
Self-supervision meets kernel graph neural models:
From architecture to augmentations

Jiawang Dan†∗, Ruofan Wu†∗, Yunpeng Liu†‡, Baokun Wang†

Changhua Meng†, Tengfei Liu†, Tianyi Zhang†, Ningtao Wang†, Xing Fu†, Qi Li‡, Weiqiang Wang†
†Ant Group

‡Tsinghua University
{yancong.djw, ruofan.wrf, lyp402072, yike.wbk, aaron.ltf, ningtao.nt}@antgroup.com

qli01@tsinghua.edu.cn, {changhua.mch, zty113091, zicai.fx, weiqiang.wwq}@antgroup.com

Abstract—Graph representation learning has now become the
de facto standard when handling graph-structured data, with the
framework of message-passing graph neural networks (MPNN)
being the most prevailing algorithmic tool. Despite its popularity,
the family of MPNNs suffers from several drawbacks such as
transparency and expressivity. Recently, the idea of designing
neural models on graphs using the theory of graph kernels
has emerged as a more transparent as well as sometimes more
expressive alternative to MPNNs known as kernel graph neural
networks (KGNNs). Developments on KGNNs are currently
a nascent field of research, leaving several challenges from
algorithmic design and adaptation to other learning paradigms
such as self-supervised learning. In this paper, we improve the
design and learning of KGNNs. Firstly, we extend the algorithmic
formulation of KGNNs by allowing a more flexible graph-level
similarity definition that encompasses former proposals like
random walk graph kernel, as well as providing a smoother
optimization objective that alleviates the need of introducing
combinatorial learning procedures. Secondly, we enhance KGNNs
through the lens of self-supervision via developing a novel
structure-preserving graph data augmentation method called
latent graph augmentation (LGA). Finally, we perform extensive
empirical evaluations to demonstrate the efficacy of our proposed
mechanisms. Experimental results over benchmark datasets sug-
gest that our proposed model achieves competitive performance
that is comparable to or sometimes outperforming state-of-the-art
graph representation learning frameworks with or without self-
supervision on graph classification tasks. Comparisons against
other previously established graph data augmentation methods
verify that the proposed LGA augmentation scheme captures
better semantics of graph-level invariance.

I. INTRODUCTION

Recent years have witnessed surging developments in graph
representation learning (GRL) which utilizes neural models
over graph-structured data for downstream tasks like node
classification [18] and graph classification [40]. Among these
the task of graph classification has shown promising results
in applications like drug discovery [34] and protein function
prediction [13]. The design of GRL algorithms has attracted
significant interest, with the idea of message-passing graph
neural networks [12] (hereafter abbreviated as MPNNs) being
the de facto choice. In its most standard form, MPNNs obtain
node representations via aggregating neighborhood informa-
tion for each node in a recursive manner, with an optional

∗ Equal contribution

combination mechanism at each step. The node representations
are further aggregated into a graph-level representation for
downstream tasks like graph classification [40]. In the seminal
work [40], the authors explored the expressivity limits of
message-passing protocols and concluded that the expressivity
limit of such kinds of procedures is bounded by first-order
Weisfeler-Leman isomorphism tests. While there exist more
theoretically expressive variants such as higher-order graph
neural networks [23], these alternatives are typically compu-
tationally expensive and lose the scalability of MPNNs.

In a recent line of works [24], [8], [25], the authors have
studied an alternative way of defining neural models over
graphs which are inspired by the theory of graph kernels
[30], we will call such variants kernel graph neural networks
(KGNNs). KGNNs use a set of trainable hidden graphs and
use the similarity of the input graph with the hidden graphs as
the building block of graph representations. KGNNs provide
a powerful alternative to MPNNs in the following aspects:
Firstly, KGNNs allow more transparent graph modeling, since
the obtained hidden graphs themselves are easily visualized,
they provide interpretations of the learned model. Secondly,
KGNNs share several important properties with MPNNs such
as permutation invariance and scalability. Finally, it was
proved in previous works [8] that KGNNs are provably more
expressive than MPNNs. Despite these advantages, direct opti-
mization over hidden graphs is computationally intractable. In
the original proposal [24], the authors represent hidden graphs
as continuous-valued matrices, resulting in subtle definitions.
It is thus of interest to further explore this modeling paradigm
via reinspecting the similarity definition, and its relation to the
theory of graph kernels.

Another recent trend in the area of GRL is the development
of self-supervision techniques [39], as they are particularly
effective in label-scarce scenarios, providing a principled way
of facilitating unlabelled data. In self-supervision, one typi-
cally constructs a pretext task whose supervisory signals are
derived through a certain sense of invariance, and utilizes
some invariance-promoting objectives to obtain pre-trained
models such as contrastive objectives [43] and non-contrastive
objectives [37]. While there has been abundant work on self-
supervision for MPNNs [39], so far as we have noticed
there have been no studies on self-supervision over KGNNs.

ar
X

iv
:2

31
0.

11
28

1v
1

 [
cs

.L
G

]
 1

7
O

ct
 2

02
3

Applying self-supervision to the (pre)training of KGNN is
challenging since KGNNs do not produce intermediate node-
level representations which are necessary for many self-
supervised GRL frameworks [35], [36], [16]. To perform
(invariance-based) self-supervised learning with KGNNs, we
need to construct our supervision signals via graph-level
invariant transforms instead of node-level operations. Although
common practices in graph data augmentations [43] also apply
to KGNNs, they might not be able to express the right
semantics of invariance that could be captured by KGNN
architectures: As KGNNs are intuitively understood to focus
more on graph structures, we hypothesize that successful
pretraining of KGNN networks require structure-preserving
graph data augmentations, which has yet been under-explored
in the current literature.

