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Abstract—The Covid-19 pandemic drastically changed urban
mobility, both during the height of the pandemic with government
lockdowns, but also in the longer term with the adoption of
working-from-home policies. To understand its effects on rail
public transport ridership, we propose a dedicated Regression
Mixture Model able to perform both the clustering of public
transport stations and the segmentation of time periods, while
ignoring variations due to additional variables such as the official
lockdowns or non-working days. Each cluster is thus defined by a
series of segments in which the effect of the exogenous variables is
constant. As each segment within a cluster has its own regression
coefficients to model the impact of the covariates, we analyze how
these coefficients evolve to understand the changes in the cluster.
We present the regression mixture model and the parameter
estimation using the EM algorithm, before demonstrating the
benefits of the model on both simulated and real data. Thanks
to a five-year dataset of the ridership in the Paris public transport
system, we analyze the impact of the pandemic, not only in terms
of the number of travelers but also on the weekly commute. We
further analyze the specific changes that the pandemic caused
inside each cluster.

Index Terms—Clustering, Segmentation, Mixture of Regres-
sions, Generative models, Expectation-Maximization

I. INTRODUCTION

Finding similarities between groups of samples, a problem
known as clustering, has been an active research domain
in the last decades. However, when the samples are time
series, one might want to find similarities between different
periods. Segmentation, or change-point detection [19], is the
problem of dividing the temporal axis into intervals in which
the data follow a constant distribution. To combine these two
approaches, we can use a sequential approach, by computing
clusters first and finding change points inside each cluster.
However, sequential approaches are noticeably unoptimized.
Consequently, researchers have developed joint approaches,
such as SegClust by Picard et al. [16], or ClustSeg [18].

The introduction of exogenous variables in the mixture
model serves two purposes: firstly, it can help the model
to remain unaffected by their effects. In the urban mobility
domain, it could be interesting to include exogenous variables
that represent the three lockdowns in order to enable the
model to explain the changes in the data using regression
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coefficients rather than new segments. Secondly we want our
model to be able to use the influence of these variables to be
important to our model: it is worth considering that during
typical pandemic behavior, the disparity between weekends
and weekdays may be smaller than in the period prior to the
year 2020. This is the rationale of the publications which
perform a joint regression and clustering [7] or regression
and segmentation [11], [12]. By explaining the variations
in the data with exogenous variables, adding regression to
a clustering-segmentation model helps the segmentation to
detect only change points for meaningful variations, instead of
reacting to variations that can be considered trivial or easily
explainable given the context.

For the analysis of public transport ridership, clustering
and regression have already been used successfully either to
know which types of travel need improvement [15], or to
determine how investigate one metro line can help alleviate the
flow of passengers when another line or station is unavailable
[6]. However, these studies focus on signals for which the
distribution has the same parameters for the whole duration.
The goal in the present paper is to go further and include
the effects of the pandemic in the analysis. For instance, to
model the difference between weekdays and weekends, we
may compute one mean for each type of day [15], or with an
additive model [6]. The latter allows the model to combine the
influence of several variables, such as the day of the week and
the position in the year. Furthermore, having several segments,
each with its regression coefficients, could help us understand
how the pandemic changed travel behaviors by looking at
which coefficients differ before and after the pandemic crisis.

This paper aims at better understanding how the pandemic
affected the usage of the Paris public transport network. To
do so, we used a public transport ridership dataset published
by the transport organisation authority called Ile-de-France
Mobilités (IdFM) which contains records of public transport
entries on the rail network of Paris city and its suburbs
between 2017 and June 2022. The data cover the start of
the pandemic, as well as the three lockdowns. Obviously, the
official lockdowns had a strong impact on public travel but
we are also interested in the impact of the pandemic on travel



behaviors. We would expect that, if some stations are relatively
unaffected by the pandemic, a clustering-segmentation model
could create a cluster for these stations, in which the transition
points are located at different dates than the pandemic.

The present work focuses on the model that allows this in-
terpretation to occur, and its contributions can be summarized
as follows:

e we propose a regression mixture model which performs
clustering and segmentation, and allows the data to follow
a regression model where covariates can be of any type.

« we develop a formulation that models both univariate and
multivariate data.

o we evaluate this model against a complete set of base-
lines, both on synthetic and real data.

