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Abstract—While generating better negative samples for con-
trastive learning has been widely studied in the areas of CV
and NLP, very few work has focused on graph-structured data.
Recently, Mixup has been introduced to synthesize hard negative
samples in graph contrastive learning (GCL). However, due to
the unsupervised learning nature of GCL, without the help of soft
labels, directly mixing representations of samples could inadver-
tently lead to the information loss of the original hard negative
and further adversely affect the quality of the newly generated
harder negative. To address the problem, in this paper, we
propose a novel method DropMix to synthesize harder negative
samples, which consists of two main steps. Specifically, we first
select some hard negative samples by measuring their hardness
from both local and global views in the graph simultaneously.
After that, we mix hard negatives only on partial representation
dimensions to generate harder ones and decrease the information
loss caused by Mixup. We conduct extensive experiments to
verify the effectiveness of DropMix on six benchmark datasets.
Our results show that our method can lead to better GCL
performance. Our data and codes are publicly available at
https://github.com/Mayueq/DropMix-Code.

Index Terms—Graph neural network, Contrastive learning,
Hard sample mining

I. INTRODUCTION

With the explosion of data volume in the real world, labeled
data is generally hard to derive, while more available data is
unlabeled. To leverage massive unlabeled data, self-supervised
learning (SSL) [1], [2] has recently received increasing at-
tention. Contrastive learning (CL) [3], a mainstream type
of SSL, has been widely used in the fields of CV [4], [5]
and NLP [6], [7]. The major goal of CL is to maximize
the similarity between positive pairs while minimizing that
between negative ones. CL has also been extended to graphs
and integrated with graph neural networks (GNNs) to learn
node/graph representations, whose superior performance has
been verified [8].

Some previous studies [9], [10] have shown that the key
to affecting the performance of contrastive learning is the
selection of positive and negative samples. Generally, positive
samples are constructed by data augmentation methods [11],
[12], while negative samples are randomly selected. Recently,
it has been pointed out in [13] that harder negative samples are
more helpful for learning. Therefore, there has been a growing
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Fig. 1. Three different Mix methods to synthesize harder negative samples.
Each square represents one dimension.

interest in selecting harder negative samples for contrastive
learning [14], [15]. Further, negative samples can also be
constructed by artificial synthesis. For example, Mixup [16]
and CutMix [17] are two data augmentation methods that have
been applied in the area of CV, which mix different images
and their labels to synthesize new samples with soft labels.
The difference is that Mixup performs interpolation between
two images, while CutMix cuts a patch from an image and
pastes a new one from another image. However, very few of
existing studies focuses on graph-structured data. In addition,
these methods heavily depend on the information of soft labels
and cannot be directly applied in the unsupervised learning
settings.

To address these problems, a recently proposed method
ProGCL [18] first selects hard negatives and then uses
Mixup [16] to generate harder ones in graph contrastive
learning (GCL), which is essentially unsupervised learning.
Despite the success, it has two major problems. On the one
hand, it measures the hardness of negative samples based on
only their local information in the graph, while the global
information contained in the graph can further provide a
supplementary view for hard negative selection. On the other
hand, it performs Mixup on all the dimensions of hard negative
representations. However, since the selected negative is already
a hard one, this could inadvertently lead to the information loss
of the original sample and adversely affect the quality of the
newly synthesized negative.
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https://github.com/Mayueq/DropMix-Code


In this paper, to tackle these issues, we propose a novel
Mixup-based method DropMix for synthesizing harder neg-
ative samples in GCL. Our goal is to increase the hardness
of negative samples without the supervision of soft labels
in the unsupervised learning setting, while decreasing the
information loss of the original hard negative samples caused
by Mixup. Specifically, we first measure the hardness of
negative samples by computing their similarities with positive
samples from both local and global views of information. For
the local view, we consider the neighborhood of a node. For the
global view, we employ the diffusion matrix [19] of the graph.
Then we rank the similarities and select hard negatives. After
that, inspired by CutMix, we mix these selected hard negatives
only in partial dimensions to construct new harder negatives,
while keeping the remaining part unchanged. This explains
the origination of Drop in DropMix. In this way, we can
alleviate the information loss of the original hard negatives,
even without the help of soft labels. Figure 1 illustrates the
difference between Mixup, CutMix, and our proposed method
DropMix. Finally, our main contributions in this paper are
summarized as follows:

• We present a novel method DropMix for synthesizing
harder negative samples in GCL under the unsupervised
learning setting.