In this paper, we make several contributions to the design
and learning of KGNNs which are elaborated on as follows:
• Our first contribution is a novel extension of the current

KGNN design that allows a more flexible definition than
contemporary KGNNs which are mostly derived through
random walk graph kernels. We also instantiate a concrete
model that utilizes the technique of graph diffusion [11].
The proposed model is intuitively understood as a smoothed
version of contemporary KGNNs.

• Our second contribution is a novel structure-preserving
graph data augmentation method that serves as a building
block for self-supervised pre-training using KGNNs. The
semantics of structure-preserving is expressed through a
wide range of random graph models, as well as being
adaptive to individual instances.

• Finally, we conduct extensive empirical evaluations under
the task of graph classification over benchmark datasets.
Experimental results suggest our proposed model improves
over contemporary KGNNs, and sometimes achieves per-
formance on par with or even outperforms state-of-the-art
methods.

II. METHODOLOGY

A. Kernel graph neural networks (KGNNs)

Let G = (V,E) be an undirected graph associated with
node features X ∈ Rd. We will use VG and EG to denote
the node set and edge set of graph G, further denote [N] as
the set {1, . . . , N}. Given a training set G = {G1, . . . , GN}
of N graphs that are of varying sizes with each one having
a label Yi, i ∈ [N], we are interested in learning a graph
representation extractor h that maps graph objects to euclidean
vectors, as well as learning a task-specific downstream model
g (sometimes referred to as predictor) that maps graph repre-
sentations to predictions. In supervised learning paradigms, h
and g are trained in an end-to-end fashion, with h usually being
certain kinds of graph neural networks and g being an MLP.
In self-supervised learning paradigms, h and g are trained
separately, with h being trained using supervision signals that
are not directly associated with the downstream task label.
After obtaining the pre-trained encoder, we either train g using

probing (i.e., freezing the pre-trained graph representations) or
using fine-tuning techniques. In this paper, we will focus on
self-supervised approaches with f being parameterized using
KGNNs. Specifically, a KGNN model typically involves a col-
lection of M learnable hidden graphs as trainable parameters,
i.e., H = {Hm}m∈[M]. Graph representations are obtained
via computing some similarity metric between the input graph
and all the hidden graphs, with the prevailing practice being
inspired by the theory of graph kernels [30]. With the most
representative architecture derived from the theory of random
walk kernels [24], [8]. Given input graphs G and G′, the
random walk kernel evaluation K(G,G′) computes a weighted
sum of the counts of random walks of varying lengths that
the two graphs have in common. The kernel definition allows
incorporating node features [24] via treating pairwise feature
similarity as additional weights. Formally, given a walk length
p ≥ 1, the p-th constituent of random walk kernel between G
and G′ is computed as

K(p)(G,G′) =
∑

k,l∈VG′

∑
i,j∈VG

⟨xi, x′k⟩A
p
ijA

′p
kl⟨xj , x′l⟩, (1)

where we define A and A′ as the adjacency matrix of G
and G′, and x′u, u ∈ VG′ as the node feature of graph G′.
To evaluate graph kernels, we may compute a weighted sum
(ideally infinite) over all K(p)(G,G′), p > 1. In practice, it
was observed that computing p up to a small to moderate
integer (i.e., p ≤ 3) suffices for most applications, and the rep-
resentations are constructed via concatenating all K(p)(G,G′)
with 1 ≤ p ≤ P and G′ ∈ H.

B. Extensions and smoothed random walks

According to the original definition (1), the trainable pa-
rameters involve a collection of (hidden) feature matrices
and a collection of (hidden) adjacency matrices. However,
adjacency matrices are binary-valued and thus do not fit
into the standard gradient-based learning framework in neural
models. Besides, directly optimizing potentially large binary
matrices will incur a combinatorial level of complexity and
is computationally intractable. To fix this issue, in [24] the
authors suggested replacing A′ in (1) by ReLU(W) with W
being an arbitrary continuous-valued matrix. While this fix
addresses the computational issue, it breaks the semantics
of graph kernels (as the resulting formula does not count
the common random walks). However, since exact kernel
evaluations may not contribute significantly to the performance
in downstream tasks, we might directly extend the definition
of (1) so that it allows smoother optimization formulations, in
particular, we propose the following extension

K̃(p)(G,G′) =
∑

k,l∈VG′

∑
i,j∈VG

sK(xi, x
′
k)B

p
ijB

′p
klsK(xj , x

′
l), (2)

where sK denotes some similarity function that applies to
euclidean vectors, B and B′ are some continuous-valued
characteristics of graphs G and G′, respectively. The above
extension naturally serves as a concrete similarity measure,
while at the same time allowing direct gradient-based opti-
mization. In this paper, we will stick to the sleekest similarity

Diffusion
Transform

𝐺!

𝐺!"

𝒟#(𝐺!)

%Θ!

Graph
Sampling

USVT Predictor

KGNN
Encoder

KGNN
Encoder

Predictor

Maximize
Agreement

Fig. 1: A concise illustration of the proposed self-supervised graph representation learning framework that consists of two main
components: The first one is the SWAG architecture that utilizes graph diffusion transform to allow continuous optimization.
The second one is the LGA method for graph data augmentation that reflects the notion of structural invariance which is
beneficial for the learning of KGNNs.

formulation of sK which is the inner product function. What
remains is to find a proper characteristic B, which in this paper
we choose to be the diffusion matrix of graph G [11].

