
A Roadmap towards Intelligent Operations for
Reliable Cloud Computing Systems

Yintong Huo, Cheryl Lee, Jinyang Liu, Tianyi Yang, and Michael R. Lyu
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Email: {ythuo, jyliu, tyyang, lyu}@cse.cuhk.edu.hk, cheryllee@link.cuhk.edu.hk

Abstract—The increasing complexity and usage of cloud sys-
tems have made it challenging for service providers to ensure
reliability. This paper highlights two main challenges, namely
internal and external factors, that affect the reliability of cloud
microservices. Afterward, we discuss the data-driven approach
that can resolve these challenges from four key aspects: ticket
management, log management, multimodal analysis, and the
microservice resilience testing approach. The experiments con-
ducted show that the proposed data-driven AIOps solution
significantly enhances system reliability from multiple angles.

I. INTRODUCTION

IT enterprises have significantly increased the development
of cloud applications and services like search engines, messag-
ing apps, and online shopping. The growing complexity and
volume of cloud systems make critical failures inevitable, po-
tentially causing service interruptions and performance degra-
dation. For example, on October 4th, 2021, a Facebook outage
disconnected Facebook data centers from the Internet globally
for nearly six hours 1. This outage significantly impacted Face-
book’s market revenue and user experience. The increasing
complexity and distributed nature of these services necessities
intelligent software reliability engineering. In this paper, we
have identified critical reliability challenges in industrial cloud
systems and developed a general roadmap for improving cloud
reliability using data-driven AIOps.

Challenges to the reliability of cloud microservices orig-
inate from both internal and external factors of microser-
vices. Internal factors refer to issues within the microservices
themselves, such as software bugs and resilience problems.
Software bugs are errors or flaws in the design, development,
or operation of the microservice that can result in incorrect
behavior. On the one hand, a software bug is an error, flaw
or fault in the software’s design, development, or operation.
Bugs lead to erroneous behaviors of the microservice. Service
resilience [22], on the other hand, refers to the ability to
maintain acceptable performance levels and recover from
service failures. Resilience issues can affect the availability of
the microservice, which can harm cloud providers’ revenue.
To ensure service reliability, test engineers conduct resilience
tests on microservices, intentionally injecting failures [9] to
discover flaws.

External factors refer to the threats from outside the mi-
croservice, such as cascading failures and low-quality logs

1https://www.facebook.com/business/news/update-about-the-october-4th-
outage

and alerts. Cascading failures that lead to service degradation
are prevalent in cloud services. Although cloud management
frameworks provide automatic mechanisms for failure recov-
ery, unplanned service failures may still cause severe cascading
effects. Therefore, it is crucial to evaluate the impact of
service failures rapidly and accurately for efficient operation
and maintenance of cloud services. Besides, low-quality logs
and alerts are often caused by system-level misconfigurations.
When failures occur, On-Call Engineers (OCEs) typically
inspect logs and alerts to locate and diagnose failures. If the
logs and alerts are of low-quality or misleading, the manual
diagnosis process will be impeded.

To tackle the challenges above, we develop intelligent oper-
ations to improve the reliability of microservice systems. The
roadmap includes (1) proactive measures for internal factors;
and (2) reactive measures for external factors. Proactive mea-
sures examine the microservice system to detect possible flaws
in the system before the occurrence of a failure, including
adaptive resilience testing and architectural resilience opti-
mization. Reactive measures assist On-Call Engineers (OCEs)
in reducing the impact of a failure during failure mitigation,
including log and metric analysis for anomaly detection,
postmortem incident ticket analysis, and multimodal root cause
localization.

II. DATA-DRIVEN AIOPS FOR CLOUD COMPUTING

Ensuring system reliability is a significant challenge for
cloud providers. To achieve the goal, cloud providers gather
extensive monitoring data that reflects run-time microservice
systems’ behavior, which includes logs, traces, and tickets. We
describe their details as follows.

• Traces record the status of each microservice invocation,
such as the return value and the duration of execution.

• Alerts are notifications sent to OCEs when the cloud
service exhibits abnormal behavior, as defined by the alert
strategy.

• Tickets are the problem descriptions sent to service
providers when customers encounter a technical issue
with a product.

• Logs are semi-structured text printed by logging state-
ments (e.g., logger.info()) in the source code.

• Metrics Metrics are fixed-interval time series reflecting
the statuses of the cloud system [6].

The cloud monitoring system collects and processes the
above monitoring data, and when an abnormal state is de-

ar
X

iv
:2

31
0.

