user. Generalized models usually consist of two parts: text
encoder (language model), which creates text representation
et and classifier or regressor (usually fully-connected layer)
that gives prediction ŷ. However, recent studies [28], [51], [52]
show that this approach should not be considered correct, as
adding information about the annotator significantly improves
model quality and yields better results. The approach that
combines information about the text and the human is so-
called personalized. Compared to the generalized, personal-
ized model adds another component called profile extractor,
that creates human representation ep. The comparison of
generalized and personalized approaches is shown in Fig 1.

There are few existing architectures [28], [51] utilizing this
fact. Still, all of them are deterministic, meaning none model
uncertainty as a direct optimization of negative log-likelihood.

b) Normalizing Flows.: Normalizing Flows [53] are a
class of generative models that enables estimation of the
uncertainty of prediction thanks to the access to log probability
function and thus enable direct optimization of negative log-
likelihood (NLL). The goal of the model is to transform
base distribution pU (u) (usually Gaussians with independent
components) to the complex distribution of the data pY (y)
using a series of K invertible functions that can be written
as u = fK ◦ · · · ◦ f1(y). For that purpose, Normalizing Flows
utilize the change-of-variable formula and then the NLL y is
given by

log pY (y) = log pU (u)−
K∑

k=1

log

∣∣∣∣det ∂fn
∂zk−1

∣∣∣∣ . (1)

To specify the exact Normalizing Flow model, we need to
define transformations f1, . . . , fK . Here, multiple models were
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Fig. 1: Comparison of (a) generalized and (b) personalized
deterministic models. (a) consists of two parts: a text en-
coder (language model) that creates text embedding et and
a classifier or regressor (mostly fully-connected layer) that
provides prediction ŷ. This approach is not considered suitable
for subjective NLP tasks, like emotion recognition, because it
does not respect the individual perception of the text. Model
(b) fixes this problem by adding a profile extractor in the form
of user representation ep. It allows human individual charac-
teristics to be included in the inference process. Both models
are deterministic, giving us limited, spolight information about
subjective tasks.

proposed such as NICE [41], RealNVP [42], MAF [43] or
Continuous Normalizing Flows [44].

IV. OUR APPROACH

In this section, we introduce Emotional Normalizing Flow
- the probabilistic model for subjective uncertainty modeling
in the NLP domain. The general schema of the proposed
approach is provided in Fig. 2. The model is composed of
Profile extractor that is responsible for creating the repre-
sentation of the person, ep, and Text encoder that creates
embedding et directly from the input text. Both components
can be represented by various models (trainable and fixed),
and we elaborate on this further in this section.

The extracted vectors ep and et are further delivered to the
conditional flow represented by the complex transformation
function f(·). The role of the function is to transform multi-
variate regression outputs y to z that represents the variable in
the base space, assuming given vectors, ep and et. Formally,
we have z = f(y, ep, et), where f is invertible with respect to
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(a) Generalized flow-based probabilistic model.
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(b) Personalized flow-based probabilistic model.

Fig. 2: Comparison of (a) generalized and (b) personalized
flow-based probabilistic models. Model (a), as in the case
of generalized deterministic, uses only information about the
text. However, unlike it, it models the conditional probability
distribution pY (y|et) using Normalizing Flow. Model (b)
extends the concept of the personalized deterministic model in
a similar way to (a) but it exploits representations of both the
text et and user ep to model conditional probability distribution
pY (y|ep, et) for the subjective output predictions representing
emotions.

y, y = f−1(z, ep, et). Moreover, the complex transformation
f can be decomposed into a sequence of simple functions,
z = fK ◦ · · · ◦ f1(y, ep, et), where the K is number discrete
transformations. With such assumptions, the probability distri-
bution for y that represents the distribution over the regression
outputs can be calculated using the formula:

pY (y|ep, et) = pZ(z) ·
K∏

k=1

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ , (2)

where z0, . . . , zK are intermediate steps after discrete trans-
formations, assuming z0 := y, and zK := z. pZ(z) is
the assumed base distribution for z with the known density



function, usually represented by Gaussian. Consequently, we
have direct access to the density function for that conditional
distribution. Therefore we can calculate the likelihood function
for a set of input-output pairs to evaluate the quality of the
model. We can sample an infinite number of output values
assuming given inputs and interpret the results.