• We unify the local and global views of information in
the graph to measure the hardness of negative samples,
which can be used to effectively filter easy negatives and
false negatives.

• We propose to perform Mixup only on a proportion of
dimensionalities of the hard negative samples, to decrease
the information loss caused by Mixup.

• We conduct extensive experiments to show the superiority
of our proposed method in generating harder negative
samples in GCL.

II. RELATED WORK

A. Graph Contrastive Learning

In recent years, inspired by contrastive learning in CV and
NLP, more and more studies have begun to apply contrastive
learning to graphs and have obtained inspiring results as well.
As an unsupervised learning method, GCL has achieved com-
parable or even better results than many supervised learning
methods, without relying on the involvement of a large number
of labels, which greatly improves the utilization efficiency of
data in the real world. For example, a representative model
DGI [20] first proposes to maximize the mutual information
between node-level and graph-level representations to learn
node representations. Based on DGI, MVGRL [21] proposes
to use node diffusion method to learn node representations
by maximizing mutual information between node-level and
graph-level representations of the original and diffusion graph.
Further, GMI [22] develops an unsupervised learning model
trained by maximizing the correlation between input graphs
and high-level hidden representations. GraphCL [12] explores
the impact of different data augmentation methods on different

domain datasets. BGRL [23] learns a node representation
by encoding two augmented versions of a graph using two
distinct graph encoders. Besides, MERIT [24] learns node
representations by enhancing Siamese self-distillation with
multi-scale contrastive learning. In addition, Grace [25] and
GCA [26] are jointly consider corruption at both topology and
node attribute levels to provide diverse contexts for nodes in
different views.

B. Negative Sampling

Since the goal of contrastive learning is to pull the positive
samples close to the anchor and push away the negative
samples, how to construct positive and negative samples is
particularly important. Some existing works use data augmen-
tation methods [11], [12] to generate better and more rep-
resentative positive samples, while the studies on generating
negative samples are insufficient in comparison. Most recent
studies on negative sampling focus on how to select better
negative samples from negative sample sets. For example,
HCL [14] first uses sampling distribution to generate negative
samples and then presents a sampling strategy on sampling
in the absence of real dissimilar information. What’s more,
KGPolicy [15] considers both the similarities between the
negative and the anchor (the positive samples). After that, the
two similarities are combined as the measure for selecting
hard negative samples. For graph-structured data, some works
such as [27] propose to cluster nodes in the training process,
and generate pseudo-labels for nodes based on the clustering
results to decide which negative samples to select. Further,
CuCo [28] introduces Curriculum Learning and designs a
scoring function for the negative samples, ranking them from
easy to difficult and learning them sequentially.

C. Mixup

Mixup [16] is an effective method for image data augmen-
tation. It interpolates between two images in proportion to
generate a new sample and also proportionally mixes their
labels to get the corresponding soft label. Some recent studies
have applied Mixup to graph data augmentation. For example,
a recent work [29] applies Mixup to both node classification
and graph classification tasks with GNNs. GraphMix [30]
proposes a data augmentation method for training fully con-
nected networks jointly with GNNs through parameter sharing
and interpolation-based regularization. Additionally, Mixup
has also been used for the synthesis of hard negative samples
recently. MoCHi [31] first proposes to introduce Mixup into
the construction of negative samples by mixing hard negative
samples or positive samples with hard negative samples to
synthesize harder negative samples artificially. And on graphs,
ProGCL [18] and M-Mix [32] similarly uses Mixup for the
synthesis of hard negative samples.

D. CutMix

CutMix [17] is another data augmentation method that
combines both Dropout and Mixup. It first cuts a patch
from an image and then pastes a new one from another



Fig. 2. (left) First step, we measure the hardness of negative samples in the original graph with local information and the diffusion graph with global
information. The top and bottom graphs represent node v1, v2 and a subgraph structure around them respectively. (right) Second step, we construct new
harder negative samples by mixing two hard negative samples in some dimensions. Specifically, Mix and ⊙ denote eq. (7) and mask respectively, which
represent we mix h1 and h2 to generate green dimensions by mixing blue and yellow while retaining some yellow dimensions.

image to obtain new ones. After that, it mixes the ground
truth labels proportionally according to the area size of the
patch. In this way, CutMix can alleviate the problem that the
samples generated by Mixup tend to be unnatural. However,
this method is mainly developed for images but not for graph-
structured data.