00
67

7v
1

 [
cs

.S
E

]
 1

 O
ct

 2
02

3

Alerts & Tickets

Metrics & KPIs

ADsketchiPACK

Logs SemParser

Traces

Hades

EadroAVERT

AID

Proactive Reactive

Fig. 1: The Roadmap of Intelligent Operations for Reliable Cloud Systems

tected, the alerting module in the monitoring system will send
an alert to OCEs.

Although the monitoring data provide rich information for
system status and help engineers intervene in potential faults,
they are generated in an overwhelming volume for developers
to inspect manually. For example, a high-performance com-
puting (HPC) system generates hundreds of gigabytes of log
data in just one week [23]. To utilize the large volume of
data, modern AIOps solutions apply a data-driven approach
to identify system behavior patterns and performance trends
that may not be apparent. Once the normal patterns have been
learned from past data, the model can inform developers by
effectively identifying the abnormal state of a system in the
production environment.

III. ALERTS AND TICKETS

In order to ensure the reliability of cloud systems, cloud
vendors rely on comprehensive monitoring mechanisms, which
can be divided into two aspects. Firstly, various components
within the cloud systems, such as hardware and microservices,
are equipped with monitors that raise alerts to draw the
attention of on-call engineers and enable timely mitigation
actions [29]. Our first part on alert research focuses on
achieving accurate monitoring of these components to ensure
the reliability of cloud systems. Secondly, the customers’
experience outside the cloud systems is also closely monitored
through a support system, where customers can report encoun-
tered problems by issuing tickets. Due to the cloud systems’
scale, many tickets may be received, including duplicate ones.
The second part on ticket research proposes aggregating these
duplicate tickets to alleviate the burden on support engineers
who handle a high volume of tickets.

A. Adaptive and Interpretable Monitoring for Cloud Systems

Service interruptions, also known as incidents, are an in-
evitable aspect of large-scale cloud platforms [17]. To maintain
the reliability of cloud systems, contemporary cloud vendors
widely employ monitors to continuously detect anomalies, or

unexpected behaviors, of cloud systems. Once an anomaly is
detected, the monitor generates alerts that provide a descrip-
tion of the anomaly, which promptly notifies on-call engineers
to investigate the matter. An established practice is to detect
anomalies on key performance indicators (KPIs) to generate
alerts. These KPIs capture the runtime states of a system,
including various metrics such as CPU usage and service
response delay [5].

Although many efforts have been dedicated to detecting
anomalies on KPIs [31], most of the existing work lacks
interpretability. Specifically, these methods calculate a prob-
ability indicating the likelihood of performance anomalies at
each timestamp. They then choose a threshold to convert the
probability into a binary label, normal or anomaly. However,
in practice, a mere recommendation of suspicious anomalies
may not be very useful to engineers. This is because they have
to manually investigate the problematic metrics (suggested
by the model) to locate faults. The issue is compounded by
the prevalence of false alerts. Furthermore, many state-of-the-
art methods train models with historical metric data in an
offline setting. As online services undergo feature upgrades
and system renewal continuously, the patterns of metrics
may evolve accordingly, resulting in concept drift [7], where
Without adaptability, these models cannot accommodate the
ever-changing services and user behaviors.

To tackle this issue, we propose ADSketch, an interpretable
and adaptive KPI anomaly detection approach based on pat-
tern sketching. The core concept is to identify discriminative
subsequences from metric time series that can represent classes
of different issues. This approach is similar to the problem of
shapelet discovery in time series data [30]. Specifically, for
multiple subsequences that describe the same type of issue,
we compute their average and regard the result as a metric
pattern for the issue. In this way, ADSketch provides a novel
mechanism to characterize service performance issues using
metric time series. Our experimental results demonstrate that
our design outperforms existing state-of-the-art time series

Storage

Web
App

VM

Blob
Cannot connect to Blob storage.

App services throw 500 responses.

Unexpected server reboot.

App instances low availability.

Large spike of IaaS VM critical failures.

Detected anomaly for Blob availability.

Alert Ticket

Fig. 2: Alerts and resultant tickets caused by an incident.

anomaly detectors on both public and industrial data. Specif-
ically, we have achieved an average F1 score of over 0.8 in
production systems.

B. Incident-aware Duplicate Ticket Aggregation

When customers face technical difficulties with a platform,
they usually seek help from cloud providers by submitting a
support ticket. However, in the case of a large-scale cloud
platform with millions of users, an incident could result
in a substantial number of tickets, many of which may be
duplicates. To alleviate the burden of support engineers, it is
crucial to group together duplicate tickets that stem from the
same incident [18]. By doing so, the support team can handle
the tickets efficiently.