The proposed model can quickly adapt to the problems
without personalization, simply skipping ep conditioning in
the flow. Our approach is independent of the conditional
Normalizing Flow type, and we experimentally compare the
performances of the most popular models. We follow the
methodology of incorporating conditional components de-
scribed in [46].

a) Profile extractor.: Vector ep contains information
about the user specific to the personalization architecture
used. This can include information such as the deviation of
responses from the majority voice, metadata about the user,
user identifier [28], the correlation of the text’s context with
historical evaluations, or other features unique to the recipient
of the text. It also can be randomly initialized and tuned during
the learning process by backpropagation [51].

b) Text encoder.: In the case of et vector, text represen-
tation is implemented using Transfomer language models. An
attentional weight is assigned for a given text input, divided
into individual tokens. The assigned values are then used to
calculate the weighted sum of the resulting vectors [54]. It
is possible to fine-tune the language model using the loss
function of the final model.

c) Training the model.: To trained Emotional Normaliz-
ing Flow we use the dataset D = {(tn, pn,yn)}Nn=1, composed
of tn textual input, pn features of the person, and correspond-
ing subjective annotation yn given by the person pn for text
tn. We train our model directly by optimizing the negative
log-likelihood function:

L = −
N∑

n=1

log pY (yn|en,p, en,t), (3)

where en,p is a vector, that represents profile of the person
pn, and en,t is an embedding of the text tn. The model
can be trained in a two-stage mode or end-to-end paradigm
depending on the form of Profile extractor and Text encoder.
In the first case, the embeddings ep and et are extracted in
the first stage, and parameters of the flow are trained while
optimizing L. Alternatively, suppose the Profile extractor or
Text encoder are represented by differentiable architectures.
In that case, the entire system can be optimized end-to-end,
directly minimizing the negative log-likelihood function.

V. EXPERIMENTS

In this subsection, we evaluate our approach on a set
of challenging datasets, investigating the impact of adding
contextual information about the person in the model. More-
over, we compare flow-based probabilistic models to a simple
Gaussian Mixture Model. Then, we compare our solution
to the deterministic models using sampling from flow and

discretization. Finally, we mix deterministic and probabilistic
approaches to create a hybrid model.

A. Datasets

a) Wikipedia-Detox.: The Wikipedia Detox project has
created a crowd-sourced dataset that contains one million
annotations covering 100,000 discussions of page edits on
Wikipedia [24]. These were often filled with toxic statements,
verbal aggression, and even personal attacks. Each comment
was annotated by about ten annotators provided by the Crowd-
flower service.

The collection containing toxic statements consists of
160,000 texts. It includes a binary determination of toxicity
(where: 0 = non-toxic, 1 = toxic), as well as a rating from
-2 to 2 (where: 2 = very healthy, 0 = neutral, and -2 = very
toxic).

Sets for personal attacks and verbal aggression consist of
100,000 of the same comments. In addition to the binary marks
for aggression (0 = neutral or friendly comment, 1 = aggressive
or attacking), aggression is put on a scale analogous to toxicity
from -2 to 2 (where: 2 = very friendly, 0 = neutral, and -2
= very aggressive). Personal attacks are divided into types:
quoting, recipient, third party, or another type of attack. In
addition to texts shared between these collections, the same
applies to annotators. Thus, we can use knowledge from one
collection to benefit from it in another or a collective approach.
Those willing to participate in the study also completed
questionnaires so that we have demographic information about
them available.

b) Emotion Simple.: This collection consists of 100 texts
marked on 10 scales by 5,365 annotators [55]. Texts are
opinions posted on websites. This gives 53.65 annotations per
text and 1.69 markings from a single user. The texts were
rated for eight basic emotions (sadness, anticipation, joy, fear,
surprise, disgust, trust, and anger) and emotional arousal on a
scale from 0 to 4 for each dimension. In addition, the tenth
aspect rated is the valence expressed on a scale from -3 to 3
(where -3 = negative, 0 = neutral, and 3 = positive). In the
set of individuals with two marks, those with three or more
annotations also appear.

c) Emotion Meanings.: In [56], a huge collection con-
taining 6,000 assessed word collocations was prepared and
published. It contains dimensions and scales analogous to the
Emotion Simple collection – the basic emotions from Robert
Plutchik’s Wheel of Emotions [57].

The scale of the collection makes it one of the most inter-
esting and, simultaneously, the most difficult for personalizing
emotion detection. It has 303,143 annotations from 16,101
people who participated in the study. Each collocation has been
evaluated 50.67 times, and a single annotator has an average
of 18.83 annotations.

