
SUBANOM: Efficient Subgraph Anomaly Detection
Framework over Dynamic Graphs

Chi Zhang
Fudan University

Shanghai Key Laboratory of Data Science
Shanghai, China

21210980092@m.fudan.edu.cn

Wenkai Xiang
Fudan University

Shanghai Key Laboratory of Data Science
Shanghai, China

21210980078@m.fudan.edu.cn

Xingzhi Guo
Stony Brook University

Stony Brook, USA
xingzguo@cs.stonybrook.edu

Baojian Zhou*

Fudan University
Shanghai Key Laboratory of Data Science

Shanghai, China
bjzhou@fudan.edu.cn

Deqing Yang
Fudan University

Shanghai Key Laboratory of Data Science
Shanghai, China

yangdeqing@fudan.edu.cn

Abstract—Given a dynamic graph, the efficient tracking of
anomalous subgraphs via their node embeddings poses a sig-
nificant challenge. Addressing this issue necessitates an effective
scoring mechanism and an innovative anomalous subgraph strat-
egy. Existing methods predominantly focus on designing scoring
strategies or employing graph structures that consider nodes
in isolation, resulting in ineffective capture of the anomalous
subgraph structure information.

In this paper, we introduce SUBANOM, a novel framework for
subgraph anomaly detection that is adept at identifying anoma-
lous subgraphs. SUBANOM has three key components: 1) We
implement current state-of-the-art dynamic embedding methods
to efficiently calculate node embeddings, thereby capturing all
node-level anomalies successfully; 2) We devise novel subgraph
identification strategies, which include k-hop and triadic-closure.
These strategies form the crucial component that can proficiently
differentiate between strong and weak neighbors, thus effectively
capturing the anomaly structure information; 3) For qualifying
the anomaly subgraphs, we propose using ℓp-norm-based score
aggregation functions. These iterative steps enable us to process
large-scale dynamic graphs effectively.

Experiments conducted on a real-world dynamic graph un-
derscore the efficacy of our framework in detecting anomalous
subgraphs, outperforming state-of-the-art methods. Experimen-
tal results further signify that our framework is a potent tool
for identifying anomalous subgraphs in real-world scenarios. For
instance, the F1 score under the optimal subgraph identification
strategy, can peak at 0.6679, while the highest achievable score
using the corresponding baseline method is 0.5677.

Index Terms—Subgraph Anomaly Detection, Dynamic Graph
Embedding, Triadic Closure

I. INTRODUCTION

Given a dynamic graph, the task of identifying anoma-
lous subgraphs is of critical importance, with wide-ranging
applications such as detecting events in social networks [1],
pinpointing anomalous user groups in financial networks [2],
unearthing anomalous clusters of reviewers from user-item
graphs [3], and many others [4]–[6]. As illustrated in Fig. 1,

*Corresponding Author

Vice

President

Election

Manager

Chief

Justice

Commander

Voter

Secretary

of State

Before Election

2020.10.31

After Election

2020.11.7

Anomaly Score = 0.1 Anomaly Score = 0.85

Election

2020.11.3

Vice

President

Chief

Justice

Commander

Secretary

of State
Voter

Election

Manager

SubAnom detection

framework

𝔾𝑡 𝔾𝑡+1

Fig. 1: The illustration of the SUBANOM framework: mon-
itoring the social status change of Joe Biden. The left part
exhibits the social graph pre-election, highlighting a subgraph
associated with Joe Biden before the 2020 Election. The right
part depicts an anomalous subgraph post-election, representing
the transition in his social status following Election Day.
SUBANOM can identify the anomalous subgraphs.

a representative example of identifying anomalous subgraphs
over dynamic graphs is as follows: take into account the
changes in Joe Biden’s social status during the 2020 election
period. His social status underwent significant alterations, as
seen from pre-election to post-election, where additional edges
have been integrated, indicating the new social status change.
The pivotal aspect of identifying this shift in social status is
effectively detecting the anomalous subgraph associated with
this transformation. Inspired by this, we pose the following
question: What is the most efficient and effective methodology
for identifying anomalous subgraphs over a potentially large-
scale dynamic graph?

Existing methods for subgraph anomalous detection falls
into two main categories, including structured-based methods
and representation learning-based methods. The methods of
structured-based use more traditional algorithms, which in-
volve identifying subgraphs using a user-specified score func-

ar
X

iv
:2

31
2.

10
50

4v
1

 [
cs

.S
I]

 1
6

D
ec

 2
02

3

tion. However, one needs to optimize the objective function
using complicated optimization algorithms [1, 7, 8]. Such
methods not only consume a considerable amount of time but
also pose challenges when applied to dynamic graphs. In the
dynamic setting, one typically has to deal with thousands of
snapshots with large size of nodes, making this type of tra-
ditional approach less feasible. Thanks to the recent advances
in representation learning over dynamic graphs [6, 9, 10],
representation learning-based methods use node embeddings
to capture anomalous information. These advances prove that
one can efficiently track anomalous nodes via node embed-
dings. However, existing methods of this type by seeking out
anomalous nodes without taking subgraph information into
account, as demonstrated in [6], thereby overlooking hidden
but crucial anomaly structural information. A natural question
is: How to detect anomalous subgraph structure information
using dynamic node embeddings?

In response to the aforementioned questions, our paper
aims to delve into representation learning-based methods,
investigating how anomalous subgraphs can be effectively
detected through dynamic node embeddings. We introduce a
novel framework for anomalous subgraph detection, namely
SUBANOM, which leverages the power of dynamic graph rep-
resentation learning algorithms. SUBANOM has three critical
components: 1) An efficient learning algorithm designed to
learn dynamic node embeddings; 2) Novel subgraph iden-
tification methods that leverage k-hop and triadic-closure
principles generated from seeding nodes; and 3) Score ag-
gregation strategies employing ℓp-norm-based score functions.
Our contributions are summarized as follows:

• We introduce SUBANOM, an efficient framework for
anomalous subgraph detection. It accepts state-of-the-
art efficient node embeddings as input and effectively
identifies anomalous subgraphs across graph snapshots.
It can be readily extended to attributed networks.