Most existing studies on duplicate issue report detection
measure the semantic similarity between two reports based
on their textual descriptions, using natural language pro-
cessing techniques such as word frequency [24], and topic
modeling [3]. However, they are suboptimal for aggregating
duplicate tickets in cloud systems due to their large-scale and
heterogeneous architecture [28]. The primary reason is that
customers of cloud systems could encounter different issues
with distinct symptoms caused by the same incident. Figure 2
shows an example. When an infrastructure-level service (e.g.,
a storage service) is interrupted, other services depending on
it (e.g., VM and Web application) can also be impacted. As a
result, customers using different services may observe different
symptoms and submit tickets with dissimilar descriptions.
Consequently, solely relying on textual descriptions of tickets
is insufficient to tackle this problem.

To address the limitations of existing studies, we propose
incorporating cloud-side runtime information, i.e., alerts, to
facilitate ticket aggregation in cloud systems. As shown in
Figure 3, we formulate the ticket aggregation problem in
cloud systems as a two-stage linking problem, i.e., alert-
alert linking and ticket-alert linking. If multiple interlinked
alerts are triggered by the same incident and are further
linked to different tickets, we consider these tickets should
be aggregated (i.e., caused by the same incident). Thus, it is

Aggregated
Tickets

Incident Profiling

Monitors Alerts

TicketsCustomers

CSS Team

On-call
Engineers

Cloud
Services

AIN

Parsing

Events

PMI

Static Event
Relation Learning

...

Dynamic Event
Graph Construction

Ticket-Event
Correlation

PMI

Impact Assessment

Batched Processing

①

②

③

Track

Fig. 3: Overview of iPACK.

possible to aggregate semantically different tickets via alert-
alert links. Specifically, iPACK consists of three main steps,
i.e., alert parsing, incident profiling, and ticket-event correla-
tion. In the alert parsing step, we parse alerts as more coarse-
grained events to reduce redundant alerts. Next, in the incident
profiling step, we propose a graph-based incident profiling
(GIP) method to remove the regular events (i.e., parsed regular
alerts) and link correlated indicative events. Then, in the ticket-
event correlation, we propose an attentive interaction network
(AIN) to correlate a ticket to an event. Finally, if two tickets
are correlated to the events within the same event graph (i.e.,
the same incident), we aggregate the tickets as the same
cluster. The results of the ticket aggregation are presented to
the CSS (Customer Support Services) team to streamline the
ticket processing process and improve efficiency. This allows
support engineers to send out batch notifications to potentially
affected customers and provide quick guidance for service
recovery. Additionally, the results can aid on-call engineers in
conducting impact assessments, including identifying affected
services and determining the extent of customer impact caused
by the incident (e.g., number of affected customers). The
experimental results on Microsoft Azure show that iPACK can
accurately and comprehensively aggregate duplicate tickets,
achieving an F1 score of 0.871∼0.935 and outperforming
state-of-the-art methods by 12.4%∼31.2%.

IV. LOGS

The logging statements, which developers put into the
source code, carry run-time information about software sys-
tems [11]. By reading these logs, software system operators
and administrators can monitor software status [4] or detect
anomalies [26]. The overwhelming logs, however, impede
developers from reading every line of log files as modern
software systems get more complicated than before [10].
Therefore, intelligent software engineering necessitates auto-
mated log analysis.

(1) Listing instance in cell 949e1227
(2) Lock 949e1227 acquired by nova.context.get_cell
…
(10) Returning 500 to user

Listing instance in cell <*>
Lock <*> acquired by <*>
…
Returning <*> to user

Listing instance in cell <CELL>
Lock <CELL> acquired by <FUNC>
…
Returning <STATUS> to user

CELL: 949e1227

FUNC: nova.context.get_cell

Status: 500

949e1227
949e1227, nova.context.get_cell
…
500

Event Template Parameters

Syn
tax-

base
d

Pars
er

Semantic-basedParser

Downstream
Log Analysis

Fig. 4: Difference between syntax-based parsers and semantic-based SemParser.

Semantics Miner

Joint Parser

Instances

Domain
Knowledge

CI pair
in DK?

False

Conceptualized template

[“949e1227”]
[“949e1227”, “Nova.context()”]

Concepts
[“instance”, “cell”]
[]

Explicit CI pairs
[(“cell”, “949e1227”)]
[]

Log messages
Listing instance in cell 949e1227
Lock 949e1227 acquired by nova.context()

Orphan conceptsCI pairs Orphan instances
Listing instance in cell <cell>
Lock <cell> aceuired by <*>

[(“cell”, “949e1227”)]
[(“cell”, “949e1227”)]

[]
[“nova.context()”]

[“instance”]
[]

• Root cause analysis
• Anomaly detection
• Others

Log analytical tasks

1

2(“cell”, “949e1227”),
(“project”, “e5a6171e”)

…

Fig. 5: The pipeline of SemParser.