Dβ(G) =

∞∑
j=0

βjT
j , (3)

where βj stands for some coefficient configurations that make
the summation (3) convergent and T is a transition matrix
defined as D−1/2AD−1/2, with D being the diagonal matrix
with diagonal values corresponding to node degrees. For B′

in (2), we may simply parameterize it as a continuous-valued
symmetric matrix with values in [0, 1]. We term the resulting
encoder as Smoothed random WAlk Graph neural network
(SWAG), whose encoding function with maximum walk length
P > 1 and the number of hidden graphs M is given by:

hSWAG(G) =
∥∥∥

m∈[M],p∈[P]

K̃(p)(G,Hm), (4)

where we use
∥∥ to denote the concatenation operation. We

use do = MP to denote the dimension of output graph
representation.

C. Self-supervision via struture-preserving graph data aug-
mentation

In this paper, we are mainly interested in self-supervised
learning primitives using augmentations, with two canonical
frameworks being contrastive learning and non-contrastive
learning. Both frameworks are based on an augmentation
mechanism. Under the context of GRL, for any input graph
G (sometimes referred to as anchor graph), we augment it
with a positive sample G+ ∼ A(·|G), where we use A(·|G)
to denote the (conditional) augmentation distribution given the
anchor graph G that is supported on the universe of graphs G.

Constrastive pre-training In contrastive frameworks, the
learning objective is derived via contrasting augmented
views (positive samples) with a set of negative samples
{G−

1 , . . . , G
−
K}, each being sampled from the (conditional)

distribution N (·|G). We will adopt the InfoNCE objective
[26]:

Lcst =
1
N

∑
G∈G

esL(h(G),h(G+))

esL(h(G),h(G+)) +
∑

k∈[K] e
sL(h(G),h(G−

k))
, (5)

with sL being some similarity function. We will be using the
form sL(x, y) = ⟨ϕ(x), ϕ(y)⟩ with ϕ being a two-layer MLP.

Non-contrastive pre-training Non-contrastive frameworks
alleviate the need for negative sampling by directly maximiz-
ing the similarity between input graphs and their augmentation.
We will utilize the simplest objective [4]

Lnon-cst =
1

N

∑
G∈G

⟨ψ(h(G)), sg(ψ(h(G+))⟩, (6)

where ψ is a prediction head that takes its form as a two-
layer MLP and sg stands for the stop-gradient operation. Both
components have been shown necessary for avoiding collapsed
solutions [5].
The prevailing paradigm in graph data augmentations are
of the perturbation style, i.e., perturbing node attributes or
perturbing the graph structure [6]. It has been observed in
previous works [43] that the augmentation quality in self-
supervised graph representation learning plays a vital role
in downstream performance, most likely due to the different
types of invariance semantics encoded by the augmentation
strategy. In particular, the standard practice of graph structure
perturbation techniques that adds or drops either nodes or
edges essentially expresses a strong belief in invariance with
respect to a small perturbation measured in terms of graph
edit distance [10]. However, this may not provide reasonable
invariance if the underlying graph is well-structured. For
example, in the case of stochastic block model [14], randomly
dropping or adding a significant proportion of edges changes
the block structure and hence makes the precise semantics of
the invariance questionable. Moreover, the inductive bias of
the encoder also has an intriguing relationship between the
augmentation strategy as well as downstream performances
of self-supervised pre-training [29]. Under the context of
KGNNs, we intuitively expect that the learned hidden graphs
shall somehow extract the signals in the underlying graph
instead of noise. Therefore, we require the graph data augmen-
tation strategy to be structure-preserving. To begin with, we
will use the following random graph model [14] as a starting
point that describes the generating process of the underlying
graph G, with each entry of its adjacency matrix sampled

independently from a Bernoulli distribution,

Auv
i.i.d∼ Ber(θuv),∀u, v ∈ V (G). (7)

The above formulation is nonparametric and very general,
and covers many important generative mechanisms in random
graph models, to name a few:

Graphon [9] Suppose that each node v ∈ V (G) is asso-
ciated with a scalar ξu

i.i.d∼ Unif(0, 1) that is independently
drawn from a uniform distribution. And the generating prob-
ability is constructed via the graphon f : [0, 1]2 7→ [0, 1],
with θuv = f(ξu, ξv).
Latent space model [14] We may alternatively let the
unobserved node-wise characteristic be an arbitrary d-
dimensional vector {λv}v∈V (G), and the generating proba-
bility is formulated as θuv = f(λu, λv), where with a slight
abuse of notation we let f be some continuous function that
takes two d-dimensional vector arguments.

A notable result in modern random graph theory is that while
precisely estimating the function f in graphon or latent space
models may encounter identifiability issues, the generating
probabilities Θ = {θuv}u,v∈V (G) could be recovered in a
provable fashion using the idea of universal singular value
thresholding (USVT) [3]. Inspired by this phenomenon, we
use the estimated generating matrix Θ̂ as a reference of
graph structure, and use this matrix to generate augmented
views, which share (in an asymptotic fashion) similar graph
structures with the input graph G. Since the process ap-
plies to many latent graph generative models, we term our
augmentation method Latent Graph Augmentation (LGA),
detailed in algorithm 1. The most important step in LGA is to

Algorithm 1 LGA using universal singular value thresholding
(USVT)

Require: Input graph G = (V,E) with adjacency matrix A,
threshold τ > 0.

1: Let m be the number of nodes in G. Obtain the singular
value decomposition of A: A =

∑m
i σiuiv

T
i

2: Select indices based on the threshold S = {i : σi ≥
τ
√
m}.

3: Compute Θ̃ =
∑

i∈S σiuiv
T
i

4: Obtain the recovered random graph probability matrix Θ̂
via clipping Θ̃:

Θ̂uv =

Θ̃uv If Θ̃uv ∈ [0, 1]

0 If Θ̃uv < 0

1 If Θ̃uv > 1

(8)

5: Generate matrix A+ with each A+
uv

i.i.d∼ Ber(Θ̂uv) with
u, v ∈ [m].