The rest of this paper is organized as follows: after a
literature review, section III presents both our model and
the parameter estimation algorithm. Then, we evaluate our
proposed model, on synthetic data (section IV-B) and on the
public transport ridership dataset in section IV-D. Finally,
section V provides some concluding remarks and proposes
options for future work. To foster research on this domain, we
publish our code at https://github.com/HuguesMoreau/GMM_
Clustering_Segmentation.

II. RELATED WORK

Our work consists of the intersection of three research
domains: clustering, segmentation, and regression.

As the scope of these domains is very broad, we provide
only a concise overview, focusing on their intersections.

Clustering is a field of research aiming to group samples
according to their similarity. We will use the formalism of
Gaussian Mixture Models, it is assumed that the cluster each
sample belongs to is a hidden variable, which is estimated
using the Expectation-Maximization (EM) algorithm [8].

Like clustering, segmentation is also an active domain of
research, that consists in finding intervals of time in which
the behavior of the variables is as constant as possible. The
temporal ordering allows the formulation of dynamic program-
ming algorithms that guarantee to find a global optimum of the
objective function (see Truong et al. [19] for a comprehensive
review). Apart from dynamic programming algorithms and
their variants, another type of model used to perform the
segmentation of time series are Hidden Markov Models [10].
However, the transitions of Hidden Markov Models cannot al-
ways be controlled as precisely as required without additional
constraints [14].

When the segmentation is paired with clustering, using
dynamic programming requires re-computing a clustering for
each time step (as in [16]) which might make the whole
algorithm too long to compute. To prevent this problem, Samé
et al. [18] developed a model named ClustSeg that performs
both clustering and segmentation. To obtain an estimate in a
reasonable time, the authors also present the rules to estimate
the whole partition using a single EM run. This is the approach
we expand by adding the contribution of exogenous variables.
Note that the ClustSeg model already projects the data on a

basis of functions that can be understood as exogenous vari-
ables that are independent of the individuals. This is the reason
why Chamroukhi renamed this model Piecewise Regression
[3], even though the regression is, as in [18], only on temporal
variables. Our contribution is to allow the incorporation of any
type of variable and not only time covariates.

To account for the exogenous variables, we will use a
linear model. De Veaux [7] combined linear regression with
clustering to obtain a mixture of regression, a model where
the mean of each cluster is a linear combination of some
other variables. The author also proposed an adaptation of
the EM algorithm to estimate the parameters of the model,
which is still relatively close to the estimation procedure of
classical mixture models. Another family of models that falls
in the intersection between clustering and regression consists
in using use a model named Latent class clustering-based
random parameter ordered logit model (LCROL, [4]), where
the probability for any individual to belong to a cluster follows
a logistic regression, depending on the provided covariates.
This idea is similar to the segmentation used by Samé et al.
[18] and Chamrouki [3], except that the only variable available
in the logistic regression is time (for further details, see section
1II-B).

The last field of interest is the intersection of segmentation
and regression, named segmented regression. However, this
name often designates studies where the breakpoint is fixed
before the start of the analysis. This kind of segmented
regression has been used in medicine [2], or for the evaluation
of public policies [13]. Most of the time, only two segments
are used to know whether the difference between the two is
significant.

In our case, we will exhibit the results our model obtains
on a public transport dataset. But first, we need to present
the formulation of our model, along with the formulation of
the EM algorithm to estimate the parameters of the mixture
model.

III. MODEL DEFINITION AND PARAMETER ESTIMATION
A. Definitions and notations

The data to be analyzed in this article consist of a set of
time series observed over the same time grid indexed by t.

The data we want to model are a set of individuals, which
we want to group into K clusters. The dataset covers a time
series observed over discrete timesteps ¢ (in our case, days).
For each individual ¢, and each day t, the data is a D-
dimensional vector noted y; ;. Note that the model does not
assume that all couples of individuals and days are present:
some may be missing from the dataset (and will be in the case
of the Public Transport dataset, see fig. 1). In all cases, we
want to obtain, for each cluster k, a series of S segments, that
is, an interval of timestamps with similar behavior. However,
there are several causes for change: in the data which we
want to exclude from our analysis. This is why we include
exogenous variables that will help to explain the changes in
the observed variables without resorting to new segments. We
note x;4,; the value of the [*" variable for individual i and
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timestep t. We assume that all variables are continuous: if one
variable has more than two categories, we break it down into
several dummy (zero-one) variables. Note that in practice, the
variables we will use are mostly constant along all timesteps,
or for all individuals.