The difficulty in working with these data is also because
these are not full-fledged textual statements containing context
but just two words. An example item from the collection:
"colorful beads". Annotator data include information such as



gender, age, education, size of residence, relationship status,
income, or political views.

B. Setups

The dataset was divided into training, validation, and testing
splits. Users and texts were not mixed between sets to bring the
evaluation as close to the real-world scenario. Each experiment
consisted of 10-fold cross-validation, and obtained results were
averaged. Statistical significance tests were performed: t-test
with Bonferroni correction to address the problem of multiple
comparisons. In the tables within the rows, comparisons were
made between models without and with personalization. Bold
indicates the best result, and underline indicates the absence
of statistically significant differences for each dataset. Within
the “Type“ column, the best probabilistic model type or no
significant difference between the two was similarly marked
for each dataset separately.

a) Baselines.: We have three reference points. To check
the impact of personalization, we compared personalized
models with a baseline that uses only textual information
(TXT-Baseline); it is a generalized approach. To investigate
the impact of normalizing flows, we compared them with a
Gaussian Mixture Model to have a reference point in the
form of another, less complex probabilistic method. Finally,
we compared our method with deterministic approaches.

b) Models for conditional normalizing flows.: In our
experimental evaluation, we consider Emotional Normalizing
Flow with various types of conditional normalizing flows.
For single-dimensional datasets: Wikipedia Detox: Toxicity,
Wikipedia Detox: Aggression and Wikipedia Detox: Attack,
we used MAF (maf) and CNF (cnf). For multi-dimensional
Emotions Meanings and Emotions Simple, we used two extra
flows: RealNVP (real_nvp) and NICE (nice). We compared
the results against the baseline that uses mixtures of Gaussians
to model the probability (gmm).

c) Models for personalization.: We investigate three
approaches to respect the personalization context: OneHot,
HuBi-Formula, and HuBi-Medium [51]. They are confronted
with TXT-Baseline (generalized, non-personalized) that does
not contain any information about the annotator. We exploit
LaBSE [58] as a language model in every experiment.

C. Experimental scenarios

a) Experiment 1 - Comparison of generalized and per-
sonalized solutions in the probabilistic approach.: The first
approach verifies the performance of Emotional Normalizing
Flow with fixed hyperparameters on multiple data sets and
tasks: Wikipedia Detox: Toxicity, Wikipedia Detox: Aggression,
Wikipedia Detox: Attack, Emotion Meanings and Emotion
Simple. We also verified the ability of the proposed Emotional
Normalizing Flow to transfer knowledge between thematically
similar multidimensional text labels. For this purpose, the
Wikipedia Detox: Aggression and Wikipedia Detox: Attack
datasets were joined, as they contain annotations for the
same texts performed by the same annotators. As a result,
we obtained a dataset with multi-dimensional labels. This

experiment aimed to examine the effect of personalization
models on the prediction of probability distributions, thus
verifying whether the additional information provided to the
model reduces its uncertainty and comparing Normalizing
Flows to Gaussian Mixture Model.

b) Experiment 2 - Investigating the effect of hyperparam-
eters selected for personalization and Emotional Normalizing
Flow methods on the most difficult dataset.: The second
approach was to verify the maximum possible reduction of
model uncertainty by tuning the model hyperparameters to
a given set and checking which normalizing-flow model ob-
tained the best results. Due to limited resources, we decided
to perform this experiment using only Emotion Meanings
dataset. The parameters that we tuned were: the number of
hidden features, number of layers, number of blocks per layer,
dropout probability, batch normalization within layers, batch
normalization between layers, learning rate, the size of hidden
layers used to prepare user embeddings, and the size of the
output of these embeddings.

c) Experiment 3 - Comparison of probabilistic and de-
terministic approaches.: To compare with classical methods
[8], which are deterministic, it was necessary to prepare
conversions of the Emotional Normalizing Flow output to
the form of exact values. Included in the body of the paper
is the application of two best normalizing flows (RealNVP
and CNF) for multidimensional datasets (Aggression & Attack
[classification task] and Emotion Simple [regression task]).