A. Semantic-based Log Parser

Basically, a log message is a type of semi-structured lan-
guage comprising a natural language written by software
developers and some auto-generated variables during software
execution [16]. As most log analysis tools accept a structured
input, the fundamental step for automated log analysis is log
parsing. Given a raw message, a log parser recognizes a
set of fields (e.g., verbosity levels, date, time) and message
content, while the latter is represented as structured event
templates (i.e., constants) with corresponding parameters (i.e.,
variables) [12], [13]. For example, for the log message “Listing
instance in cell 949e1227”, “Listing instance in cell <*>”
is the template describing the system event, and “949e1227”
corresponds to the parameter indicator “<*>” in the template.

Although automatic log parsing is full of challenges,
researchers have made progress leveraging statistical and
history-based methods. For instance, SLCT [25] and LFA [20]
constructed log templates by counting the number of historical
frequently-appearing words. The most widely-used parser in

industry, Drain [8], formed log templates by traversing leaf
nodes in a tree. However, we argue that all current parsers are
syntax-based with superficial features (e.g., word length, log
length, frequency), and they have limited high-level seman-
tic acquisition from three aspects: (1) individual informative
tokens; (2) semantics within a message; and (3) semantics
between messages.

To tackle the aforementioned complicated but critical limi-
tations, we propose a novel semantic-based log parser, Sem-
Parser, the first work to target parsing logs with respect to
their semantic meaning as shown in Figure 4. The pipeline
of SemParser is exhibited in 5. We first define two-level
granularities of semantics in logs, message-level and instance-
level semantics. Message-level semantics refers to identifying
technical concepts (e.g., cell) within log messages, while
instance-level semantics means resolving what the instance
(i.e., parameters) describes. Our framework comprises two
parts, an end-to-end semantics miner and a joint parser. To
begin with, log messages are sent to the semantic miner
for acquiring template-level semantics (i.e., concepts) and
explicit instance-level semantics (i.e., explicit CI pairs) of
each log independently. This step mainly solves the first
two stated challenges. The unseen explicit CI pairs will
be added to the Domain Knowledge database to keep the
knowledge updated. Moreover, to uncover potential implicit
semantics from domain knowledge, instances in log messages
are kept. Hence, the challenge of missing inter-log relations
is addressed. Following that, the joint parser receives outputs
from the semantics miner, taking charge of implicit semantics
inference with the help of domain knowledge. The newfound
implicit instance semantics, coupled with the explicit one,
form the instance-level semantics, denoted as CI pairs. The
remaining concepts and instances that cannot be paired are
stored as orphan concepts and orphan instances, respectively.
Besides, the conceptualized templates are derived by replacing
instances with their related concepts (if available), or “<*>”
for else. The final structural outcome of SemParser consists of
conceptualized templates, CI pairs, orphan concepts, as well
as orphan instances. The experimental results demonstrate
the effectiveness of our model, which could extract both

high-quality and comprehensive semantics from log messages.
SemParser achieves an average F1 score of 0.985 for six
systems logs even though it was only fine-tuned the base model
on 50 annotated samples with a large portion of templates
unseen in the test set.

B. Log-based Anomaly Detection and Failure Identification

After acquiring the semantics from SemParser, we investi-
gate whether these can benefit log downstream applications,
i.e., log-based anomaly detection and failure identification.
In the anomaly detection task, the detector predicts whether
anomalies exist within a short period of log messages (i.e., ses-
sion). Motivated by previous studies, we decouple the anomaly
detection framework into two components, a log parser to
generate templates, and a detection model to analyze template
sequences in a session. A dependable parser should perform
well as a foundational processor for log analysis, regardless
of the down-streaming detection model used. Our experiments
compare the performance of different baseline parsers under
various anomaly detection techniques. Equipping with the
semantic outputs of SemParser, we observe that SemParser
outperforms all syntax-based parsers by an average F1 score
of 1.22% and 11.71% over state-of-the-art detection models
in the HDFS and OpenStack system logs, respectively. While
anomaly detection identifies present faults from logs, failure
identification looks deeper into the problems and identifies
what type of failure occurs. In the more challenging failure
identification task, SemParser achieves an average precision
score of 0.95, exceeding all baselines of 8.52%.