B. Model definition

Let z; be the cluster assignment of individual 4, and w; ; the
segment of individual ¢ at time ¢t. We assume that the cluster
assignments z; are i.i.d., following a multinomial distribution
whose weights are parameters of our model:

K
P(z=k)=m) st Zwk =1. (1)
k=1

Given the cluster k£ of individual 7, we assume that the
segment assignment w; ; follows a multinomial law defined
by the probabilities:

Pw; s = slzi = k) = vas — exp(t.ug,s + Uk,s)
| Zs’ eXp(t'uhs’ + vk,s’)

where uy, s and vy, , are model parameters. In other words, the
only reason why we see definitive transitions is the fact that the
arguments of the softmax functions are monotonous. This way
of modelling segments using independent day assignments
might seem unusual. We use the formulation in equation 2
because the independence of the segment assignments allows
us to make use of the EM algorithm (see section III-C).
The partition of the time axis resulting from the application
of the Maximum a Posteriori (MAP) rule may not be a
series of contiguous segments. We thus applied the following
constraints to make sure that the distributions of the temporal
class Hf ** vary faster than a given threshold :

, (@
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Note that A is not a parameter of our model, but a value we
choose before any parameter estimation. Numerically, we set
it in such a way that the temporal classes distributions /@f’s
go from 0.01 to 0.99 in less than three months'. We found
these constraints paramount: without them, the distribution of
temporal classes m,’f ** would remain nearly constant (equal to
approximately 1/S, where S is the number of segments), and
the posteriors would not have the contiguity expected from
segments.

Observation model: Similarly to ClustSeg [18], our obser-
vation model is a Gaussian linear regression model:

il (zi = kowig = 8) ~ N iy, S o) )

However, contrary to ClustSeg, in which the statistical mean
1 depended only on the cluster, segment, and time covariates,

To do so, we solve exp(A.t +¢) = 0.01 and exp(A(t + At) +c¢) =
0.99, yielding A = (log(0.99/0.01))/At. As the time ¢ varies between zero
and one in all our formulas, the corresponding At for three months is equal
to 90 days divided by the number of days in the interval 7.

our formulation introduces exogenous variables that vary for
both individuals 7 and days ¢. As in mixtures of regressions [7],
the mean is a sum of the linear contributions of all exogenous
variables:
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where my, , is the intercept of the linear regression model, and
the a1, are the contributions of the L temporal variables.

For the covariance matrix of cluster k, segment s, 3y g,
we choose to have a diagonal covariance (meaning that all
dimensions are independent) but other constraints are possible
(full covariance, spherical, efc.), similarly to the fact that
one can choose the type of covariance for classical Gaussian
Mixture Models.

To summarize this section, the free parameters of the
model, denoted as 6, are the mixture proportions (7 ), the
segmentation parameters (Uk,s,vk,s)k,s, the mean my s of
cluster £ and segment s, the contributions of the exogenous
variables (v s)ik,s» and the covariance matrices (X ¢ ), s-
The next section explains how to estimate them via the EM
algorithm [8].

C. Parameter estimation

The parameter estimation is done by maximizing the log-
likelihood:

£(8) =log P(Y|X, 0) (6)
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7 k t s

The formulation of our model allows us to use the
Expectation-Maximization algorithm [8], a powerful algorithm
aiming to estimate the parameters of latent (hidden) variable
models. In our case, the latent variable is the union of
the cluster and segment, which we estimate using both the
observed variable (y;.) and the exogenous variables (x; ;).
The EM algorithm consists in alternating two steps.

E-step: In this step, we compute the posterior distribution
of the latent variables, using the values of the parameters at
the current iteration. As mentioned in [18], this is done in two
steps. First, we need to compute the posterior probability of a
given individual i to belong to cluster k, which we note p¥ :

p¥ = P(z = kly;, ©:;0) %)
k, k,
_ Tk Ht Zs Ky SN(yi,t; p’i,tsv Ek,s)
= k', K, 5
o e T 20w "N (yis Hq;,ts, S s)
where we note y; = (Yit)te{1,....7}-

Then, we can obtain the posterior probability for any day ¢
to belong to segment s:

®)
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Once we have computed the responsibilities, we update the
parameters during the Maximization step.