For the first type of task, each text or text-user pair was
sampled using an iterative method. In the preparation step, we
increased the number of samples in the test part of the dataset
so that the value from 0 to 1 with a step of 0.1 for the class
was tested as a possible context. Iterations were done twice for
values of 0 and 1 in the opposite class. Next, an exponential
was applied to the 44 probabilities of the resulting sample (22
per class for each text). Within the values for the opposite
sampling, (e.g., [0.5, 0] and [0.5, 1]) of a given dimension
were summed, and then for each stopper (0.0, 0.1, ..., 1.0)
divided by the sum of all values for the dimension. If the
probability mass prevailed on the side from 0.0 to 0.5, it was
considered that the class was not assigned and vice versa for
the other part of the axis.

It was impossible for a 10-dimensional set for the regression
task to sample each possible dimension in all values separately
because of the number of possible combinations. Each item
from the test subset was replicated 100 times containing
random real values from 0 to 1 in each class. Majority voting
was then conducted to determine the most likely response for
the scale of each dimension. In the collection, each dimension
had a value analogous to the slider setting during annotation.
For this reason, the task was treated as an ordinary regression,
and the resulting values were rounded to the nearest possible
position. This assumption was used for both values from the
deterministic and probabilistic approaches.

d) Experiment 4 - Hybrid approach (utilizing knowledge
from the text and uncertainty modeling).: The combined
approach, hereafter referred to as hybrid, was done in two



steps. In the first, the learned Emotional Normalizing Flow
models were sampled in the same way as in Experiment 3,
but for all the texts in the collection. Then, the network input
was extended to the deterministic model with an additional
feature. A vector containing the resulting probabilities for each
text was entered along with its embeddings and, in the case of
approaches with personalization, the user profile. This vector
contained all the values from the sampling, and no additional
mathematical operations were performed on it.

D. Results

a) Results of Experiment 1.: The first experiment proved
that adding personalization reduces the uncertainty of proba-
bilistic models, Tab. I. For Wikipedia Detox datasets (Aggres-
sion, Attack and Toxicity), all personalized models received
significantly lower negative log-likelihood values compared
to the non-personalized TXT-Baseline. For all three tasks,
the best architecture was HuBi-Medium combined with CNF.
For Aggression & Attack dataset, personalization improved
most cases’ results. The best results were obtained by OneHot
combined with RealNVP and HuBi-Formula combined with
CNF. In the case of Emotion Simple and Emotion Meaning,
personalization also reduced model uncertainty in most of the
cases. For both datasets, the best results were obtained by
the HuBi-Medium model combined with RealNVP. It is worth
noting that compared to Gaussian Mixture Model, Normalizing
Flows always obtain lower negative log-likelihood values. It
suggests that target variables, i.e., emotions, have complex
distributions, and using a simple probabilistic approach is not
enough.

b) Results of Experiment 2.: In the second experiment,
we carried out hyperparameter tuning on the most challenging
dataset: Emotion Meanings, Tab. II. All possible combinations
of hyperparameters were considered when performing the grid
search. The results seem to confirm earlier speculations about
MAF’s better ability to deal with multidimensional problems
compared to other approaches. Moreover, none of the variants
indicated the benefit of using text alone as input.

c) Results of Experiment 3.: In the third experiment,
we compared results obtained by deterministic models and
Emotional Normalizing Flow, Tab. III. It was carried out
on two datasets: combined Wikipedia Detox: Aggression &
Attack and Emotions Simple. We also decided to use only two
Normalizing Flow Models that performed the best on both of
these datasets: RealNVP and CNF.

In the case of Aggression & Attack dataset, the results
obtained by deterministic models were better for every ar-
chitecture, including the non-personalized one. In the case of
Emotion Simple dataset, the results obtained by probabilistic
models significantly outperformed deterministic models. The
best model was a combination of HuBi-Medium and CNF.
This result seems to confirm that the probabilistic approach is
especially effective on complex multi-dimensional tasks.

d) Results of Experiment 4.: In the fourth experiment,
we mixed the deterministic approach with the probabilistic, to
create a hybrid model, Tab. IV. In both Aggression & Attack

Dataset Type TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Toxicity maf 0.0702 -0.0197 -0.0947 0.0053
cnf 0.1231 -0.0707 -0.1202 -0.1378
gmm 0.6422 0.6164 0.5829 0.5072

Aggression maf 0.1705 0.1695 0.0526 0.0859
cnf 0.1685 0.0978 0.0180 -0.0431
gmm 0.8948 0.7783 0.7841 0.7446