6: return Positive sample G+ derived from adjacency matrix
A+, i.e., with node features left untouched.

select a sufficiently large singular value based on a predefined
(relative) threshold τ , with its magnitude reflecting the trade-
off between signal extraction and noise removal. In this paper,

we cast the threshold τ as a tunable hyperparameter which is
regarded as a crude estimate of the upper bound of the matrix
A − Θ (normalized by the square root of graph size) that is
shown to theoretically characterize the recovery under dense
graph regimes [3].

D. Complexity considerations

Now we present a brief analysis of the computational
complexity of the proposed approach. Firstly, the complexity
of obtaining the graph representation could be analyzed in a
similar fashion as in [24]: Ff we use M hidden graphs with
each involved in computing similarities up to order P will
incur a computational cost of O(Md(nm + Pm2 + Pn2))
for a dense sample graph and O(Md(nm + Pm2 + Ps))
for a sparse sample graph with s edges. The resulting com-
plexity is comparable to a P -layer MPNN model with each
layer producing hidden representations of dimension m. Next,
we consider the cost of obtaining the characteristic matrix
B using graph diffusion. While we may use a truncated
matrix sum with a moderate number of steps to reasonably
approximate the diffusion matrix, we found in our experiments
that typically a few diffusion steps (i.e., no more than three
steps) suffice for performance improvements. Consequently,
the resulting computational cost is dominated by that of
representation computation. Finally, the computation cost of
LGA (dominated by that of SVD factorization with O(n3)) is
only incurred once for each sample graph during training time.
Under moderate-sized graphs, we argue that the computational
cost is controllable.

III. RELATED WORKS

A. Neural models for graph representation learning

As graphs are generally believed to contain rich structural
knowledge, neural architectures over graph-structured objects
require different inductive biases compared to neural archi-
tectures over independently identically distributed (i.i.d.) data.
The authors in [1] proposed the concept of relational inductive
bias encoded by MPNNs that are closely related to dynamic
programming. However, MPNNs are criticized for their limited
expressivity [23], [40], we refer the readers to the article [23]
for a thorough overview. A more recent line of works derives
neural architectures over graphs from the theory of graph
kernels [20], [24], [25]. In comparison to MPNNs, kernel ap-
proaches compute convolutions over graphs in a different way
that might be regarded as a more transparent generalization of
the convolution operation used in image modeling [8]. Besides,
kernel approaches allow intuitive visualization of the learned
hidden graphs (graph filters), thereby providing a natural sense
of interpretability.

B. Self-supervision on graphs

Early developments on self-supervised learning (SSL) on
graphs considered using link prediction as the pretext task
for downstream applications [19]. Later developments have
been mostly focusing on applying SSL frameworks based on
graph data augmentations (GDA) [38], [43], [37] , with the

prevailing practices mostly involving editing graph structure
(i.e., adding or dropping nodes or edges) and node features
[6] either randomly [43] or non-randomly [36], [21], [22].
These modifications are based on the belief that the invariance
relation is captured through certain edits of graphs.

IV. EXPERIMENTS

In this section, we report empirical evaluations on bench-
mark datasets. The evaluations are conducted for both super-
vised learning tasks which focus on the empirical performance
of the proposed SWAG network design, and self-supervised
learning tasks which further investigate the effectiveness of the
LGA mechanism. We also provide visualizations of the learned
hidden graphs as an indirect way of comparing canonical
patterns in the data, as well as an ablation study that inspects
the effects of important hyperparameters.

A. Datasets

We use 8 public datasets [41], with 4 bio/chemo-informatics
network datasets: MUTAG, D&D, NCI1 and PROTEINS, and
4 social interaction network datasets: IMDB-BINARY(IMDB-
B), COLLAB, REDDIT-BINARY(RDT-B) and REDDIT-
MULTI-5K(RDT-M5K). Across all the datasets, the evaluation
task is graph classification with varying numbers of classes.
For a more detailed introduction of the datasets as well their
summary statistics, we refer to [41] for details.

B. Baseline comparisons

As our experiments involve both supervised learning and
self-supervised learning, we describe our baseline comparison
strategy corresponding to both learning schemes as follows:
Supervised learning baselines We pick three representative
graph kernel methods: shortest path kernel (SP) [2], graphlet
kernel [32] and Weisfeiler-leman subtree kernel [31]. For
MPNN methods, choose five influential MPNNs that applies to
graph classification problems, namely DGCNN [44], DiffPool
[42], ECC [33], GIN [40] and GraphSAGE [15]. Additionally,
we compare our proposed model with two recent KGNN
models, RWGNN [24] and GRWNN [25].
Self-supervised learning baselines For a thorough investiga-
tion, we make two types of comparisons:

Comparison with MPNN encoders We will compare our
proposed SWAG encoder with LGA augmentation scheme
with various state-of-the-art self-supervised GRL frame-
works: GraphCL [43], InfoGraph [35], GCC [28], AD-GCL
[36], RGCL [21], GraphMAE [16] and GCL-SPAN [22],
with their underlying encoder being a five-layer GIN [40].
We note that such kind of comparisons are rarely done in
previous works on KGNNs.
Comparison with KGNN encoders Among the
aforementioned baseline methods, four of them indeed
apply to KGNN encoders. Including GraphCL [43], GCC
[28], RGCL [21] and GCL-SPAN [22]. We additionally
apply these augmentation strategies with a standard
RWGNN encoder as a comparison of self-supervised
KGNN models.