V. MULTIMODAL DATA

As introduced in I, software operators must closely monitor
the system status via multi-source run-time information to
discover and tackle potential failures in their earliest efforts.
Yet, the explosion of monitoring data makes automated trou-
bleshooting techniques imperative. Many efforts have been
devoted to troubleshooting automation. Generally, they focus
either on anomaly detection (AD) [19] or on root cause
localization (RCL) [21].

AD tells whether an anomaly exists, and RCL identifies
the culprit microservice upon the existence of an anomaly.
However, unlike operation teams that closely monitor diverse
sources of run-time information, existing efforts mainly fo-
cus on a single information source, which is insufficient to
precisely depict the system status. We argue that leveraging
multimodal monitoring data can contribute to more effective
troubleshooting approaches. Hence, we propose two works to
study using multimodal data to deal with AD and RCL.

A. Anomaly Detection for General Distributed Software Sys-
tems

We first intensively study system anomalies resulting from
typical faults in Apache Spark. We find that logs and metrics
complement each other and also collaborate in revealing sys-
tem health. While both logs and metrics respond to anomalies,
neither alone is sufficiently informative [15]. This results in

Hades, a heterogeneous anomaly detector via semi-supervised
learning for large-scale software systems equipped with a
novel cross-modal attention mechanism, as shown in Figure 6.
Hades involves four components: 1) We model lexical seman-
tics and sequential dependencies of logs by adopting FastText
and Transformer. 2) For metrics, we employ a hierarchical en-
coder to jointly learn aspect-oriented temporal dependencies,
cross-metric relationships, and inter-aspect correlations. 3) We
design novel cross-modal attention to learn meaningful intra-
and inter-modal properties. 4) Finally, the framework infers the
system status and triggers an alarm upon detecting anomalies.
We also present a two-phase semi-supervised training strategy
to reduce labor-intensive annotation: 1) train the model with
a small amount of labeled data and apply pseudo-labeling on
the unlabeled data; 2) update the model using both labeled
and high-confidence pseudo-labeled data until convergence.

Hades is evaluated on one simulated dataset from Spark
and two datasets from the cloud services of Huawei Cloud.
The experimental results demonstrate the superiority of Hades,
which achieves an average F1-score of 0.933 and outperforms
all state-of-the-art competitors by 9.12%∼174.41%.

B. Root Cause Localization for Microservices

RCL aims to identify which microservice is initially experi-
encing a functional anomaly. An anomaly in one microservice
could propagate to others and magnify its impact, so the
monitoring data exhibit complex patterns and relationships,
making RCL extremely difficult [14]. We identify that existing
data-driven localizers suffer two main limitations: 1) Existing
research deeply relies on traces only, which is demonstrated
to be insufficient. Other sources, such as logs and metrics,
are underutilized, though they provide valuable clues into
presenting abnormal patterns. 2) In the context of microservice
troubleshooting, RCL follows AD since we must discover an
anomaly before analyzing it. However, current research treats
them as independent with little consideration for their shared
inputs and knowledge of the microservice status.

To overcome the limitations, we propose Eadro, the first
end-to-end framework integrating AD and RCL to trou-
bleshoot microservices based on multi-source monitoring
data, as shown in Figure 7. Specifically, Eadro consists of
three components: 1) Modal-wise learning: It contains three
modality-specific modules for learning intra-service behaviors
from logs, metrics, and traces. We apply Hawkes process
and dilated causal convolution to model the log event oc-
currences, temporal dependencies and inter-series associations
of metrics, and meaningful fluctuations of latency in traces.
2) Dependency-aware status learning: This fuses the multi-
modal representations via gated concentration and a graph
attention network, where the topological dependency is built
on historical invocations. 3) Joint detection and localization:
It consists of an anomaly detector and a root cause localizer
sharing representations. The detector predicts the existence of
anomalies, and the localizer predicts the probability of each
microservice being the culprit upon an anomaly alarm.

Attn α

Attn β

Fused Rα

Fused RβCo
nc

at

Global RgFCAbnormal?

INFO util.SignalUtils: Registered signal
WARN netlib.BLAS: Failed to load implementation
INFO storage.BlockManager: Removing RDD 36
INFO util.Utils: Successfully started service
INFO storage.BlockManager: Removing RDD 18

Trans Trans Trans

Event Embeddings
Token Embeddings

Avg
Pooling

Parsing
FastText

Sequence Encoder

No

Yes

Details

= =K V Rm

= =K V Rl
=Q Rm

=Q Rl D

D
D

Multivariate Metrics

Conv
Conv
Conv

Conv Conv Conv
Max

Pooling
Grouping

Intra-aspect Encoder Inter-aspect Encoder

Log Modeling

Heterogeneous FusionDetection

Metric Modeling

Fig. 6: Overview of Hades.