Despite the success, through experiments, we observe that
the performances of hard negatives generated by Mixup and
CutMix are not as good as we expected in the unsupervised
learning settings. Different from them, DropMix can generate
better and harder negative samples without labels.

III. METHOD

A. Problem Definition

Let G = (V, E) denote an undirected graph, where V =
{v1, v2...vN} is a set of N nodes and E ∈ V × V denotes
the adjacency relationships between nodes in V . Additionally,
node feature X ∈ RN×d is a d-dimensional matrix, and each
node vi is associated with a feature vector xi. The graph G
can be described as an adjacency matrix A ∈ RN×N according
to E , so that we can compute the symmetrically normalized
adjacency matrix Â by Â = D̃− 1

2 ÃD̃− 1
2 , where Ã is the

adjacency matrix with added self-loops, and D̃ is the diagonal
degree matrix of Ã.

B. Graph Encoder

In this section, we use Graph Neutral Networks (GNNs) as
our encoder to learn the nodes’ representations through the
message-passing scheme. For any node vi in the l-th layer,

we can obtain its embedding by aggregating the information
in the (l − 1)-th layer from itself and all its neighbors:

h(l)
u = AGGREGATE

(
h(l−1)
u : u ∈ N (i)

)
, (1)

h
(l)
i = COMBINE

(
h
(l−1)
i , h(l)

u

)
, (2)

where h
(l)
i is the representation vector of node vi in the

l-th layer with h
(0)
i = xi. Further, AGGREGATE(·) and

COMBINE(·) are aggregation function and combination func-
tion of the GNN layer, respectively, and N (i) denotes the
neighbor set of node vi.

C. Graph Contrastive Learning

To achieve the goal of graph contrastive learning, i.e.,
minimizing the distance between the anchor and the positive
samples, while maximizing that between the anchor and the
negative samples, we adopt the InfoNCE loss function [33].
Specifically, given a node vi and its positive sample vj which
can be obtained by data augmentation, we can derive their
embeddings hi and hj by GNN encoders. And then we take
all the other nodes in the graph as negative samples. Formally,
the training objective for the positive pair (hi, hj) is defined
as:

Li,j = −log exp(sim(hi, hj/τ))∑N
k=1 exp(sim(hi, hk/τ))

, (3)

where τ denotes the temperature parameter and sim(·) repre-
sents the similarity function between hi and hj .



D. Hard Negative Selection

In this section, we select hard negative samples from the
negative sample set, which consists of nodes other than the
positive. And details are given in the left part of figure 2. First,
we consider that it may not enough to measure the degree of
hardness of negative samples only from the local view of the
original graph. Therefore, inspired by graph diffusion [19], we
transform the adjacency matrix into a diffusion matrix, which
can represent the global connections between two nodes. After
that, we measure the similarities between negative samples and
positive samples from both the local and global views. Finally,
we combine the two similarities to derive the measurement for
the degree of hardness w.r.t. a given negative sample.

Similar as in [19], we define generalized graph diffusion
that is computed by using fast approximation and sparsification
methods in eq. (4). Note that T ∈ RN×N is the generalized
transition matrix and θk is the weighting coefficients, requiring∑∞

k=0 θk = 1, θk ∈ [0, 1] and λi ∈ [0, 1], where λi are
eigenvalues of T .

S =

∞∑
k=0

θkT
k. (4)

In our work, we use Personalized PageRank (PPR) [34], which
is one of the instantiations of generalized graph diffusion.
Specifically, we set T = Â and θk = α(1 − α)k, where α
denotes teleport probability in a random walk. The closed-
form solution to PPR diffusion is formulated as:

S = α(In − (1− α)Â)−1. (5)

In this way, we have constructed a new matrix S that reflects
the global relations between nodes in the graph. Then we can
measure the hardness of negative samples by computing their
similarities to the positive samples in the views of both the
adjacency matrix and S. For simplicity, we choose cosine
similarity as the measure function. Specifically, given a node
v and its positive sample vp, for any negative sample vn, we
use Φl and Φg to denote the hardness between vp and vn in
the local and global views, respectively:

Φl =
hT
p hn

∥hp∥ · ∥hn∥
,Φg =

h̃T
p h̃n∥∥∥h̃p

∥∥∥ ·
∥∥∥h̃n

∥∥∥ , (6)

where hp, hn, h̃p, h̃n are the embeddings derived by the GNN
encoder in section III-B. Here, hp, hn denote the embeddings
of positive and negative samples in the original graph, while
h̃p, h̃n represent that in the diffusion graph. After that, we
combine the two measures to get the final degree of hardness
Φ = Φl+Φg and then select hard negatives. Note that the small
hardness value generally corresponds to easy negative samples
that are useless, while the large one indicates false negative
samples that may hurt the model performance. Therefore, we
rank negative samples based on Φ, remove samples at the
two ends, and select the remaining samples as hard negatives.
Specifically, we set two hyper-parameters α and β to control
the lower and upper limit of the hardness of hard negatives
respectively.