M-step: In the maximization step, we use the responsi-
bilities rf ’ts computed earlier, and obtain the parameters that
maximize the expectation of the log-likelihood. Conveniently,
we can write it as a sum of terms which can be optimized

separately:

oY, x;0) = Z r; log T,
i,t,k,s
exp(t.ug,s + Vi s)
+ T log : : (12)
“‘Zl;s Yoo exp(tug,s + Vg sr)
+Z{r 1OgNylt7uzt72ks)
i,t,k,s

Thus, each set of parameter values can be computed in-
dependently from the others, the only exception being the
variance which requires the segment mean and variable con-
tributions of the current step. In this section, we display only
the results of the maximization step.

a) cluster proportions: As with many mixture models,
the mixture proportions are the proportion of the responsibil-
ities of the samples. For each cluster k:
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b) segment borders: The segment parameters u,v are
found by computing the maximum of the following logistic
regression problem:

Z r’“l

it,k,s

exp(t.uhs + VUks)
o exp(t.ukﬂs/ + vk,s/)

(14)

This problem is convex (even with the constraints mentioned
in equation 3), and we solve it using scipy’s optimize
package implementation of the quasi-Newton method from [5].
We ensure identifiability by setting > urs = > ks = 0
for all k.

c) mean, regression coefficients, and covariance: We
can find the optimal values for the last term of equation 12
separately for each segment. For all k, s, the values of my s,
., and Xy ¢ minimize:

Z rf;,ts ((yi,t _ uif)z];i(th — Hf”ts)/ + log det Zk,s) )

15)

where ' denotes the transpose of vector « and uﬁf =mys+
> 1 Tit1-0 5. This is a common linear regression problem
where the 'rf_ , are weights [17].

As mentioned earlier, we use these formulas during each
of the maximization steps to estimate new values of the
parameters. The complete algorithm can be summarized as

follows:

Algorithm 1 the EM algorithm

Require: observed data (y;;);, exogenous variables
(;,¢)i ¢, @ number of clusters K and segments S, and an
initial parameter 6
while the log-likelihood has not converged do

E-step: Compute the expectation of the latent variables
rﬁ »” using the parameters of the model 6

M-step: Find the parameters of the model 0 that best
explain the data
end while

We keep on alternating the expectation step and maximiza-
tion steps until the log-likelihood stops increasing by more
than 10~* in ten iterations. Only then is parameter estimation
over and we can start evaluating our model.

Initialization: To initialize our algorithm, we start by setting
the mixture proportions equal to 1/K, where K is the number
of clusters. The segment parameters u,v are set in such
a way as to respect the constraints we set (see equation
3), and the borders between segments delimit segments of
equal duration. The segment means my , are estimated by
assigning each individual a random cluster and each day its
corresponding segment, and computing the mean of values
inside each segment. Finally, we end the initialization by
setting the contribution of exogenous variables to zero.

IV. EXPERIMENTS

This section is devoted to presenting the experimental
results that highlight the efficacy of the proposed model. We
will compare the performance of our model against a set of
baselines using artificial data. Subsequently, we will assess its
performance on the public transport ridership dataset through
cross-validation. Lastly, we will analyze the results obtained by
the model to gain insights into the stations that experienced the
most significant impacts due to behavioral changes resulting
from the pandemic.

A. Protocol

The model presented above allows us to cover cluster-
ing, segmentation, and regression at once. To justify its use
despite the additional complexity, we compare it to several
alternatives. Most of these methods consist in using ClustSeg
[18] without exogenous variables, which means that the basis
of constant functions is used to represent the time series.
Conversely, as the proposed model includes covariates in the
parameter estimation, the basis of functions we choose to
represent the time series can be found in the variables we
have (in our case, splines of degree 2). To demonstrate the



interest of simultaneously performing the segmentation and
the clustering, we include in our comparison two methods that
compute clusters before segments:

e Reg — Clust — Seg: This method operates in
three sequential steps. Firstly, we estimate regression
coefficients (a, see eq. 5) common to the whole dataset.
Secondly, we perform a clustering of the residual time
series derived from the first step. Thirdly, we perform a
segmentation of the clusters obtained in the second step.
Note that for synthetic data, we generate the ground truth
regression coefficients with uniform distributions. Hence,
computing regression coefficients on the whole dataset
does not make much sense. In other words, we expect
this method to be completely irrelevant for synthetic data.
However, it might prove somewhat useful for real data,
when the contributions of the exogenous variables might
be similar across clusters and segments. We include it
nonetheless for both types of data.

e (Clust+Reg) — (Seg+Reg): This baseline in-
volves fitting a mixture of regression model, before
performing a segmented regression inside each cluster.
It is important to note that we estimate new variable
contributions during both the clustering and segmentation
processes.