• SUBANOM integrates two novel components: 1) It imple-
ments simple yet effective subgraph identification strate-
gies, including k-hop and triadic-closure methods. These
strategies successfully reveal the underlying subgraphs
associated with anomalous events. 2) We introduce a
range of effective score aggregations that can accurately
quantify the anomaly level based on the ℓp-norm.

• We evaluate SUBANOM through experiments on real-
world dynamic anomalous subgraph detection tasks. The
results confirm the effectiveness and efficiency of SUB-
ANOM. Compared with state-of-the-art methods, SUB-
ANOM yields significantly higher F1 scores, owing to its
ability to capture the hidden anomalous structure.

The source code is available at https://github.com/Baderlic/
SubAnom. The rest is organized as follows: In Section II, we
discuss the related work. Our notations and preliminaries are
presented in Section III. Section IV outlines our proposed
SUBANOM framework. The experimental results are provided
in Section V. Finally, we draw conclusions in Section VI.

II. RELATED WORK

Graph anomaly detection. There are two types of
anomaly over dynamic graphs, including graph-level and node-
level anomaly. We mainly focus on the graph-level anomaly.
Graph anomaly refers to sudden changes in the graph struc-
ture during its evolution, measuring the difference between
consecutive graph snapshots [6, 11]–[14]. The work of [11]
used a structural connectivity model to identify anomalous
graph snapshots. [15] adopted tensor factorization to detect
subgraphs. The work of [14] determined the anomaly nodes
using derivatives of the global PageRank Vectors. The most
similar work to ours is DYNANOM [6], where authors con-
sider embeddings and detect anomalous nodes individually.
However, these methods cannot reveal the node’s local anoma-
lous changes and cannot identify individual node changes.
There are also other types, including edge anomaly detection
[13, 16]–[19].

Node embeddings on dynamic graphs. Node representa-
tion learning on dynamic graphs is a powerful tool for graph
mining, mapping nodes into lower-dimensional vectors [9, 20,
21]. These vectors can be effectively applied to the detection
of anomalous subgraphs. Recent advancements detailed in [9]
demonstrate that it is possible to efficiently maintain dynamic
embeddings for a subset of target nodes within dynamic graphs
[6], namely DYNANOM. Yet, anomalous events on dynamic
graphs tend to propagate through a subgraph structure, which
means DYNANOM may overlook crucial hidden subgraph
structural information.

Triadic closure. In a trusted network, triadic closures are
likely to develop due to a property called transitivity [22].
Owing to its powerful expressive capability, the transitivity of
triadic closure has been applied in various statistical relational
models, such as Markov logic networks [23], Problog [24],
probabilistic soft logic [25], and relational logistic regression
[26]. In this work, we leverage the properties of triadic closure
to identify subgraphs because it inherently capture the local
network structure.

III. NOTATIONS AND PRELIMINARIES

We will first introduce the notations and then present the
model for the dynamic graph. We will explain how the
dynamic graph embedding algorithm, DYNPPE, can aid in
the identification of anomalous subgraphs.

A. Notations

Given a weighted graph G = (V, E ,W), where V is the
set of nodes, E ⊆ V × V is the set of edges, and W denotes
edge weights. The dynamic weighted graph at a specific time
t is Gt = (Vt, Et,Wt). We will omit t when the context is
clear. The d-dimensional embedding vector of node v at time
t is represented as xt

v ∈ Rd where the i-th entry of xt
v is

xt
v(i). The support of x is the set of nonzero indices, i.e.,

supp(x) = {i : xi ̸= 0}. The set of n numbers is denoted as
[n] = {1, 2, . . . , n}. We use δtv to express the anomaly score
of node v at time t. Given a subset of nodes St ⊆ Vt, Gt(St)
represents the subgraph induced by St. Moreover, the notation

https://github.com/Baderlic/SubAnom
https://github.com/Baderlic/SubAnom

Gt(St
v) designates the subgraph generated by node v at time

t, following a specific subgraph strategy. We will expound
on this in Section IV. All neighbors of v form a set Nei(v).
Given nodes u and v with corresponding embeddings xu

and xv , we measure their embedding distance (corresponding
the anomalous score) using the ℓp-norm distance, defined as
dist(xu,xv) ≜ ∥xu − xv∥p = (

∑n
i=1 |xu(i)− xv(i)|p)

1/p.
Intuitively, the larger the distance between two consecutive
embeddings xt+1

v and xt
v , the higher the anomaly score could

be. The adjacency matrix of G is A with degree D.

B. Dynamic Graph Model

To characterize the dynamics of an evolving graph Gt, we
follow the work of [6] and define the dynamic graph model
as a sequence of edge events. Let ∆Et be edge events from
Gt to Gt+1, ∆Et ≜ {(u0, v0,∆w(u0, v0)), . . . , (um, vm,∆w
(um, vm)} where ∆w(um, vm) could be INSERTION, DELE-
TION, or WEIGHT UPDATING. We adopt the Discrete Time
Dynamic Graph model (DTDG) [20] as the following.

Definition 1 (Discrete Time Dynamic Graph): A discrete-
time dynamic graph contains a sequence of snapshots from a
dynamic graph sampled at regularly-spaced times. Specifically,
a DTDG model is a sequence of snapshots,

{
G1,G2, . . . ,GT

}
where Gt = (Vt, Et,Wt) is the t-th graph snapshot.