Attack maf 0.1669 0.1180 -0.0229 -0.0250
cnf 0.1474 0.0811 -0.0427 -0.0950
gmm 0.7512 0.7318 0.7105 0.6911

Aggression & Attack maf -1.3788 N/A -0.3966 -0.3834
nice -0.8678 -1.1281 -1.0524 -1.0914
real_nvp -3.3482 -3.6181 -3.0235 -1.7208
cnf -3.5113 -2.7339 -3.7002 -2.1357
gmm 3.1729 2.4028 2.5673 2.6858

Emotion Meanings maf 0.5337 -0.0135 0.8525 0.1936
nice -1.9099 -1.8707 -2.0283 -1.4792
real_nvp -5.4775 -2.9377 -5.5189 -5.6377
cnf -3.7186 -1.9640 -3.4632 -4.8458
gmm 5.9559 5.4858 4.8034 4.4719

Emotion Simple maf 1.9130 2.6398 2.6393 1.9314
nice 2.4254 1.8163 2.3502 1.9613
real_nvp 2.5583 1.7845 2.3726 1.4355
cnf 2.1220 1.8197 2.3347 1.9702
gmm 4.2706 3.7496 4.2312 4.0910

TABLE I: Experiment 1 - negative log-likelihood values for
all datasets, without hyperparameter tuning.

and Emotion Simple tasks, the results obtained by the hybrid
approach outperformed previous methods by a large margin.
For Aggression & Attack dataset, the best model turned out
to be HuBi-Medium with CNF. For Emotion Simple dataset,
HuBi-Medium with both RealNVP and CNF performed com-
parably well. The results of this experiment prove, that adding
information about the model uncertainty makes big difference
in the inference process, and helps to predict better for difficult
and subjective tasks.

Dataset Type TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Emotion Meanings maf -11.5380 -14.0785 -10.6476 -12.1934
nice 4.2167 -2.0243 -1.0978 -1.9208
real_nvp -2.3509 -4.5813 -5.2833 -7.0285
cnf -1.9623 -3.9381 -5.2247 -4.9381
gmm 12.6564 9.6047 7.8908 8.4545

TABLE II: Experiment 2 - negative log-likelihood values for
Emotion Meanings dataset, with hyperparameter tuning.

VI. CONCLUSIONS

In this paper, we proposed a novel Emotional Normalizing
Flow approach to personalized NLP that opens up new per-
spectives on predicting reader behavior in a non-deterministic
way. From the perspective of psychology and the variability
of emotion sensation over time, the problem of emotion
recognition is one of the most difficult and subjective tasks
facing NLP. People do not perceive their emotions as zero-
one, and most of the attempts so far classified their feelings
in this way. The presented probabilistic approach based on
normalizing flows provides more complex information about
the uncertainty and diversity of possible emotional states.
A comparative analysis of models for emotion recognition
without and with personalization indicated that new methods
are also effectively applicable in a non-deterministic setup. The
generalized, non-personalized solution generates a completely
different concentration of probability mass, directed toward a



Dataset Method TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Aggression & Attack deterministic 0.5874 0.5954 0.7354 0.7847
[Macro F-1] discrete(real_nvp) 0.4829 0.4682 0.5860 0.6788

discrete(cnf) 0.5189 0.4738 0.6397 0.7374

Emotion Simple deterministic 0.3936 0.5403 0.5574 0.5822
[R2] discrete(real_nvp) 0.4472 0.6535 0.6582 0.6835

discrete(cnf) 0.4428 0.6274 0.6685 0.7005

TABLE III: Experiment 3 - Comparison of classification and
regression using the classical deterministic method and the
result of sampling Emotional Normalizing Flow. Macro F-
1 score for Aggression & Attack and R-squared for Emotion
Simple datasets.