We also include three baselines where the clusters are
estimated at the same time as the segments, meaning that the
model can use the change points in the samples to estimate
how close all individuals are to each cluster:

e Clust+Seg: We simply reuse the method from [18],
without any covariates. As ClustSeg requires a basis
of (temporal) functions, using it without any covariates
is equivalent to determining piecewise constant cluster
prototypes. The rationale for including this method is
mainly to demonstrate the relevance of including the
exogenous variables with real data.

e Reg — (Clust+Seqg): This model is similar to the
one we propose, except that we assume that the linear
regression parameters are constant across all clusters and
segments. Note that to estimate the parameters for this
model, we perform a linear regression on the whole
dataset (before any affectation onto clusters and seg-
ments), before using ClustSeg (without any exogenous
variables) on the residuals. This estimation procedure
is equivalent to estimating the parameters of the model
using the classical EM algorithm based on Gaussian
mixture models. Similarly to Reg — Clust — Seg,
we expect the common regression coefficients to be ill-
adapted to synthetic data.

e (Clust+Seg) — Reg: This method involves first us-
ing ClustSeg [18] without any covariables, then perform-
ing a regression on each segment. It has the same set of
parameters as the one we propose, the only difference
between the two being that the model we present has
access to changing regression coefficients during the
clustering and segmentation. Given that both this method

and the first one (Clust+Seqg) compute the clusters and
segments without any variables, they assign the same
partition to the data, which is why we do not use it
on synthetic data, where the evaluation criterion is the
relevance of the partition.

Using different evaluation criteria, we compare the parti-
tioning obtained with our model to the ones resulting from
these methods. For synthetic data (simulations), the creation
of the dataset allows us to have access to the latent variables
that generated the data as ground truth (cluster and segment of
each individual and day). We consider that two samples belong
to the same partition if and only if their cluster and segment
both match, and use the Adjusted Rand Score to compare to
the evaluated models’ estimations.

For real-life data, there is no such reference to use. Hence,
we look at the log-likelihood on an unseen dataset: we separate
the dataset into two subsets for training and validation. We use
the training dataset to estimate the parameters of the model.
Then, we calculate the log-likelihood of the model by applying
it to the validation dataset. The higher the log-likelihood, the
better the model explains the validation data, and the better
we consider our model.

B. Validation of the model on synthetic data

Parameter generation: Before generating data, we need
to fix the model parameters. We select arbitrarily K = 4
clusters and S = 4 segments. The mixture proportions 7
are drawn from a Dirichlet distribution with parameter 2,
to make sure all clusters appear for at least one sample.
Similarly, for each cluster, we draw segment proportions with
this same distribution, where all slopes u are set so that a
probability changes from 10% to 90% in one-tenth of the
time interval. We sample the cluster and segment means my,
with A/(0, 1). To imitate the exogenous variables from the real
data, we use three exogenous variables: the first is constant
across timesteps (x; 4,1 = ¥;,1,1), the second is constant across
individuals (x; .2 = %14+2), and the third varies for both
individuals and timesteps. All are drawn from N(0, 1). Then,
we sample the contributions corresponding to these exogenous
variables (« coefficients) from N(0, X,,), where the value of
3. changes between experiments. Finally, we generate the
observed variables using the variance ¥ , = 1. The choice
of a relatively high unexplained variance X, s is voluntary, to
place the model in a difficult scenario.