C. Dynamic Graph Embeddings

In the DTDG model Gt, we leverage DYNPPE [9] to
construct dynamic node embeddings. At the heart of DYNPPE
is the efficient maintenance of personalized PageRank(PPR)
vectors, achieved through a dynamic forward push algorithm
[27, 28]. For v ∈ Vt, its PPR vector on Gt is πt

v defined as

πt
v = α

(
I − (1− α)A⊤D−1

)−1
ev, (1)

where α is a damping factor and ev is an indicator vector
with entries ev(i) = 1 if i = v, and 0 otherwise. The entire
DYNPPE procedure is illustrated in Algorithm 1. To derive
an effective dynamic embedding of v, we first approximate
a dynamic node embedding pt

v to match πt
v (as in INCRE-

MENTPUSH of Line 4). Subsequently, we utilize two hash
functions to “project” pt

v into a lower-dimensional space, thus
forming an approximate embedding of v, denoted as xv (as
per DYNNODEREP of Line 20).

More specifically, at the beginning of the INCREMENTPUSH
method, it uses the initial graph G0 to obtain pt

v and rtv where
rtv is the dynamic residual vector (Line 7). After receiving the
sequence of snapshots ∆E1, . . . ,∆ET as input, it updates pt

v

and rtv (Line 9-10) using the following equations:

pv(u) = pv(u)

∑
v∈Nei(u) w(u, v) + ∆w(u, v)∑

v∈Nei(u) w(u, v)
, (2)

rv(u) = rv(u)−
∆w(u, v)pv(u)

α
∑

v∈Nei(u) w(u, v)
, (3)

rv(v) = rv(v) +
(1− α)

α

∆w(u, v)pv(u)∑
v∈Nei(u) w(u, v)

. (4)

For each specific snapshot, we use the above-mentioned equa-
tions to update pt

v and rtv (Line 11). These updates ensure
the linear invariant property of pt

v as demonstrated in [6, 27],
meaning that πt

v can still be well approximated by pt
v in (1).

Upon acquiring pt
v , we “project” pt

v into a lower-
dimensional space using DYNNODEREP (Line 2). It uses two
hash functions to facilitate achieving instant embedding [28]
(dim = 1024 in our experiments).

Algorithm 1 DYNPPE(G0,∆E1, . . . ,∆ET , v, ϵ, α) [9]

1: p1:T
v = INCREMENTPUSH(G0,∆E1, . . . ,∆ET , v, ϵ, α)

2: x1:T
v = DYNNODEREP(p1

v, . . . ,p
T
v)

3: return x1:T
v

4: procedure INCREMENTPUSH(G0,∆E1, ..,∆ET , v, ϵ, α)
5: t = 0
6: pt

v = 0
7: rtv = 1v

8: pt
v, r

t
v =DYNAMICPUSH(G0,pt

v, r
t
v, ϵ, α)

9: for t = 1, 2, . . . , T do
10: for (i, j,∆w(i, j)) ∈ ∆Et do
11: Update ptv(i), r

t
v(i), r

t
v(j) using (2),(3), and (4)

12: pt
v, r

t
v =DYNAMICPUSH(Gt,pt

v, r
t
v, ϵ, α)

13: return p1:T
v = [p1

v, ...,p
T
v]

14: procedure DYNAMICPUSH(Gt,pv, rv, ϵ, α)
15: while exists u such that |rv(u)| > ϵd(u) do
16: pv(u) += αrv(u)
17: for i ∈ Nei(u) do
18: rv(i) += (1−α)rv(u)·w(u,v)∑

j∈Nei(u) w(u,j)

19: rv(u) = 0

20: return (pv, rv)

21: procedure DYNNODEREP(p1
v, . . . ,p

T
v)

22: ϵc = MIN(1
|V| , 1e-4), dim = 1024

23: for t = 1, 2, . . . , T − 1 do
24: for i ∈ ∪t′∈{t,t−1}supp(p

t′

v) do:
25: pt−1

v (i) = 0 if pt−1
v (i) ≤ ϵc

26: ptv(i) = 0 if ptv(i) ≤ ϵc

27: xt
v = REDUCEDIM(pt

v, dim)
28: return xv = [x0

v, . . . ,x
T
v]

29: procedure REDUCEDIM(x, dim)
30: if DIM(x) ≤ dim then
31: return x
32: else
33: x̄ = 0 ∈ Rdim

34: for i ∈ supp(x) do
35: x̄(hdim(i)) += hsgn(i) log (x(i))

36: return x̄

IV. PROPOSED FRAMEWORK: SUBANOM

In this section, we present the novel SUBANOM framework
based on the dynamic node representation learning technique.
We first define our problem and then propose to use k-hop,
triadic-closure, and their hybrid to identify anomalous sub-

graphs. We then define several anomalous score aggregation
strategies to quantify the anomalous subgraphs.

A. Problem Formulation

This section defines the process of anomalous subgraph de-
tection over dynamic graphs, including subgraph identification
and anomaly score aggregation.

Subgraph identification. Given the initial graph G0 =
(V0, E0,W0), the subgraph identification procedure com-
mences with the identification of an anomalous seed node
v ∈ V0. Following this, a subgraph generation strategy is
implemented, using the selected seed node as a reference to
identify a subgraph G0(S0

v) where S0
v represents the subset

of nodes resulting from this generation strategy. We formally
define subgraph identification as the following:

Definition 2 (Subgraph Identification): Given a dynamic
graph Gt with an initial snapshot G0 = (V0, E0,W0), the
subgraph identification for a node v ∈ Vt, t = 0, 1, . . . , T ,
is a strategy designed to find a subset of nodes that forms
a subgraph Gt(St

v) = G(V ′, E ′,W ′) where V ′, E ′,W ′ are
subsets of Vt, Et,Wt, respectively.