1 Modal-wise Learning 2 Dependency-aware Status Learning 3 Joint Detection & Localization

MTS

Hawkes
Parse FC

Causal Conv

Causal Conv
Latency

Gated Fusion

Detector

Root Cause Localizer

Normal? Yes

No

[

[

P[1:M]

Logs

Metrics

Traces

Dependency Graph

GAT

Status
Representation

CulpritJoint Learning

Eadro

Intensity Vectors

Fig. 7: Overview of Eadro.

Experimental results on two widely-used benchmark mi-
croservices demonstrate the effectiveness of Eadro, which
surpasses all compared anomaly detectors by 53.82%∼92.68%
in F1-score and achieves state-of-the-art RCL results with
290%∼5068% higher in Top-1 Hit Rate than five advanced
baselines.

VI. MICROSERVICES

Modern online services are moving towards the microser-
vice architecture [1], where a monolithic online service is split
into fine-grained, independently-managed microservices which
collectively serve user requests. A microservice is a small
independent program that communicates over well-defined
APIs. Multiple microservices serve users’ requests as a whole.

The microservice architecture exhibits three prominent at-
tributes [2]: (1) highly decoupled, (2) highly dynamic, and
(3) specialized. Their further clarifications are described as
follows. First, a microservice system is highly decoupled.
Each microservice in a microservices system can be devel-
oped, deployed, operated, and scaled without affecting the
functioning of other services. The microservices communi-
cate with each other through well-defined APIs. Second, the
microservice architecture is highly dynamic. New features
and updates are delivered continuously and frequently. Last,
microservices are specialized. Different from other existing
distributed systems (e.g., Hadoop, Spark, and Blockchain),
each microservice is designed for a set of capabilities and
focuses on serving a specific problem. If developers contribute

Failure Execution Degradation-based Metric Lattice Search Resilience Indexing

Load
Generation

Failure Injection

Failure Clearance Degradation-based
Metric Selection

Metric Lattice Search

Metric Lattice
Construction Ranked Metrics Resilience

Indexing
Metric

Visualization

Fig. 8: Overview of AVERT.

more code to a service over time and the service becomes
complex, it can be broken into smaller services. As a result,
the microservice failures are usually cascaded due to the multi-
layer deployment and inter-service dependencies architecture.
Such three attributes lead to the challenges specific to the
microservice architecture. Our research work focuses on two
closely-related tasks towards reliable microservices. First, we
propose predicting the intensity of microservice dependencies,
by which engineers can identify the potential risk factors that
can lead to cascading failures and take proactive measures to
prevent them. microservice systems use runtime metrics during
testing to identify potential resilience issues. It is another
proactive way to ensure the reliability of cloud services. The
task details are listed as follows.

A. Predicting the Intensity of Microservice Dependency
Service invocations create dependencies between services.

Online service systems have binary dependency tracing frame-
works, but using binary-valued dependency for failure di-
agnosis and recovery is inefficient. The callee microservice
impacts the caller microservice in different ways. Hence, the
procedure of failure recovery can be sped up by skipping
those unimportant services. In microservice systems, exam-
ining different dependencies manually without any priority
is inefficient, especially when the microservice components
are highly decoupled and dynamic. Therefore, measuring the
dependency as a continuous value indicating the dependency’s
intensity could be useful. Specifically, by checking microser-
vices dependent on the failed microservice with large intensity
values, OCEs can find the root cause of a failure with a higher
probability [28]. By recovering the services strongly dependent
on the failed one, the whole system could be restored faster.
To this end, we propose AID, the first method to quantify
the intensity of dependencies between different services. The
evaluation results on both the simulated and industrial en-
vironments show the proposed method’s effectiveness and
efficiency. Additionally, our method has been successfully
applied in a leading public cloud provider, and helped greatly
reduce manual maintenance effort.