Dataset Method TXT-Baseline OneHot HuBi-Formula HuBi-Medium

Aggression & Attack deterministic 0.5874 0.5954 0.7354 0.7847
[Macro F-1] hybrid(real_nvp) 0.8479 0.8254 0.8233 0.8743

hybrid(cnf) 0.8693 0.9052 0.8400 0.9553

Emotion Simple deterministic 0.3936 0.5403 0.5574 0.5822
[R2] hybrid(real_nvp) 0.4722 0.7149 0.7237 0.7376

hybrid(cnf) 0.4867 0.6899 0.69223 0.7388

TABLE IV: Experiment 4 - Comparison of the classical
deterministic approach and hybrid models, which in addition
use probabilistic knowledge. Macro F-1 score for Aggression
& Attack and R-squared for Emotion Simple datasets.

quantitative approach. Personalization can shift the view of
the problem in a contextual way by dedicating reasoning to a
single user. Finally, we showed that adding information about
model uncertainty significantly improves the ability to predict
complex and subjective behaviors such as recognizing hate
speech or emotions in a text. The hybrid model we created
significantly outperformed the previous methods, becoming a
new state-of-the-art on two very challenging tasks. Our future
work will focus on applications of our approach to some other
tasks such as active or reinforcement learning.

LIMITATIONS

One important issue related to the nature of normalizing
flows is their ability to convert probabilities to disambiguate
uncertain answers. At the moment, there are no reference
datasets available that contain text and annotator information
simultaneously with multiple markings of the same text by the
same person. This is due to cost constraints in preparing such
data. However, we have conducted experiments on datasets
with different characteristics in which (1) one person marked
several hundred texts [Wikipedia Detox Datasets] and (2)
one text was evaluated dozens of times by different people
[Emotions Simple and Emotion Meanings datasets]. In order
to address the problem mentioned in the introduction, one text
should have N annotations from the same person, e.g., a few
days apart. If we gain access to or prepare such a dataset, we
would be happy to conduct in-depth studies on it.

Due to the language of one of the datasets being different
from English, a multilingual model was used to embed the
text. This decision was made in order to allow for direct
comparisons and cross-referencing. This would have added an
unnecessary layer to the already relatively complex problem

that was addressed. It is possible to experiment with other
language models as well using the source codes provided†.
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APPENDIX

A. Personalization architectures

Architectures for personalization have been modified to
return a probability distribution instead of the probability of
a class. Input features are passed to the normalizing flow as
context. We are dealing with four architectures:

• Baseline (Fig. 3) - the input is just an embedding of text
• OneHot (Fig. 4) - the user represented as a one-hot vector

is concatenated to the text embedding
• HuBi-Formula (Fig. 5) - the deviation of the user’s

response is taken as its representative feature
• HuBi-Medium (Fig. 6) - annotation-based learned user

embedding combined with text embeddings provides the
context

B. Implementation details

Experiments were performed using the code provided in the
“Anonymous”.

Grid search for hyperparameters of Normalizing Flows in
experiment 2 was performed with the values specified in
Tab. V and Tab. VI.

Flow

0 1 0 0 0 0

Text

Text embedding 
(frozen) 
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Fig. 3: TXT-Baseline architecture utilizing normalizing flows.
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Fig. 4: OneHot architecture utilizing normalizing flows.

For all experiment purposes, we used a machine with AMD
Ryzen Threadripper PRO 3955WX 16-Core Processor CPU,
2 x NVIDIA GeForce RTX 3090 GPUs, and 256 GB RAM.

C. Visualization of probabilities

For the combined set of Aggression & Attack, visualizations
of the waveform of the probability function were prepared as
a result of Experiment 3. described in the publication, are
presented in Fig. 7 and Fig. 8.
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Fig. 5: HuBi-Formula architecture utilizing normalizing flows.
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Fig. 6: HuBi-Medium architecture utilizing normalizing flows.

Hyperparameter Values
hidden features [2, 4, 6, 8]
num layers [1, 2, 3, 4, 5]
num. blocks per layer [1, 2, 3, 4]
dropout probability [0.0, 0.1, 0.2, 0.4]
batch norm within layers [True, False]
batch norm between layers [True, False]

TABLE V: Hyperparameters for Normalizing Flows and their
possible values during experiment 2. Note that for MAF, the
dropout probability hyperparameter was not used at all.

Hyperparameter Values for TXT-Baseline & OneHot & HuBi-Formula Values for HuBi-Medium
embedding dim. 50 50
hidden dim. 50 [128, 256, 512, 786]
output dim. - [128, 256, 512, 768]
learning rate [1e-5, 1e-4] [1e-5, 1e-4]

TABLE VI: Hyperparameters for training and architectures,
and their possible values during experiment 2.
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Fig. 7: Visualizations of the waveform of the probability
function for RealNVP with different architectures and for
Attack and Aggression.
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Fig. 8: Visualizations of the waveform of the probability
function for CNF with different architectures and for Attack
and Aggression.
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