TABLE I
STATISTICS OF DATASETS

Datasets Nodes Edges Attributes Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Wiki-CS 11,701 216,123 300 10

Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

E. Hard Negative Mixing

After selecting hard negative samples from the negative
sample set, we next mix the selected hard negatives to generate
harder ones. The right part of figure 2 shows a toy example
on DropMix. Let h1, h2 denote the representations of two
hard negative samples, respectively. We first define the mixing
operation for h1 and h2 as:

hmix = λh1 + (1− λ)h2, (7)

where λ ∈ [0, 1] is the mixing coefficient which decides the
mixing ratio. Then, we mask a proportion of dimensions with
a binary mask vector M indicating which dimensions should
be dropped out. In our work, we specify the proportion of
one-valued entries in M as a hyper-parameter to control the
number of dimensions selected properly. Finally, we can obtain
a new negative sample by combining eq. (7) and the mask
operation:

hnew = M ⊙ h1 + (1−M)⊙ hmix. (8)

Based on eq. (8), we can generate new harder negative samples
to help training with a novel mix method.

IV. DISCUSSION

In this section, we summarize the relationships between
DropMix and two other data augmentation methods for hard
negative generation: Mixup and CutMix. First, as shown in
previous works [16], [17] both Mixup and CutMix perform
well in the supervised learning settings, which require samples
with labels. However, in the unsupervised learning settings,
their performances could be degraded due to the lack of soft
labels. Further, Mixup performs interpolation over all the em-
bedding dimensions of samples and could inadvertently lead
to the information loss of the original hard negative sample.
For CutMix, although it can reduce the information loss by
keeping some parts in the original negative unchanged, it
discards other parts of the sample and loses the corresponding
information completely. Different from Mixup and CutMix,
DropMix mixes the representations of samples only in partial
dimensions and keeps others unchanged, which decreases the
information loss in the original negative sample. This further
weakens the need on soft labels and extends its applicability
in the unsupervised learning settings. Technically, DropMix
subsumes both Mixup and CutMix.



TABLE II
THE CLASSIFICATION ACCURACY (%) OVER THE METHODS ON 6 DATASETS. “OOM” DENOTES OUT OF MEMORY ON A 32GB GPU. THE HIGHEST

PERFORMANCES ARE HIGHLIGHTED IN BOLD.

Methods Cora Citeseer Pubmed Wiki-CS Amazon-Photo Coauthor-CS

GCN 81.80 ± 0.50 70.80 ± 0.50 79.30 ± 0.70 77.19 ± 0.12 92.42 ± 0.22 93.03 ± 0.31

GAT 83.00 ± 0.70 72.50 ± 0.70 79.00 ± 0.30 77.65 ± 0.11 92.56 ± 0.35 92.31 ± 0.24

GAE 71.55 ± 0.33 65.87 ± 0.42 72.15 ± 0.50 70.15 ± 0.01 91.62 ± 0.13 90.01 ± 0.17

VGAE 73.27 ± 0.47 66.92 ± 0.50 74.13 ± 0.62 75.35 ± 0.14 92.20 ± 0.11 92.11 ± 0.09

DGI 83.80 ± 0.50 72.00 ± 0.60 77.90 ± 0.30 75.35 ± 0.14 91.61 ± 0.22 92.15 ± 0.63

GMI 83.00 ± 0.30 72.40 ± 0.10 79.90 ± 0.20 74.85 ± 0.08 90.68 ± 0.17 OOM

MVGRL 86.80 ± 0.50 73.30 ± 0.50 80.10 ± 0.70 77.43 ± 0.17 92.08 ± 0.01 92.18 ± 0.05

BGRL 84.68 ± 0.23 73.88 ± 0.15 80.73 ± 0.17 78.41 ± 0.09 92.95 ± 0.07 92.72 ± 0.03

MERIT 83.10 ± 0.60 74.00 ± 0.70 80.10 ± 0.40 78.35 ± 0.05 92.53 ± 0.15 92.51 ± 0.14

ProGCL 83.50 ± 0.22 74.19 ± 0.13 80.77 ± 0.15 78.45 ± 0.04 93.64 ± 0.13 93.67 ± 0.12