Anomaly score aggregation. To determine the anomaly
score of the generated subgraph at t given v, it is necessary to
aggregate the anomaly scores of nodes in St

v . The definition
of anomaly score aggregation is as the following:

Definition 3 (Anomaly Score Aggregation): Given a graph
G = (V, E ,W) and a subgraph G(S), for every node v ∈ S,
with δv representing its anomaly score between two consecu-
tive embeddings, the anomaly score of G(S) is defined as

ScoreG = f(δv), (5)

where f is the aggregation function.
With the above definitions, we are ready to present our pro-
posed generation strategies and score aggregation functions.

B. Anomalous Subgraph Identification

2 4

31

6

7
8

5

1-hop subgraph

2 4

31

6

7
8

5

2-hop subgraph

Fig. 2: k-hop strategy. Left: 1-hop S = {1, 2, 3, 6} with v = 1;
Right: 2-hop S = {1, 2, 3, 4, 5, 6, 7}.

We consider two types of subgraph generation strategies,
including k-hop and triadic-closure strategies.

k-hop identification strategy (k-hop). Given the seed
node v ∈ St, one can use Breadth First Search (BFS) starting
from v but only exploring k-hop neighbors of v. For k-hop
strategies as shown in Fig. 2 and given the seed node v = 1,
the subgraph of selected nodes contains all the nodes within
k = 1 hop and k = 2 hops of v = 1. Note that k is usually
a small number for anomalous subgraph detection. In our

Name of ϕ Aggregation function ϕ
MEAN ϕMEAN(x

t−1:t
· ,St

v) =
1

|St
v|

∑
i∈St

v
dist(xt−1

i ,xt
i)

SUM ϕSUM(x
t−1:t
· ,St

v) =
∑

i∈St
v
dist(xt−1

i ,xt
i)

MAX ϕMAX(x
t−1:t
· ,St

v) = maxi∈St
v
dist(xt−1

i ,xt
i)

MIN ϕMIN(x
t−1:t
· ,St

v) = mini∈St
v
dist(xt−1

i ,xt
i)

MEDIAN ϕMEDIAN(x
t−1:t
· ,St

v) = mediani∈St
v
dist(xt−1

i ,xt
i)

TABLE I: Subgraph aggregation function ϕ

experiments, we adopt three k-hop strategies: 1-hop, 2-hop,
and 3-hop, which include all the nodes within 1, 2, or 3 hops.

Triadic-Closure strategy (TC). We design an effective
method using triadic closure [29]. It is based on the well-
known triadic closure property: “A friend of my friend is my
friend,” a phenomenon widely documented in the literature
[30, 31]. We posit a similar observation in the context
of anomalous: “An anomalous neighbor of an anomalous
neighbor from a seed node is also likely to be anomalous”.

2 4

31

6

7
8

5

TC with strong neighbors only

2 4

31

6

7
8

5

TC with boundaries

Fig. 3: Triadic-Closure (TC) strategies. Left: TC subgraph with
1-hop S = {1, 2, 3}; Right: Hybrid TC subgraph with 1-hop
and boundaries S = {1, 2, 3, 4, 5, 6}.

To utilize the triadic-closure strategy, we first pinpoint the
neighbors of a given node v using the principles of triadic
closure. In this context, if node v and two of its neighbors, u
and w, share direct connections with each other, they form a
triadic closure. We then categorize u and w as strong neigh-
bors of v. Conversely, if u and w lack a direct connection, we
label them as weak neighbors.

For example, refer to Fig. 3 (left). If we use the seed node
v = 1 to generate a 1-hop subgraph, nodes 2 and 3 would be
designated as strong neighbors. This is because they each share
a direct connection with the seed node and, more importantly,
with each other, forming a triadic closure. Thus, by identifying
and classifying these strong and weak neighbors, we can
incorporate the concept of triadic closure into our framework
for anomalous subgraph detection. This strategy provides a
more nuanced and detailed view of the graph’s structure, which
can enhance our ability to detect anomalous patterns.

Algorithm 2 Hybrid-TC(v,Gt)

1: Input: Snapshot Gt = (Vt, Et,Wt), node v ∈ Vt

2: Construct the adjacency matrix At based on Et

3: Ct = At ·At

4: Find neighbors of v, Nei(v)
5: Find closure nodes w such that Ct[v][w] ̸= 0, Clo(v)
6: Get the strong neighbors of v: Ξ := Nei(v) ∩ Clo(v)
7: Obtain the boundary nodes ∂v of Ξ;
8: Get all aggregated nodes: St

v = ∂v ∪ Ξ ∪ {v}
9: return St

v

Hybrid Triadic-Closure strategy (Hybrid TC). In the
previous triadic-closure strategy could potentially overlook
anomalous nodes that, while not classified as strong neighbors,
exist on the boundaries of these generated subgraphs. To
tackle this limitation, we introduce the Hybrid TC strategy,
which includes the boundary nodes of the strong subgraphs
as shown in Fig. 3 (right), likely to transmit anomalous
information emanating from the seed node. This inclusion
enables a smoother flow of anomalous information, improving
the detection capabilities. To detect triadic closures at t, we
construct At from Et of Gt = (Vt, Et,Wt). For each v ∈ Vt

and its neighbor u ∈ Nei(v), we utilize the Common Neigh-
bors Matrix, defined as Ct = AtAt, to ascertain whether u
is a strong neighbor of v. If nodes v and u have common
neighbors, Ct[u][v] ̸= 0, they are strong neighbors.

We elaborate on the Hybrid TC strategy for a given seed
node v in the graph G = (V, E ,W) in Algorithm 2. Specifi-
cally, we first identify neighbors of v and then strong neighbors
are identified as the intersection of Nei(v). Boundary nodes of
the intersection, Nei(v)∩Clo(v), are obtained in Line 7. The
final set of nodes under the Hybrid TC strategy is the union
of the strong neighbors and these boundary nodes.