During the first set of experiments, we set 3, = I,
and change the number of individuals and timesteps in
{50,100, 500, 1000}. In the second series of tests, the number
of individuals and timesteps remains constant and equal to
100 while the parameter that gives the importance of the
contributions X, varies in {0,0.5,1.0,1.5}. The case X, = 0,
in particular, is interesting, for it means that the model will
see variables that do not contribute anything to the observed
variables. In this case, if its performance is significantly lower
than a model that does not have access to the variables, this
would mean that the proposed model overfits the exogenous
variables. In order to mitigate the randomness, we repeat the
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Fig. 1: Some examples of series in the dataset we process. The
zoom-in represents two weeks starting September 11, 2019 (on
a Monday).

experiments ten times for each combination of parameters,
generating a whole new set of parameters each time.
Results: The results are summarized in table I. As
expected, the models which do not take into account the
variables (Clust+Seg) or which try to fit a regression be-
fore any clustering (Reg — Clust — Seg and Reg —
(Clust+Seg)) obtain ARI scores that are noticeably low.
This is because the contributions we generated are independent
of each other, meaning that fitting regression coefficients on
the whole dataset always produces statistically insignificant

parameters.
The only case when these models are relevant is the case
where ¥, = 0, meaning that the exogenous contributions

are always zero. For this experiment, the score only depends
on whether clustering and segmentation are simultaneously
carried out: Reg — Clust — Seg and (Clust+Req)
— (Seg+Req) are both worse than the other three models,
which perform similarly. As expected, the position of the
linear regression in the estimation process has no significant
importance for this case.

C. The Public Transport Ridership Dataset

To validate our model on real data, we used a recording of
daily entries in the Parisian public transport system.?> Gathered
by the transport organization authority called ile-De-France
Mobilités (IdFM), this dataset covers five and a half years,
from January 1, 2017, to June 30, 2022. We also focus on the
rail network (underground, public train, and tramway). Note
that the records only cover the entries of travelers entering
the network, which means that we have the origin of trips but
not the destination. Note also that due to the organization of
the ticketing system, one person may validate several times
for a single trip when changing fare zones (if the journey
includes connections between different modes). We do not try
to compensate for this. Finally, we must emphasize that even
though we use the term “individual” to designate each time
series, one series of entries corresponds to a station, and not
to a traveler.

2available at https://data.iledefrance- mobilites.
fr/explore/dataset/histo- validations-reseau- ferre/ and
https://data.iledefrance- mobilites.fr/explore/dataset/
validations-reseau-ferre-nombre- validations- par-jour- 1 er-semestre/
information/

a) Preprocessing: The raw data contain the number of
entries for each type of ticket or subscription the travelers used.
As we do not make use of this information, we simply consider
the sum of all entries for each day and each station. However,
only the couples (station, day) with at least one entry are
present. One might be tempted to say that an absence of data
for a given day means that no user entered this station (which
might have happened during the lockdowns, for instance), but
we have no way of knowing which days are missing due to
actual errors in the data collection process, and which days are
absent because of the lack of users. Thus, we leave missing
data as-is.

To ensure anonymity, when a station recorded less than five
entries for the same type of ticketing in a day, the dataset only
contains the mention “less than five” for this type of ticket.
In such cases, we considered that there were three entries for
this day, station, and ticket type. We removed stations with
more than 60% missing days or less than 500 entries per day
on average. To handle the many noisy days in the data, we
compute a two-week moving average of each station’s series
of entries. Each value that is below one-tenth of the result is
removed.

Finally, given the strong imbalance between stations, we
normalized the number of entries of each station. For each
station, we divide the number of entries by the average number
of entries during the first year, strikes excluded (from January
1, 2017 to December 31, 2017). We consider this period to
be representative of usual behavior. Then, similarly to [6], we
took the log in base 10 of the number of entries.

b) Exogenous variables: We include several dummy
(binary) variables that relate to the type of day: one variable to
know whether the day is a working day (meaning no holidays
or weekends), seven variables for the days of the week, and
two variables for strikes: as one strike was particularly between
December 2019 and January 2020, we dedicate one variable
to this period. The other ’strike’ variable is the same for all
other strikes. Similarly, we create three variables for the three
lockdowns declared by the government. Finally, to account
for tendencies throughout the year, such as a lower ridership
during the summer, we use 20 year-periodic splines with
degree 2. We also include four variables that are proper to
each station, denoting the presence of four commercial types
of train: underground (Paris only), RER (express regional
network), transilien (a network going further than RERs),
and commercial train (presence of national line in the same
station).