B. Resilience Testing of Microservice Systems
The resilience of a microservice system refers to the ability

to maintain the performance of services at an acceptable level

and recover the service back to normal when a failure in
one or more parts of the system causes service degradation.
Resilience testing is one of the primary ways to measure the re-
silience of software. By purposefully introducing failures into
the system, the test engineers can monitor how the microser-
vice system performs and improve the architectural design
according to the discovered flaws. Automation of the resilience
testing procedure is possible, but manual standardization of
test parameters is still required, which is burdensome and
unscalable. This is due to microservice systems’ decoupled and
specialized nature. For the resilience testing of microservice
systems, [27] identifies the scalability and adaptivity issues of
current industrial practice for resilience testing. Then we con-
duct the first empirical study on the failures’ manifestations on
resilient and unresilient microservice systems. The empirical
study demonstrates the feasibility of self-adaptive resilience
testing. We propose AVERT, shown in Figure 8, the first self-
adaptive resilience testing framework that can automatically
index the resilience of a microservice system to different
failures. AVERT measures the degradation propagation from
system performance metrics to business metrics. The higher
the propagation, the lower the resilience. The evaluation on
two open-source and one industrial benchmark microservice
systems indicates that AVERT can effectively and efficiently
produce accurate test results.

VII. CONCLUSION

This paper presents a roadmap toward intelligent operations
for reliable cloud computing systems. To do so, we identify
two challenges to cloud microservice reliability: internal and
external factors. To mitigate the two challenges, the roadmap
illustrates four approaches to ensure software reliability: tick-
ets management, logs management, multimodal data analysis,
and microservice resilience testing approach.

VIII. ACKNOWLEDGEMENT

The work described in this paper was supported by the
Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (No. CUHK 14206921 of the General
Research Fund).

REFERENCES

[1] Amazon: What are microservices? (2022), https://aws.amazon.com/
microservices/

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Kon-
winski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia,
M.: Above the clouds: A berkeley view of cloud computing. Tech.
Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley (Feb 2009)

[3] Budhiraja, A., Reddy, R., Shrivastava, M.: Lwe: Lda refined word
embeddings for duplicate bug report detection. In: Proceedings of the
40th ICSE-C. pp. 165–166 (2018)

[4] Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.I., Brewer, E.: Failure di-
agnosis using decision trees. In: International Conference on Autonomic
Computing, New York, NY, USA, May 17-19, 2004. pp. 36–43. IEEE
Computer Society (2004)

[5] Chen, Z., Liu, J., Su, Y., Zhang, H., Ling, X., Yang, Y., Lyu, M.R.:
Adaptive performance anomaly detection for online service systems via
pattern sketching. In: Proceedings of the 44th ICSE. pp. 61–72 (2022)

[6] Dickson, C.L.: A working theory-of-monitoring. Tech. rep.,
Google, Inc. (2013), https://www.usenix.org/conference/lisa13/
working-theory-monitoring

[7] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A
survey on concept drift adaptation. ACM computing surveys (CSUR)
46(4), 1–37 (2014)

[8] He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing
approach with fixed depth tree. In: 2017 IEEE International Conference
on Web Services, Honolulu, HI, USA, June 25-30, 2017. pp. 33–40.
IEEE (2017)

[9] Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M.K., Sekar, V.:
Gremlin: Systematic resilience testing of microservices. In: 36th IEEE
International Conference on Distributed Computing Systems, ICDCS
2016, Nara, Japan, June 27-30, 2016. pp. 57–66. IEEE Computer Society
(2016)

[10] Huo, Y., Lee, C., Su, Y., Shan, S., Liu, J., Lyu, M.: Evlog: Evolving log
analyzer for anomalous logs identification. Proceedings of IEEE 34th
ISSRE (2023)

[11] Huo, Y., Li, Y., Su, Y., He, P., Xie, Z., Lyu, M.R.: Autolog: A log
sequence synthesis framework for anomaly detection. Proceedings of
IEEE/ACM 38th ASE (2023)

[12] Huo, Y., Su, Y., Lee, C., Lyu, M.R.: Semparser: A semantic parser for
log analysis. In: Proceedings of IEEE 45th ICSE. IEEE (2023)

[13] Huo, Y., Su, Y., Lyu, M.: Logvm: Variable semantics miner for log mes-
sages. In: 2022 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). pp. 124–125. IEEE (2022)

[14] Lee, C., Yang, T., Chen, Z., Su, Y., Lyu, M.R.: Eadro: An end-to-end
troubleshooting framework for microservices on multi-source data. In:
Proceedings of IEEE 45th ICSE. IEEE (2023)

[15] Lee, C., Yang, T., Chen, Z., Su, Y., Yang, Y., Lyu, M.R.: Hades: Het-
erogeneous anomaly detection for software systems via semi-supervised
cross-modal attention. In: Proceedings of IEEE 45th ICSE. IEEE (2023)

[16] Li, Y., Huo, Y., Jiang, Z., Zhong, R., He, P., Su, Y., Lyu, M.R.: Exploring
the effectiveness of llms in automated logging generation: An empirical
study. arXiv preprint arXiv:2307.05950 (2023)