C. Anomalous Subgraph Quantification

Once we have obtained the node embeddings, we need
to compute a score to quantify the anomaly of a node and,
subsequently, the anomalous subgraph. It has been shown that
the ℓp-norm distance between previous and current snapshots
can be employed to calculate the anomaly [6]. This is because
a greater distance signifies, a more pronounced change be-
tween the snapshots for a particular node, indicating a higher
likelihood of the node being anomalous. Once a subgraph of
a seed node has been generated through a particular strategy,
we can aggregate the anomaly scores of the nodes within this
subgraph to the seed node. For a node v at the snapshot t
associated with an identified subgraph G(St

v), we calculate
the aggregate score for all nodes in St

v as follows:

SubScoretv = ϕ(xt−1:t
· ,St

v), (6)

where xt−1:t
· represents graph embeddings of nodes on the

subgraph from snapshot t − 1 to t, while SubScoretv is the
updated anomaly score of node v at snapshot t after graph-
level anomaly scores have been aggregated. The aggregation
function ϕ is applied at the subgraph level and can take the
forms of functions shown in Table I.

For graph-level anomaly detection tasks, we also need to
aggregate the anomaly scores of all subgraphs to determine
the anomaly score for a specific snapshot. For the dynamic
graph Gt = (Vt, Et,Wt) and every v ∈ Vt, t = 1, . . . , T , we
have the final aggregation function

ScoretG = f
(
ϕ
(
xt−1:t
· ,St

v

))
, (7)

where f is the global aggregation function. The score ScoretG
represents the anomaly score of the graph in snapshot t, and
f is the graph-level aggregation function. Typically, we can
utilize the MEAN function for f .

The complete framework is presented in Alg. 3. It takes
an initial graph G0, a sequence of edge events forming T
snapshots, a precision parameter ϵ, and a teleportation factor
α as inputs. For each Gt, it first generates a set of seed nodes
Θt. For each seed, we calculate the graph embeddings x1:t

v .
Next, we identify an anomalous subgraph originating from
node v. We then apply aggregations to compute the subgraph
score. After calculating all the subgraph scores, we can finally
compute the overall anomaly score ScoretG.

Algorithm 3 SUBANOM(G0,∆E1, . . . ,∆ET , ϵ, α)

1: Input: G0, events ∆E1, . . . ,∆ET , ϵ, α
2: for t = 1, 2, . . . , T do
3: Generate a set of seed nodes Θt

4: for v ∈ Θt do
5: x1:t

v = DYNPPE(G0,∆E1, . . . ,∆ET , v, ϵ, α)
6: Generate Gt(St

v) under the subgraph strategy;
7: Calculate the subgraph score ϕ

(
xt−1:t
· ,St

v

)
8: ScoretG = 1

|St
v|
∑

v∈St
v
ϕ
(
xt−1:t
· ,St

v

)
,

9: return Score1G, Score
2
G, . . . , Score

T
G

D. Searching Seed Nodes
An essential step of SUBANOM is identifying seed nodes.

We can identify the top nodes where these embedding dis-
tances have changed significantly. However, this approach
would still require the computation of dynamic node embed-
dings for all nodes in Vt, which might not be computationally
efficient. To bypass such computational redundancies, another
possible way is focusing on higher-degree nodes as potential
seed nodes, an approach that aligns with the one proposed in
[6]. High-degree nodes often play critical roles, such as hubs in
social networks. Therefore, targeting these nodes could allow
us to capture the most salient anomalous behaviors.

E. Complexity Analysis
The time complexity of SUBANOM contains the run time of

obtaining dynamic graph embeddings and anomalous subgraph
identification. As proved in [6], the total time complexity
of dynamic node embedding is nearly-linear to ∆m where
∆m is the total number of edge events that happened in
all T snapshots. In subgraph identification, the complexity of
subgraph identification strategies depends on At · At. Since
we use the sparse version of the adjacency matrix At to store
and search the neighbors of each node, the time complexity is
about O(|Vt| · d̄2) where d̄ is the average degree of Gt. The
complexity of k-hop strategies is proportional to the size of
the nodes explored, usually taking a small portion of the total
run time. The space complexity depends on ϵ. In practice, pt

v

and rtv are sparse vectors. Hence, the total space complexity is
about O(n · | supp(p)|) where | supp(p)| denotes the number
of nonzeros of p in expectation.

V. EXPERIMENTS

To validate our proposed framework, SUBANOM, we per-
form graph-level anomaly detection on a real-world dataset.

Methods ScoretG F1 Precision Recall ScoretG F1 Precision Recall
SUBANOM(1-hop) sum-ℓ1 0.5343 0.5760 0.4983 sum-ℓ2 0.6419 0.6920 0.5986
SUBANOM(2-hop) max-ℓ1 0.5232 0.5640 0.4879 sum-ℓ2 0.5417 0.5840 0.5052
SUBANOM(3-hop) median-ℓ1 0.5343 0.5760 0.4983 sum-ℓ2 0.5492 0.5920 0.5121
SUBANOM(1-hop TC) sum-ℓ1 0.5195 0.5600 0.4844 sum-ℓ2 0.5380 0.5800 0.5017
SUBANOM(Hybrid TC) sum-ℓ1 0.5380 0.5800 0.5017 median-ℓ2 0.6679 0.7200 0.6228
DYNANOM ℓ1 0.4675 0.5040 0.4360 ℓ2 0.4935 0.5320 0.4602
DYNANOM(High-degree) ℓ1 0.5417 0.5840 0.5052 ℓ2 0.5677 0.6120 0.5294

TABLE II: The performance of anomalous subgraph detection task using the weighted graph. The middle column displays
results obtained using the ℓ1 distance, while the right column shows results using the ℓ2 distance. The values in bold represent
the best results, and the underlined values signify the second-best results. The column ScoretG means the optimal score function.

Our goal is to address two key questions: Q1. Does the
implementation of a subgraph strategy enhance the detection
ability? Q2. Does our method surpass the performance of
existing state-of-the-art methods?