C. Experimental setup

Evaluation protocol We perform 10-fold cross-validation to
obtain testing performance across all the models, with the
same splitting configuration as in [7]. Within each fold, we
use 10% of the data as a hold-out validation set that enables
model selection. We use accuracy as the evaluation metric
across all the datasets.
Training configurations Across all the experimental trials,
we use a SWAG network architecture as the representation
extractor h, and a two-layer MLP with hidden dimension 32
as the downstream predictor. As not all of the chosen datasets
contain node features, for those without node features we
use node degree as the node feature. For the graph diffusion
transform, we use the personalized PageRank (PPR) configu-
ration βj = α(1 − α)j with teleport probability α = 0.15 as
suggested in [11]. We train for 500 epochs using the Adam
optimizer [17] with a learning rate 0.01, under a batch size
of 64. Across all the experimental trials involving KGNN, we
tune the number of hidden graphs M in the range {8, 16},
with the number of nodes in each hidden graph tuned in the
range {5, 10}. For the node features corresponding to hidden
graphs, we tune the feature dimension in the range {32, 64} for
chemo-informatic network datasets, and {4, 8} for the social
network datasets. We choose the walk length, as well as the
number of graph diffusion steps to be no greater than 3 for
computational efficiency. During self-supervision, we tune the
thresholding parameter τ in the USVT scheme inside the range
[0.3, 4.2], with a detailed study on this parameter elaborated in
section IV-G. We adopt both contrastive pre-training objective
(5) with negative samples chosen as the remaining ones in
the same batch for any anchor graph, and the non-contrastive
pretraining objectives (6). For both objectives, the additionally
involved neural functions ϕ and ψ, as explained in section II-C,
are parameterized by a two-layer MLP with 32 hidden units.
During downstream task adaptation, we tested both probing
and fine-tuning and report the better-performing one.
Implementations We mostly base our model implementation
on PyTorch [27]. For all the baseline methods, we adopt open-
source implementations available in the corresponding papers
and inherit their default training configurations.

D. Performance on supervised graph classification

We present experimental evaluations on supervised graph
classification in table I. We have the following observations:

• Our proposed SWAG model is demonstrated to achieve
comparable or superior performance to the two KGNN base-
lines, measured in mean performance. On datasets with more
dense graphs present such as IMDB-B and COLLAB, we
found the improvements to be more evident, which might be
attributed to the topological information cascading provided
by the diffusion operation in the SWAG mechanism.

• When compared against MPNN and graph kernel baselines,
SWAG achieves comparable performance with SOTA mod-
els on 6 of the 8 datasets, with the results in MUTAG,
PROTEINS, and IMDB-B datasets relatively convincing.

TABLE I: Experimental results on supervised graph classification over 4 molecular network datasets and 4 social network
datasets, reported with format mean±std, with mean and std (abbreviation for standard deviation) computed under 10 trials
for each setting. We use bolded red to highlight the best performance and underlined blue to highlight the second best
performance both in the sense of mean value.

MUTAG D&D NCI1 PROTEINS IMDB-B COLLAB RDT-B RDT-M5K

SP 80.2±6.5 78.1±4.1 72.7±1.4 75.3±3.8 57.7±4.1 79.9±2.7 89.0±1.0 51.1±2.2

GR 80.8±6.4 75.4±3.4 61.8±1.7 71.6±3.1 63.3±2.7 71.1±1.4 76.6±3.3 38.1±2.3

WL 84.6±8.3 78.1±2.4 84.8±2.5 73.8±4.4 72.8±4.5 78.0±2.0 74.9±1.8 49.6±2.0

DGCNN 84.0±6.7 76.6±4.3 76.4±1.7 72.9±3.5 69.2±3.0 71.2±1.9 87.8±2.5 49.2±1.2

DiffPool 79.8±7.1 75.0±3.5 76.9±1.9 73.7±3.5 68.4±3.3 68.9±2.0 89.1±1.6 53.8±1.4

GIN 84.7±6.7 75.3±2.9 80.0±1.4 73.3±4.0 71.2±3.9 75.6±2.3 89.9±1.9 56.1±1.7
GraphSAGE 83.6±9.6 72.9±2.0 76.0±1.8 73.0±4.5 68.8±4.5 73.9±1.7 84.3±1.9 50.0±1.3

RWGNN 89.2±4.3 77.6±4.7 73.9±1.3 74.7±3.3 70.6±4.4 71.9±2.5 90.4±1.9 53.4±1.6

GRWNN 83.4±5.6 75.6±4.6 67.7±2.2 74.9±3.5 72.8±4.2 72.1±1.9 90.0±1.8 54, 4±1.7

SWAG(SL) 89.4±6.0 77.8±3.8 73.6±1.8 76.3±4.4 73.1±3.3 74.1±1.6 90.3±1.8 55.4±2.2

SWAG(SSL+FT) 90.3±6.2 79.5±2.3 76.2±2.7 77.5±4.5 74.4±3.3 74.6±2.5 91.5±1.7 56.2±1.7

TABLE II: Experimental results on self-supervised graph classification over 4 molecular network datasets and 4 social network
datasets, reported with format mean±std, with mean and std (abbreviation for standard deviation) computed under 10 trials
for each setting. We use bolded red to highlight the best performance and underlined blue to highlight the second best
performance both in the sense of mean value.