MVGRL+Mixup 86.92 ± 0.44 74.08 ± 0.28 80.62 ± 0.52 78.23 ± 0.46 93.55 ± 0.63 94.66 ± 0.21

MVGRL+CutMix 86.87 ± 0.66 74.24 ± 0.52 80.68 ± 0.40 78.42 ± 0.64 93.47 ± 0.39 95.21 ± 0.50

MVGRL+DropMix 87.17 ± 0.3187.17 ± 0.3187.17 ± 0.31 74.74 ± 0.2374.74 ± 0.2374.74 ± 0.23 81.29 ± 0.2681.29 ± 0.2681.29 ± 0.26 78.82 ± 0.1678.82 ± 0.1678.82 ± 0.16 94.46 ± 0.3394.46 ± 0.3394.46 ± 0.33 96.66 ± 0.5296.66 ± 0.5296.66 ± 0.52

V. EXPERIMENTS

In this section, we evaluate DropMix’s effectiveness. We
compare DropMix with 10 other methods by their accuracies
on node classification tasks. We also analyze the performance
of each component of DropMix by ablation study and hyper-
parameter sensitivity analysis. Further, we verify that DropMix
can be used in different GCL models and it is very suitable
for graph-structured data.

A. Datasets

We use six datasets which are widely used for node clas-
sification tasks to verify the performance of DropMix in-
cluding Cora, Citeseer, Pubmed, Amazon-Photo, Wiki-CS and
Coauthor-CS. The first three are citation networks, where each
node represents a document and each edge is a citation link.
Amazon Photo is a segment of the Amazon co-purchase graph,
where nodes represent goods and edges indicate that two goods
are frequently bought together. Wiki-CS is a Wikipedia-based
dataset, which consists of nodes corresponding to Computer
Science articles, with edges based on hyperlinks and 10 classes
representing different branches of the field. Coauthor CS is a
co-authorship graph based on the Microsoft Academic Graph
from the KDD Cup 2016 challenge. Here, nodes are authors,
which are connected by an edge if they co-authored a paper,
node features represent paper keywords for each author’s
papers, and class labels indicate most active fields of study for
each author. The specific statistics are summarized in Table I.

B. Experimental Setting

We implement DropMix using PyTorch 1.10.0. We adopt the
task of node classification to evaluate the performance of node
representation learning. Further, We adopt MVGRL [21] as the
base model and use test accuracy as the evaluation indicator to
demonstrate the effectiveness of DropMix. We share the GNN
encoder in the two views of local and global. For DropMix

and all its variants, we set the learning rate to 0.001 on Cora,
Citeseer and Pubmed, 0.0007 on the other, and the penalty
weight on the l2-norm regularizer to 0.002 on Citeseer. We
use early stopping with the patience of 40 on Amazon-photo,
Coauthor-CS and Wiki, and 20 on the other datasets, i.e., we
stop training if the validation accuracy does not decrease for
40 or 20 consecutive epochs. We fine-tune the model hyper-
parameters by grid search. Specially, we set γ as the rate of
representation dimensions {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and the
mixup rate λ {0.1, 0.2, 0.3, 0.4}. What’s more, to the lower
limit proportion of the hardness of hard negatives, we fine-tune
it from 5% to 50% with a 5% increment each time. And to
the upper limit proportion, we fine-tune it from {80%, 85%,
90%, 95%}. For a fair comparison, we run all the experiments
on a server with 32G memory and a single NVIDIA 2080Ti
GPU. Additionally, for all the baseline methods, we use the
original results released by their papers, and for some methods
whose other experimental results on some datasets can not
be found, we use the records which are reported in [18] and
[24]. However, for the latest work ProGCL, we use the default
parameters reported in the original paper and the original codes
to run the experiment on Cora, Citeseer and Pubmed. For each
method, we run experiments 10 times and report the average
results.