A. Dataset and Baseline Methods

Dataset. DARPA is a dynamic network traffic graph
where each node represents an IP address, and each edge signi-
fies network traffic [32]. Network attacks (e.g., DDoS attacks)
are manually annotated as anomalous edges. As per common
practice in [6], we align the periods of a high anomaly with
real-world events. In alignment with the task setting outlined
in [6, 14], the objective of graph-level anomalous subgraph
detection is to compute the anomaly score for Gt. Essentially,
we seek the anomalous subgraph, compute its anomaly score,
and designate the highest-scoring ones as anomalous snap-
shots, following the same experimental settings as in [14]. The
DARPA dataset consists of 25, 525 nodes, 4, 554, 344 edges,
1, 463 snapshots, 256 initial snapshots, and 289 anomaly
snapshots. We consider both weighted and unweighted. The
goal is to detect 289 anomaly snapshots.

Baseline methods. We examine two state-of-the-art meth-
ods, including DYNANOM [6] (designed for dynamic weighted
graphs) and DYNPPE [9] (created for dynamic unweighted
graphs where weights are set to unit). It is worth noting that
the performance of well-known methods such as ANOMRANK
[14], SEDANSPOT [13] is inferior to that of DYNANOM. To
compare with previous results, we denote the baselines as
DYNANOM(High-degree) and DYNPPE(High-degree) when
the high-degree nodes as seeding nodes, while DYNANOM
and DYNPPE consider all nodes as seeding nodes.

Hyper parameter settings. To compare with DYNANOM
and DYNPPE, we adopt the same hyperparameter setting, with
ϵ = 0.01, α = 0.15, dim= 1024. We adopt f = MEAN as the
final graph aggregation function to compare with baselines.
For the seed node generation at each time t, we consider all
nodes in Gt as seed nodes in SUBANOM.

B. Comparison of Subgraph Strategies

To address Question 1, we leverage a sequence of snap-
shots, denoted as {G1,G2, . . . ,G1207}. Both weighted and
unweighted dynamic node embeddings are used. Additionally,
ℓ1 and ℓ2 distance metrics are considered. For the subgraph

identification strategy, we select k-hop with k = 1, 2, 3,
1-hop TC, and Hybrid TC. For the aggregation functions
of subgraphs, we examine SUM, MEAN, MEDIAN, MAX,
and MIN. To gauge the detection capability, we identify the
top k′ highest score snapshots as anomalous graphs, in line
with the method suggested by Yoon et al. (2019). We deem
250 detected snapshots as an appropriate benchmark, given
that the dataset contains 289 ground-truth anomalies. Fig. 5
presents the precision-recall curves as we adjust the parameter
k′ ∈ {50, 100, ..., 800} for the top-k′ snapshots considered
anomalous. All subgraph strategies perform better than the
baseline method by a large margin, while the performance of
the Hybrid TC strategy is the best.

When we employ weighted dynamic node embeddings and
use the ℓ1-norm as the score function, as shown in Table II,
the Hybrid TC strategy emerges as the most effective. Using
the SUM operation in the function ϕ, it delivers the highest
precision among the top 250 results, scoring 58.00%. This
precision is 7.60% higher than that achieved by DYNANOM
and just 0.4% lower than DYNANOM(High-degree). Figure 5a
further illustrates the superior performance of the Hybrid TC
strategy. The Precision-Recall curve for Hybrid TC is typically
higher than those for the other strategies, suggesting that the
boundary nodes produced through Hybrid TC can facilitate
improved anomalous subgraph detection.

To testify the robustness of SUBANOM, we consider ℓ2-
norm as the score function, as displayed in Table II, the
Hybrid TC strategy again prevails. Adopting the MEDIAN
operation for ϕ, Hybrid TC achieves the highest precision
among the top 250 results, registering a score of 72.00%.
This precision is 18.80% higher than DYNANOM and 10.80%
higher than DYNANOM(High-degree). This is corroborated by
the Precision-Recall curve shown in Fig. 5b, which depicts the
Hybrid TC strategy outperforming the other strategies in most
instances. Thus, the Hybrid TC strategy consistently demon-
strates robustness in our evaluations. The Precision-Recall
curve of SubAnom(2-hop) does not perform as effectively as
the Hybrid TC strategy. This can be attributed to the fact that
as k increases, a larger number of normal nodes are likely to
be included, potentially resulting in the omission of anomalous
nodes situated at the boundaries.

To provide further insight, we utilized unweighted graph

Methods ScoretG F1 Precision Recall ScoretG F1 Precision Recall
SUBANOM(1-hop) sum-ℓ1 0.4341 0.4680 0.4048 sum-ℓ2 0.4490 0.4840 0.4187
SUBANOM(2-hop) min-ℓ1 0.4267 0.4600 0.3979 min-ℓ2 0.4341 0.4680 0.4048
SUBANOM(3-hop) median-ℓ1 0.4527 0.4880 0.4221 median-ℓ2 0.4527 0.4880 0.4221
SUBANOM(1-hop TC) sum-ℓ1 0.4119 0.4440 0.3841 sum-ℓ2 0.4267 0.4600 0.3979
SUBANOM(Hybrid TC) sum-ℓ1 0.4378 0.4720 0.4083 sum-ℓ2 0.4601 0.4960 0.4291
DYNPPE ℓ1 0.3673 0.3960 0.3426 ℓ2 0.3785 0.4080 0.3529
DYNPPE(High-degree) ℓ1 0.4341 0.4680 0.4048 ℓ2 0.3859 0.4160 0.3599

TABLE III: The performance of anomalous subgraph detection task using the unweighted graph. The middle column is the
results using ℓ1 distance while the results in the right column use ℓ2 distance. The values in bold represent the best results,
and the underlined values signify the second-best results.