[17] Liu, H., Lu, S., Musuvathi, M., Nath, S.: What bugs cause production
cloud incidents? In: Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS). pp. 155–162 (2019)

[18] Liu, J., He, S., Chen, Z., Li, L., Kang, Y., Zhang, X., He, P., Zhang,
H., Lin, Q., Xu, Z., et al.: Incident-aware duplicate ticket aggregation
for cloud systems. arXiv preprint arXiv:2302.09520 (2023)

[19] Liu, P., Xu, H., Ouyang, Q., Jiao, R., Chen, Z., Zhang, S., Yang, J., Mo,
L., Zeng, J., Xue, W., Pei, D.: Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks. In: 31st
IEEE International Symposium on Software Reliability Engineering,
ISSRE 2020, Coimbra, Portugal, October 12-15, 2020. pp. 48–58. IEEE
(2020)

[20] Nagappan, M., Vouk, M.A.: Abstracting log lines to log event types for
mining software system logs. In: Proceedings of the 7th International
Working Conference on Mining Software Repositories, Cape Town,
South Africa, May 2-3, 2010. pp. 114–117. IEEE, IEEE Computer
Society (2010)

[21] Pan, Y., Ma, M., Jiang, X., Wang, P.: Faster, deeper, easier: Crowd-
sourcing diagnosis of microservice kernel failure from user space. In:
Proceedings of the 30th ACM SIGSOFT International Symposium on

Software Testing and Analysis. p. 646–657. Association for Computing
Machinery, New York, NY, USA (2021)

[22] Samir, N., Kyle, B.: Production software application performance and
resiliency testing (2020)

[23] Shilpika, Lusch, B., Emani, M., Vishwanath, V., Papka, M.E., Ma, K.:
MELA: A visual analytics tool for studying multifidelity HPC system
logs. In: 3rd IEEE/ACM Industry/University Joint International Work-
shop on Data-center Automation, Analytics, and Control, DAAC@SC,
Denver, CO, USA, November 22, 2019. pp. 13–18. IEEE (2019)

[24] Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model
approach for accurate duplicate bug report retrieval. In: Proceedings of
the 32nd International Conference on Software Engineering (ICSE). pp.
45–54 (2010)

[25] Vaarandi, R.: A data clustering algorithm for mining patterns from event
logs. In: Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IEEE Cat. No. 03EX764), Kansas City, MO, USA, Oct
3, 2003. pp. 119–126. IEEE (2003)

[26] Xu, W., Huang, L., Fox, A., Patterson, D.A., Jordan, M.: Large-scale
system problems detection by mining console logs. Tech. rep., EECS
Department, University of California, Berkeley (Jul 2009)

[27] Yang, T., Lee, C., Shen, J., Su, Y., Yang, Y., Lyu, M.R.: An adap-
tive resilience testing framework for microservice systems. CoRR
abs/2212.12850 (2022)

[28] Yang, T., Shen, J., Su, Y., Ling, X., Yang, Y., Lyu, M.R.: Aid:
Efficient prediction of aggregated intensity of dependency in large-scale
cloud systems. In: Proceedings of the 36th International Conference on
Automated Software Engineering (ASE). pp. 653–665 (2021)

[29] Yang, T., Shen, J., Su, Y., Ren, X., Yang, Y., Lyu, M.R.: Characterizing
and mitigating anti-patterns of alerts in industrial cloud systems. In:
Proceedings of the 52st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE (2022)

[30] Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A.,
Silva, D.F., Mueen, A., Keogh, E.: Matrix profile i: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets. In: 2016 IEEE 16th international conference on data mining
(ICDM). pp. 1317–1322. IEEE (2016)

[31] Zhao, G., Hassan, S., Zou, Y., Truong, D., Corbin, T.: Predicting perfor-
mance anomalies in software systems at run-time. ACM Transactions on
Software Engineering and Methodology (TOSEM) 30(3), 1–33 (2021)

https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/
https://www.usenix.org/conference/lisa13/working-theory-monitoring
https://www.usenix.org/conference/lisa13/working-theory-monitoring

	Introduction
	Data-driven AIOps for Cloud Computing
	Alerts and Tickets
	Adaptive and Interpretable Monitoring for Cloud Systems
	Incident-aware Duplicate Ticket Aggregation

	Logs
	Semantic-based Log Parser
	Log-based Anomaly Detection and Failure Identification

	Multimodal Data
	Anomaly Detection for General Distributed Software Systems
	Root Cause Localization for Microservices

	Microservices
	Predicting the Intensity of Microservice Dependency
	Resilience Testing of Microservice Systems

	Conclusion
	Acknowledgement
	References