C. Comparison with the State-of-the-Arts

To demonstrate the effectiveness of DropMix, we first
evaluate it with 10 state-of-the-art methods which can be
grouped into two categories on six datasets. Specifically, we
choose multiple baselines which are unsupervised learning
methods including Graph AutoEncoders(GAE, VGAE) [35],
DGI [20], GMI [22], MVGRL [21], BGRL [23], MERIT
[24] and ProGCL [18] which is the most advanced method
introducing Mixup into the synthesis of negative samples as
introduced in the related work. What’s more, we also compare



Fig. 3. The results of different mix methods on three datasets.

TABLE III
THE RESULTS OF DIFFERENT METHODS BASED GCA , THE BEST

PERFORMANCES ARE HIGHLIGHTED IN BOLD.

Datasets Cora Citeseer Amazon-Photo

GCA 80.90 ± 0.41 72.14 ± 0.06 92.55 ± 0.03
ProGCL 83.50 ± 0.22 74.19 ± 0.13 93.64 ± 0.13

GCA+DropMix 83.82 ± 0.2583.82 ± 0.2583.82 ± 0.25 74.95 ± 0.2074.95 ± 0.2074.95 ± 0.20 94.13 ± 0.1194.13 ± 0.1194.13 ± 0.11

DropMix with supervised learning methods including GCN
[8], and Graph Attention Network (GAT). GCN is a model
that extends the convolution operation on graphs. And Graph
Attention Network further integrates the attention mechanism
in the convolutional layer. In addition, we use only Mixup
or CutMix, respectively, in the same unsupervised learning
setting to generate new negative samples as the methods we
compared.

Table II summarizes the performance results and the best
results are in bold. We can observe that the test accuracy of
DropMix outperforms all the other methods on six datasets.
This indicates that we can improve the performance of a GCL
model significantly only by supplying high-quality negative
samples. Compared with ProGCL, which also uses Mixup
to construct new negative samples, DropMix selects better
hard negative samples by considering local information and
global information simultaneously. Furthermore, it can be seen
from the table that, although Mixup and CutMix can both
bring some degree of improvement to the base model, the
performance of DropMix is better. This is because it only
mixes parts of dimensions to generate new negative samples
so that less original information of the hard negative samples
can be lost.

D. Results on different GCL Models

We evaluate the performance of DropMix not only on
the method of MVGRL, but on GCA [26] to get a fairer
comparison with ProGCL which is based on GCA. Results
are shown in Table III. The experimental results of GCA are
taken from [18] and [36]. It can be seen from the table that

TABLE IV
THE ABLATION STUDY OF MULTI-VIEW MEASURE ON THREE DATASETS ,

THE BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD.

Datasets Wiki-CS Amazon-Photo Coauthor-CS

DropMix-ol 78.53 ± 0.36 94.19 ± 0.55 95.62 ± 0.28
DropMix-og 78.71 ± 0.43 94.08 ± 0.30 96.32 ± 0.39

DropMix 78.82 ± 0.1678.82 ± 0.1678.82 ± 0.16 94.46 ± 0.3394.46 ± 0.3394.46 ± 0.33 96.66 ± 0.5296.66 ± 0.5296.66 ± 0.52

the performance is better than the base model GCA by adding
DropMix on it. Besides this can demonstrate that DropMix
can be used in different GCL methods to improve their
performances by reducing information loss when constructing
new hard negatives.

E. Ablation study

In this section, we conduct an ablation study on DropMix to
further understand the characteristics of its main components.
We consider different variants of the two steps to study the
effect of multi-views measure and partial dimensions mixing
respectively.

1) Effect of multi-views measure: In our method, how to
select hard negatives is important. We consider that measuring
the hardness of negative samples from both the local view and
global view may lead to better performance. Therefore, we do
the same operation as DropMix for three datasets, but only use
local or global information respectively to measure. The results
are shown in Table IV, where “DropMix-ol” means DropMix
with only local view and “DropMix-og” means DropMix with
only global view. We can observe that DropMix achieves
better performance than both DropMix-ol and DropMix-og,
and DropMix-og beats DropMix-ol in most cases. This shows
that compared with only measuring the hardness by local
information, global information may show better performance,
because of the rich information it incorporates from the global
view. However, it’s obvious that the best way to measure is
considering the two views at the same time.

2) Effect of partial dimensions mixing: We replace our
method with the ordinary Mixup and CutMix on node rep-



TABLE V
THE RESULTS OF DIFFERENT METHODS BASED MVGRL , AND THE

HIGHEST PERFORMANCES ARE MARKED IN BOLD.