0.2 0.4 0.6 0.8 1.0
Recall

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

DynAnom- 1
Sum- 1
Median- 1
Min- 1
Max- 1
Mean- 1

(a) With ℓ1

0.2 0.4 0.6 0.8 1.0
Recall

0.4
0.5
0.6
0.7
0.8
0.9
1.0 DynAnom- 2

Sum- 2
Median- 2
Min- 2
Max- 1
Mean- 1

(b) With ℓ2

0.2 0.4 0.6 0.8 1.0

Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Sum- 1
Sum- 2
Median- 1
Median- 2

(c) Pre-Rec curves

Fig. 4: Precision-Recall curves to compare aggregations. MEDIAN and SUM perform best, and their performances are close.
Given the best subgraph strategy and aggregation functions, ℓ2 performs better than ℓ1 as the distance function.

Aggregate Method F1 Precision Recall
Sum-ℓ1 0.5380 0.5800 0.5017
Sum-ℓ2 0.6642 0.7160 0.6194

Median-ℓ1 0.5121 0.5520 0.4775
Median-ℓ2 0.6679 0.7200 0.6228
Mean-ℓ1 0.4972 0.5360 0.4637
Mean-ℓ2 0.5714 0.6160 0.5329
Max-ℓ1 0.4972 0.5360 0.4637
Max-ℓ2 0.5121 0.5520 0.4775
Min-ℓ1 0.5009 0.5400 0.4671
Min-ℓ2 0.5083 0.5480 0.4740

DYNANOM-ℓ1 0.4925 0.5280 0.4615
DYNANOM-ℓ2 0.4478 0.4800 0.4196

TABLE IV: The performance of aggregations and distance
metrics. Dynamic node embeddings are obtained using the
weighted graph, and the subgraph strategy is Hybrid TC.

embeddings and both ℓ1 and ℓ2 as score functions; the results
are presented in Table III and Figure 5c. Among the strategies,
the 3-hop strategy achieved the highest precision in the top-
250 with MEDIAN as ϕ, reaching a precision of 48.80%.
This precision was 9.20% higher than that of DYNPPE
and 2.0% higher than DYNPPE(High-degree). Conversely,
the Hybrid TC strategy recorded a precision of 47.20%, an
increase of 7.6% compared to DYNPPE and 0.4% higher than
DYNPPE(High-degree). The Precision-Recall curves reveal
that although the 3-hop strategy has higher precision within
the top 250, the Hybrid TC strategy outperforms it under most

conditions. All in all, the Hybrid TC strategy remains the best
subgraph strategy across the majority of experimental settings,
with SUBANOM(Hybrid TC) outperforming baseline methods.

C. Comparison of Aggregation Methods and Distance Metrics

In this part, we compare the subgraph aggregation functions
and distance metrics. We choose DYNANOM as the baseline
method, the Hybrid TC strategy as the subgraph strategy, and
both ℓ1 and ℓ2 as distance metrics. We use the Precision-Recall
curves and the top 250 snapshots to measure performance.

Subgraph aggregation functions. The results of the best
ϕ are shown in Fig. 4 and Table IV. From Table IV, MEDIAN-
ℓ2 has the highest F1. From the P-R curves, the curves of SUM
and MEDIAN are on the top, so SUM and MEDIAN are the
best subgraph aggregation functions among the functions no
matter with ℓ1 or ℓ2 as the score function, while performances
of both ϕ are close to each other.

Embedding distance function. We conducted the exper-
iments utilizing the Hybrid TC strategy for subgraph identi-
fication and SUM and MEDIAN as the ϕ aggregation func-
tions. The Precision-Recall (P-R) curves of the experiments
are depicted in Fig. 4c. The curves for ℓ2 are consistently
above those for ℓ1, which suggests that ℓ2 delivers superior
performance as a score function. The reason is that the ℓ2-
norm is generally more sensitive to large differences between
pair-wise components, which could make it better suitable
for identifying anomalous nodes where large changes have
occurred. While both ℓ1 and ℓ2 norms can be used effectively

0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9
Pr

ec
isi

on
DynAnom
SubAnom(1-hop)
SubAnom(2-hop)
SubAnom(3-hop)
SubAnom(1-hop TC)
SubAnom(Hybrid TC)

(a) ℓ1 on weighted graph

0.2 0.4 0.6 0.8 1.0
Recall

0.4
0.5
0.6
0.7
0.8
0.9
1.0 DynAnom

SubAnom(1-hop)
SubAnom(2-hop)
SubAnom(3-hop)
SubAnom(1-hop TC)
SubAnom(Hybrid TC)

(b) ℓ2 on weighted graph

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.25

0.30

0.35

0.40

0.45

0.50

DynPPE
SubAnom(1-hop)
SubAnom(2-hop)
SubAnom(3-hop)
SubAnom(1-hop TC)
SubAnom(Hybrid TC)

(c) ℓ1 on unweighted graph

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.25

0.30

0.35

0.40

0.45

0.50

DynPPE
SubAnom(1-hop)
SubAnom(2-hop)
SubAnom(3-hop)
SubAnom(1-hop TC)
SubAnom(Hybrid TC)

(d) ℓ2 on unweighted graph

Fig. 5: Comparison of subgraph strategies on DARPA dataset
as score functions in the Hybrid TC strategy, our results
suggest that ℓ2 provides more accurate identifications.

VI. DISCUSSION AND CONCLUSION

In this work, we present a novel anomalous subgraph
detection framework, SUBANOM, that operates at the subgraph
level based on dynamic graph embedding by identifying not
just anomalous snapshots but also subgraphs. For future work,
it would be interesting to extend our approach to dynamic
attributed graphs. This extension could provide an even more
nuanced understanding of anomalies in network structures.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. The work of Baojian Zhou is spon-
sored by the Shanghai Pujiang Program (No. 22PJ1401300).
The work of Deqing Yang is supported by Chinese NSF
Major Research Plan No.92270121, Shanghai Science and
Technology Innovation Action Plan No.21511100401.