MUTAG D&D NCI1 PROTEINS IMDB-B COLLAB RDT-B RDT-M5K

With MPNN encoder

GraphCL 81.5±7.0 70.4±3.8 72.4±3.0 69.3±3.6 64.7±5.1 74.4±1.3 83.4±3.0 49.9±1.3

GCC 83.6±7.4 67.9±2.3 68.0±2.0 67.2±2.4 74.4±4.0 77.5±1.7 85.5±3.1 48.7±1.2

RGCL 89.9±6.2 78.8±3.2 78.4±2.1 75.5±3.8 73.2±4.0 70.8±1.7 89.5±2.5 56.2±2.1

GCL-SPAN 85.7±7.9 79.0±3.0 73.8±2.0 74.2±4.4 71.5±3.1 71.3±2.0 71.9±3.0 53.7±1.7

InfoGraph 87.7±6.7 79.5±2.1 80.3±1.8 74.1±3.6 71.4±2.9 75.4±2.1 91.1±1.5 56.5±1.2

AD-GCL 88.1±1.4 74.8±0.7 69.4±0.6 73.6±0.6 71.2±0.5 73.3±0.5 84.9±1.4 54.9±0.7

GraphMAE 85.6±1.4 72.9±1.6 79.3±0.5 75.7±0.3 75.4±0.6 80.2±0.2 84.5±0.5 52.9±0.3

With RWGNN encoder

GraphCL 86.2±6.3 75.1±3.0 67.7±2.8 71.0±4.5 67.7±4.4 73.1±1.8 82.1±4.9 52.9±2.1

GCC 84.7±6.7 74.9±4.8 67.0±1.9 72.1±3.0 71.1±4.7 78.3±1.6 85.1±2.8 49.0±1.1

RGCL 83.5±8.3 74.8±3.8 64.2±2.1 72.7±2.6 70.9±3.9 68.2±2.4 82.9±2.7 49.5±1.9

GCL-SPAN 85.2±8.5 76.2±2.8 62.6±2.7 75.2±4.5 71.4±2.7 68.4±1.9 79.4±1.9 49.0±2.3

SWAG+LGA(infonce) 89.1±6.7 78.0±2.4 75.6±3.6 76.3±4.3 74.0±2.9 74.6±2.5 91.5±2.5 56.2±1.7
SWAG+LGA(simsiam) 90.3±6.2 79.5±2.3 76.2±2.7 77.5±4.5 74.4±3.3 74.1±2.0 91.5±1.7 56.0±2.1

Another notable fact is that for certain datasets like NCI1
and COLLAB, using WL kernels leads to better results
than neural GRL primitives, which is understandable since
graph-level discrimination tasks are more sensitive to the
expressivity limit of MPNNs, which was explicitly achieved
using WL kernels.

• We additionally report the performance of SWAG under self-
supervision with LGA augmentation, the result shows that
for all the 8 datasets, self-supervision is beneficial to model
performance.

E. Performance on self-supervised graph classification

We present a detailed report comparing our approach and
self-supervised GRL baselines in table II, where we report
separately the results under two different objectives. We sum-
marize our findings as follows:

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Visualization of 4 randomly chosen learned subgraphs.
Figure 2a through figure 2d are visualizations of hidden graphs
learned from the PROTEINS dataset; Figure 2e through figure
2h are learned from the REDDIT-BINARY(RDT-B) dataset.

(a) (b)

Fig. 3: Investigation of model performance on PROTEINS
(left) and RDT-B (right) when varying the USVT thresholding
parameter τ , mean performance are plotted along with shades
indicating standard deviation under 10-fold CV.

• When compared against baselines with MPNN encoders, the
proposed SWAG model pre-trained with LGA augmentation
achieves comparable results on 6 of the 8 datasets.

• When compared against baselines with KGNN encoders,
our proposed model exhibits a clear dominance over 7 of
the 8 datasets, with the COLLAB dataset being the only
exception where GCC is shown to be a better-performing
augmentation method. We found this to be also consistent
with comparisons against MPNN encoders where GCC is
also quite effective.

• We found two distinct self-supervision objectives under
both contrastive and non-contrastive frameworks to behave
similarly, therefore partially verifying that the performance
gain of the proposed framework is mostly attributed to the
LGA instead of self-supervision objectives.

F. Visualizations of learned hidden graphs

In this section, we assess the learned SWAG model from
the viewpoint of interpretability. In particular, we choose two
datasets, PROTEINS and RDT-B which are representative of
bio/chemo-informatics networks as well as social networks.
We randomly extract 4 learned hidden graph from the learned
SWAG model, and plot them in figure 2. From the illustrations,
it is visually clear that hidden graphs learned from distinct
datasets exhibit different types of structural characteristics:
Those learned from PROTEINS (the first row) show a rela-
tively frequent pattern of rings with typical instantiations being
3-rings and 4-rings. Meanwhile, those learned from RDT-B
suggest an alternative common pattern that is somewhat chain-
like, i.e., figure 2e and figure 2g are both (isomorphic) 5-
chains. Therefore, the proposed SWAG model offers reason-
able transparency and interpretability that characterizes learned
information, which is not possible for MPNNs.

G. Ablation study

In this section, we assess the effect of two critical hyperpa-
rameters in the proposed framework, namely the thresholding
parameter τ involved in the USVT procedure, as well as the
number of hidden graphs M in the SWAG architecture. All
the experiments are conducted on two representative datasets,
PROTEINS and RDT-B.

(a) (b)

Fig. 4: Investigation of model performance on PROTEINS
(left) and RDT-B (right) when varying the number of hidden
graphs M , mean performance are plotted along with shades
indicating standard deviation under 10-fold CV.