Datasets Citeseer Amazon-Photo

MVGRL 73.30 ± 0.50 92.08 ± 0.01

Input Feature + Mixup 73.60 ± 0.78 92.82 ± 0.45
Input Feature + CutMix 73.89 ± 0.66 92.56 ± 0.30

Input Feature + DropMix 73.82 ± 0.42 92.76 ± 0.50

Node Representation + Mixup 74.08 ± 0.19 93.55 ± 0.41
Node Representation + CutMix 74.24 ± 0.37 93.47 ± 0.42

Node Representation + DropMix 74.74 ± 0.2374.74 ± 0.2374.74 ± 0.23 94.46 ± 0.3394.46 ± 0.3394.46 ± 0.33

Fig. 4. Parameter analysis of the hardness of hard negative samples on Wiki-
CS.

resentations to study the impact of partial dimensions mix-
ing. Mixup denotes we mix all the dimensions at the same
time, and CutMix denotes we change some dimensions of a
negative sample by the corresponding dimensions of another
one. We evaluate the performance of the three methods and
report the performance in Figure 3. We can observe that
Mixup and CutMix can bring some degree of improvement.
Nevertheless, DropMix clearly outperforms them additionally
on three datasets. This indicates that our method which mixes
node representations on partial dimensions achieves success
in GCL, and further shows the importance of reducing hard
information loss while generating new hard negatives.

F. Effect of DropMix on Input Feature and Node Representa-
tion

Both Mixup and CutMix are data augmentation methods
that are usually used in the input layer. To analyze the
performance of DropMix on graph-structured data to synthe-
size negative samples, we show the results of DropMix and
others implemented in the input layer and node representation
generated by GNN, respectively. The results are shown in
Table V. It can be seen that the performance of mixing on node
representations is better than on the input feature, this may
benefit from the graph structure information used in GNN.
Further, we observe that in the input layer, the performance

Fig. 5. Parameter analysis of mix on Amazon-photo.

gap of DropMix against Mixup and CutMix is marginal, and
even worse because of the sparse characteristic of graph data.
However, when we use our method on node representations,
DropMix presents its superiority on graph-structured data.

G. Hyper-parameters Sensitivity Analysis

We end this section with a sensitivity analysis of the hyper-
parameters. In particular, we study four key hyper-parameters
in two steps: The lower and upper hardness limit α and
β of hard negatives we select in the first step, the rate γ
of dimensions to mix, and the rate λ of mixup. In our
experiments, we vary one parameter each time with others
fixed.

1) Number of hard negative samples: In section V-E, we
have studied the effect of multi-views measurement. However,
after measuring the hardness of negative samples, how to
choose the most proper hardness range is also important.
We use hyper-parameters α and β to control the lower and
upper limit of the range, respectively. For example, α=35%
and β=95% denote that we choose hard negative samples
whose hardness values are ranked within 35%-95% among
all the negative samples. And then, we use the most proper α
and β in both DropMix and DropMix-ol to achieve the best
performance respectively, where “DropMix-ol” means only
using local information. Figure 4 shows the results on Wiki-
CS. We can observe that too high or too low hardness both hurt
the performance so it’s essential to discard easy negatives that
are useless and the hardest ones which may be false negatives.
Additionally, it can be seen that through measuring from multi-
views, we can not only select more precise hard negatives but
get better results through fewer negatives.

2) Hyper-parameters of mix: We show the results of the
two hyper-parameters on Amazon-Photo in Figure 5, where the
scores on the horizontal axis denote the number of dimensions
we randomly selected as a proportion of all dimensions. From
this figure, we can see that both hyper-parameters can impact
the performance of the method, where the rate of dimensions
to mixup is more important. It’s obvious that if γ is more than
0.5, the performance drops rapidly. Thus, it can prove that



it’s necessary to decrease the information loss of the original
negatives. However, a too small γ may lead to the mix being
ineffective. This further shows that Dropmix which mixes on
partial dimensions is an effective method for generating harder
negative samples.

VI. CONCLUSION

In this paper, we are devoted to learning better represen-
tations for GCL. We propose a novel method to synthesize
harder negative samples. Specifically, we present a two-step
method to implement. We first select some hard negative
samples by measuring their hardness from both local and
global views in the graph simultaneously. Second, we mix hard
negative samples only on partial dimensions to increase the
hardness of negative samples and decrease the information loss
caused by Mixup. Finally, experimental results demonstrate
that our method performs favorably on six datasets.
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