REFERENCES

[1] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Niko-
laj Tatti. Event detection in activity networks. In KDD, pages 1176–
1185, 2014.

[2] Bryan Perozzi and Leman Akoglu. Scalable anomaly ranking of
attributed neighborhoods. In SDM, pages 207–215. SIAM, 2016.

[3] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin,
and Christos Faloutsos. Fraudar: Bounding graph fraud in the face of
camouflage. In KDD, pages 895–904, 2016.

[4] Benjamin Miller, Nadya Bliss, and Patrick Wolfe. Subgraph detection
using eigenvector l1 norms. NeurIPS, 23, 2010.

[5] Benjamin A Miller, Michelle S Beard, Patrick J Wolfe, and Nadya T
Bliss. A spectral framework for anomalous subgraph detection. IEEE
Transactions on Signal Processing, 63(16):4191–4206, 2015.

[6] Xingzhi Guo, Baojian Zhou, and Steven Skiena. Subset node anomaly
tracking over large dynamic graphs. In KDD, pages 475–485, 2022.

[7] Baojian Zhou and Feng Chen. Graph-structured sparse optimization for
connected subgraph detection. In ICDM, pages 709–718. IEEE, 2016.

[8] Feng Chen, Baojian Zhou, Adil Alim, and Liang Zhao. A generic
framework for interesting subspace cluster detection in multi-attributed
networks. In ICDM, pages 41–50. IEEE, 2017.

[9] Xingzhi Guo, Baojian Zhou, and Steven Skiena. Subset node represen-
tation learning over large dynamic graphs. In KDD, pages 516–526,
2021.

[10] Haoran Deng, Yang Yang, Jiahe Li, Haoyang Cai, Shiliang Pu, and
Weihao Jiang. Accelerating dynamic network embedding with billions
of parameter updates to milliseconds. In KDD, 2023.

[11] Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. Outlier detection in
graph streams. In ICDE, pages 399–409. IEEE, 2011.

[12] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow,
and Christos Faloutsos. Copycatch: stopping group attacks by spotting
lockstep behavior in social networks. In WWW, pages 119–130, 2013.

[13] Dhivya Eswaran and Christos Faloutsos. Sedanspot: Detecting anomalies
in edge streams. In ICDM, pages 953–958. IEEE, 2018.

[14] Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. Fast
and accurate anomaly detection in dynamic graphs with a two-pronged
approach. In KDD, pages 647–657, 2019.

[15] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. Densealert:
Incremental dense-subtensor detection in tensor streams. In KDD, pages
1057–1066, 2017.

[16] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos
Faloutsos. Midas: Microcluster-based detector of anomalies in edge
streams. In AAAI, volume 34, pages 3242–3249, 2020.

[17] Stephen Ranshous, Steve Harenberg, Kshitij Sharma, and Nagiza F
Samatova. A scalable approach for outlier detection in edge streams
using sketch-based approximations. In SDM, pages 189–197. SIAM,
2016.

[18] Yen-Yu Chang, Pan Li, Rok Sosic, MH Afifi, Marco Schweighauser, and
Jure Leskovec. F-fade: Frequency factorization for anomaly detection
in edge streams. In WSDM, pages 589–597, 2021.

[19] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra.
Spotlight: Detecting anomalies in streaming graphs. In KDD, pages
1378–1386, 2018.

[20] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning for
dynamic graphs: A survey. JMLR, 21(1):2648–2720, 2020.

[21] Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. Self-
supervised representation learning on dynamic graphs. In CIKM, pages
1814–1823, 2021.

[22] David Easley and Jon Kleinberg. Networks, crowds, and markets:
Reasoning about a highly connected world. Cambridge university press,
2010.

[23] Matthew Richardson and Pedro Domingos. Markov logic networks.
Machine learning, 62:107–136, 2006.

[24] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A
probabilistic prolog and its application in link discovery. In IJCAI,
volume 7, pages 2462–2467. Hyderabad, 2007.

[25] Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. A short introduction to probabilistic soft logic.
In Proceedings of the NIPS workshop on probabilistic programming:
foundations and applications, pages 1–4, 2012.

[26] Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam
Natarajan, and David Poole. Relational logistic regression. In Fourteenth
International Conference on the Principles of Knowledge Representation
and Reasoning, 2014.

[27] Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate
personalized PageRank on dynamic graphs. In KDD, pages 1315–1324,
2016.

[28] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida,
Yingtao Tian, Silvio Lattanzi, and Bryan Perozzi. Instantembedding:
Efficient local node representations. arXiv preprint arXiv:2010.06992,
2020.

[29] Mark S Granovetter. The strength of weak ties. American journal of
sociology, 78(6):1360–1380, 1973.

[30] Hao Yin, Austin R Benson, and Jure Leskovec. The local closure
coefficient: A new perspective on network clustering. In WSDM, pages
303–311, 2019.

[31] Hao Yin, Austin R Benson, and Johan Ugander. Measuring directed
triadic closure with closure coefficients. Network Science, 8(4):551–
573, 2020.

[32] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Korba,
and Kumar Das. The 1999 darpa off-line intrusion detection evaluation.
Computer networks, 34(4):579–595, 2000.

	Introduction
	Related Work
	Notations and Preliminaries
	Notations
	Dynamic Graph Model
	Dynamic Graph Embeddings

	Proposed Framework: SubAnom
	Problem Formulation
	Anomalous Subgraph Identification
	Anomalous Subgraph Quantification
	Searching Seed Nodes
	Complexity Analysis

	Experiments
	Dataset and Baseline Methods
	Comparison of Subgraph Strategies
	Comparison of Aggregation Methods and Distance Metrics

	Discussion and Conclusion
	Acknowledgements
	References