Effects of τ We draw insights from the renowned theoret-
ical threshold 2.02 which provably recovers dense random
graphs as shown in [3], and pick the largest τ value to be
slightly bigger than twice the theoretical value as 4.2. To
accommodate for sparser graphs, we choose the smallest τ
value to be slightly greater than 0 for thorough evaluation, and
report the results in figure 3. The results demonstrate only a
mild level of fluctuation when varying τ , suggesting that the
structural invariance might be captured even with low-rank
approximations of the input graph’s adjacency matrix.
Effects of M As shown in section IV-F, the learned hidden

graphs by the SWAG architecture may exhibit recurring pat-
terns (ignoring edge weights). Therefore, it is of interest to
investigate whether a small number of hidden graphs suffice
and whether too many hidden graphs hurts performance as
they might end up being isomorphic structures. We tested the
number of hidden graphs M with a minimum of 2 and a
maximum of 24 on the two datasets. The results are illustrated
in figure 4. The results suggest that while a relatively large
number of hidden graphs (i.e., M > 20) may produce many
similar learned graphs in terms of graph topology, the overall
predictive performance is not significantly affected by varying
M .

V. CONCLUSION AND FUTURE WORKS

Several improvements are proposed regarding the design
and learning of kernel graph neural networks (KGNNs). We
extend previous formulations of random-walk graph neural
networks into a more flexible framework and derive a novel
neural architecture SWAG that allows smoother optimization.
We also initiate explorations on applying self-supervision to
KGNNs, developing the structural-preserving graph data aug-
mentation LGA which is beneficial to self-supervised KGNN
learning. We believe this is just the initial step toward the
development of better-performing KGNN models: It will be of
great value if we may further bridge the theory and practice of
MPNNs and KGNNs together, and create better supervised and
self-supervised learning frameworks, we leave such promising
research into future works.

REFERENCES

[1] BATTAGLIA, P. W., HAMRICK, J. B., BAPST, V., SANCHEZ-
GONZALEZ, A., ZAMBALDI, V., MALINOWSKI, M., TACCHETTI, A.,
RAPOSO, D., SANTORO, A., FAULKNER, R., ET AL. Relational
inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 (2018).

[2] BORGWARDT, K. M., AND KRIEGEL, H.-P. Shortest-path kernels
on graphs. In Fifth IEEE international conference on data mining
(ICDM’05) (2005), IEEE, pp. 8–pp.

[3] CHATTERJEE, S. Matrix estimation by universal singular value thresh-
olding. The Annals of Statistics (2015), 177–214.

[4] CHEN, T., KORNBLITH, S., NOROUZI, M., AND HINTON, G. A
simple framework for contrastive learning of visual representations. In
International conference on machine learning (2020), PMLR, pp. 1597–
1607.

[5] CHEN, X., AND HE, K. Exploring simple siamese representation
learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2021), pp. 15750–15758.

[6] DING, K., XU, Z., TONG, H., AND LIU, H. Data augmentation for deep
graph learning: A survey. ACM SIGKDD Explorations Newsletter 24, 2
(2022), 61–77.

[7] ERRICA, F., PODDA, M., BACCIU, D., AND MICHELI, A. A fair
comparison of graph neural networks for graph classification. arXiv
preprint arXiv:1912.09893 (2019).

[8] FENG, A., YOU, C., WANG, S., AND TASSIULAS, L. Kergnns: Inter-
pretable graph neural networks with graph kernels. In Proceedings of
the AAAI Conference on Artificial Intelligence (2022), vol. 36, pp. 6614–
6622.

[9] GAO, C., LU, Y., AND ZHOU, H. H. Rate-optimal graphon estimation.
The Annals of Statistics (2015), 2624–2652.

[10] GAO, X., XIAO, B., TAO, D., AND LI, X. A survey of graph edit
distance. Pattern Analysis and applications 13 (2010), 113–129.

[11] GASTEIGER, J., WEISSENBERGER, S., AND GÜNNEMANN, S. Diffu-
sion improves graph learning. Advances in neural information process-
ing systems 32 (2019).

[12] GILMER, J., SCHOENHOLZ, S. S., RILEY, P. F., VINYALS, O., AND
DAHL, G. E. Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference on Machine Learning
(International Convention Centre, Sydney, Australia, 06–11 Aug 2017),
D. Precup and Y. W. Teh, Eds., vol. 70 of Proceedings of Machine
Learning Research, PMLR, pp. 1263–1272.

[13] GLIGORIJEVIĆ, V., RENFREW, P. D., KOSCIOLEK, T., LEMAN, J. K.,
BERENBERG, D., VATANEN, T., CHANDLER, C., TAYLOR, B. C.,
FISK, I. M., VLAMAKIS, H., ET AL. Structure-based protein function
prediction using graph convolutional networks. Nature communications
12, 1 (2021), 3168.

[14] GOLDENBERG, A., ZHENG, A. X., FIENBERG, S. E., AIROLDI, E. M.,
ET AL. A survey of statistical network models. Foundations and Trends®
in Machine Learning 2, 2 (2010), 129–233.

[15] HAMILTON, W., YING, Z., AND LESKOVEC, J. Inductive representation
learning on large graphs. Advances in neural information processing
systems 30 (2017).

[16] HOU, Z., LIU, X., CEN, Y., DONG, Y., YANG, H., WANG, C., AND
TANG, J. Graphmae: Self-supervised masked graph autoencoders. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (2022), pp. 594–604.

[17] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[18] KIPF, T. N., AND WELLING, M. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] KIPF, T. N., AND WELLING, M. Variational graph auto-encoders. CoRR
abs/1611.07308 (2016).

[20] LEI, T., JIN, W., BARZILAY, R., AND JAAKKOLA, T. Deriving neural
architectures from sequence and graph kernels. In International Con-
ference on Machine Learning (2017), PMLR, pp. 2024–2033.

[21] LI, S., WANG, X., ZHANG, A., WU, Y., HE, X., AND CHUA, T.-S. Let
invariant rationale discovery inspire graph contrastive learning. In Inter-
national Conference on Machine Learning (2022), PMLR, pp. 13052–
13065.

[22] LIN, L., CHEN, J., AND WANG, H. Spectral augmentation for self-
supervised learning on graphs. arXiv preprint arXiv:2210.00643 (2022).

[23] MORRIS, C., LIPMAN, Y., MARON, H., RIECK, B., KRIEGE, N. M.,
GROHE, M., FEY, M., AND BORGWARDT, K. Weisfeiler and leman go
machine learning: The story so far. arXiv preprint arXiv:2112.09992
(2021).

[24] NIKOLENTZOS, G., AND VAZIRGIANNIS, M. Random walk graph
neural networks. Advances in Neural Information Processing Systems
33 (2020), 16211–16222.

[25] NIKOLENTZOS, G., AND VAZIRGIANNIS, M. Geometric random walk
graph neural networks via implicit layers. In International Conference
on Artificial Intelligence and Statistics (2023), PMLR, pp. 2035–2053.

[26] OORD, A. V. D., LI, Y., AND VINYALS, O. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[27] PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J.,
CHANAN, G., KILLEEN, T., LIN, Z., GIMELSHEIN, N., ANTIGA, L.,
ET AL. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems 32 (2019).

[28] QIU, J., CHEN, Q., DONG, Y., ZHANG, J., YANG, H., DING, M.,
WANG, K., AND TANG, J. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining (2020),
pp. 1150–1160.

[29] SAUNSHI, N., ASH, J., GOEL, S., MISRA, D., ZHANG, C., ARORA, S.,
KAKADE, S., AND KRISHNAMURTHY, A. Understanding contrastive
learning requires incorporating inductive biases. In International Con-
ference on Machine Learning (2022), PMLR, pp. 19250–19286.

[30] SCHRAUDOLPH, N. N., KONDOR, R., AND BORGWARDT, K. M. Graph
kernels. Journal of Machine Learning Research 11 (2010), 1201–1242.

[31] SHERVASHIDZE, N., SCHWEITZER, P., VAN LEEUWEN, E. J.,
MEHLHORN, K., AND BORGWARDT, K. M. Weisfeiler-lehman graph
kernels. Journal of Machine Learning Research 12, 9 (2011).

[32] SHERVASHIDZE, N., VISHWANATHAN, S., PETRI, T., MEHLHORN,
K., AND BORGWARDT, K. Efficient graphlet kernels for large graph
comparison. In Artificial intelligence and statistics (2009), PMLR,
pp. 488–495.

[33] SIMONOVSKY, M., AND KOMODAKIS, N. Dynamic edge-conditioned
filters in convolutional neural networks on graphs. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2017),
pp. 3693–3702.

[34] STOKES, J. M., YANG, K., SWANSON, K., JIN, W., CUBILLOS-RUIZ,
A., DONGHIA, N. M., MACNAIR, C. R., FRENCH, S., CARFRAE,
L. A., BLOOM-ACKERMANN, Z., ET AL. A deep learning approach
to antibiotic discovery. Cell 180, 4 (2020), 688–702.

[35] SUN, F.-Y., HOFFMANN, J., VERMA, V., AND TANG, J. Infograph:
Unsupervised and semi-supervised graph-level representation learning
via mutual information maximization. arXiv preprint arXiv:1908.01000
(2019).

[36] SURESH, S., LI, P., HAO, C., AND NEVILLE, J. Adversarial graph
augmentation to improve graph contrastive learning. Advances in Neural
Information Processing Systems 34 (2021), 15920–15933.

[37] THAKOOR, S., TALLEC, C., AZAR, M. G., MUNOS, R., VELIČKOVIĆ,
P., AND VALKO, M. Bootstrapped representation learning on graphs. In
ICLR 2021 Workshop on Geometrical and Topological Representation
Learning (2021).

[38] VELICKOVIC, P., FEDUS, W., HAMILTON, W. L., LIÒ, P., BENGIO, Y.,
AND HJELM, R. D. Deep graph infomax. ICLR (Poster) 2, 3 (2019), 4.

[39] WU, L., LIN, H., TAN, C., GAO, Z., AND LI, S. Z. Self-supervised
learning on graphs: Contrastive, generative, or predictive. IEEE Trans-
actions on Knowledge and Data Engineering (2021).

[40] XU, K., HU, W., LESKOVEC, J., AND JEGELKA, S. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[41] YANARDAG, P., AND VISHWANATHAN, S. Deep graph kernels. In
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA, 2015),
KDD ’15, Association for Computing Machinery, p. 1365–1374.

[42] YING, Z., YOU, J., MORRIS, C., REN, X., HAMILTON, W., AND
LESKOVEC, J. Hierarchical graph representation learning with differen-
tiable pooling. Advances in neural information processing systems 31
(2018).

[43] YOU, Y., CHEN, T., SUI, Y., CHEN, T., WANG, Z., AND SHEN, Y.
Graph contrastive learning with augmentations. Advances in neural
information processing systems 33 (2020), 5812–5823.

[44] ZHANG, M., CUI, Z., NEUMANN, M., AND CHEN, Y. An end-to-end
deep learning architecture for graph classification. In Proceedings of the
AAAI conference on artificial intelligence (2018), vol. 32.

	Introduction
	Methodology
	Kernel graph neural networks (KGNNs)
	Extensions and smoothed random walks
	Self-supervision via struture-preserving graph data augmentation
	Complexity considerations

	Related works
	Neural models for graph representation learning
	Self-supervision on graphs

	Experiments
	Datasets
	Baseline comparisons
	Experimental setup
	Performance on supervised graph classification
	Performance on self-supervised graph classification
	Visualizations of learned hidden graphs
	Ablation study

	Conclusion and future works
	References