D. Experiments with real data

Section IV-B demonstrated that the model is able to find the
true cluster of individuals generated using Gaussian distribu-
tions. This section shows that even with real data, the model
we propose outperforms the baselines defined in section I'V-B.

However, for many real-life datasets, we have no way of
knowing which individuals belong to each cluster, or even
if there is a ’right’ number of clusters. We first begin to
select the number of clusters using the slope heuristic [1].


https://data.iledefrance-mobilites.fr/explore/dataset/histo-validations-reseau-ferre/
https://data.iledefrance-mobilites.fr/explore/dataset/histo-validations-reseau-ferre/
https://data.iledefrance-mobilites.fr/explore/dataset/validations-reseau-ferre-nombre-validations-par-jour-1er-semestre/information/
https://data.iledefrance-mobilites.fr/explore/dataset/validations-reseau-ferre-nombre-validations-par-jour-1er-semestre/information/
https://data.iledefrance-mobilites.fr/explore/dataset/validations-reseau-ferre-nombre-validations-par-jour-1er-semestre/information/

So=1

I=T=50 I=T=100 I =T =500 I =T =1000
Reg — Clust — Seg 0.334 4 0.152 0.293 + 0.062 0.286 + 0.061 0.377 £ 0.088
(Clust+Reg) — (Seg+Reg) | 0.58940.141 0.643 £ 0.161 0.620 £ 0.081 0.788 £ 0.114
Reg — (Clust+Segq) 0.463 £ 0.099 0.440 £0.125 0.414 +£0.112 0.51140.123
Clust+Seg 0.478 £ 0.106 0.453 £ 0.120 0.431 4 0.120 0.561 4 0.152
Clust+Seg+Reg (Proposed) 0.708 £ 0.143 | 0.784+0.110 | 0.865+0.088 | 0.895 4 0.072

I=T=100
3a=0 o = (0.52)I Sa=1 o = (1.5)I
Reg — Clust — Seg 0.568 4 0.178 0.456 £ 0.125 0.346 + 0.063 0.323 £ 0.090
(Clust+Reg) — (Seg+Reg) | 0.542+0.177 | 0.605+0.122 0.661 £ 0.174 0.626 £ 0.145
Reg — (Clust+Segq) 0.645 + 0.165 0.548 4 0.094 0.467 +0.121 0.442 +0.133
Clust+Seg 0.686 = 0.092 0.586 £0.137 | 0.499 £0.179 0.434 £ 0.107
Clust+Seg+Reg (Proposed) 0.689 £0.104 | 0.794+0.075 | 0.81540.088 | 0.804+0.121

TABLE I: The mean and standard deviation of the Adjusted Rand Score obtained with ten generations of synthetic data. The

method (Clust+Seq)
is in bold.

number of individuals 542 stations

days 2,004
Measures per day 1
type of transport available (4),
covariates day of the week (7), lockdowns (3),

(number of variables) strikes (2), holidays (2),

year-periodic splines (20), time (1)

TABLE II: An overview of the real dataset.

As we expect the data to exhibit one change point at the
beginning of the pandemic, we select S = 2 segments a
priori. We begin by fitting the parameters for models with one
to nineteen clusters. Each time, we obtain a (training) log-
likelihood, which increases with the number of parameters.
The slope heuristic consists in applying a penalty equal to
twice the slope of the curve giving the log-likelihood as a
function of the number of parameters in each model [1]. In
our case, with S = 2 segments, the optimal value is reached
for K = 5 clusters (results not shown).

To evaluate our model on real data, we perform five-
fold cross-validation, dividing the dataset into five subsets
of mutually-independent samples. This constraint of mutual
independence is not trivial: if one split the dataset into separate
periods, for instance, the folds would not be independent. The
reason is that the cluster assigned to each individual remains
constant: if we know the segment a given day belongs to, we
can infer the individual’s cluster, which provides information
about the cluster the individual belongs to outside of the
training interval. This is why we perform cross-validation by
dividing the dataset into five groups of individuals. We use
the first four to estimate the parameters of the model, keeping
the last group to measure the log-likelihood of the unseen
data. We repeat the process four additional times, changing the
validation dataset, and display the mean and standard deviation
in table III.

— Reg is absent because it produces the same partition as Clust+Seg. The best result each time

We can draw several conclusions from the results in ta-
ble III: firstly, the two methods that perform clustering and
segmentation separately are noticeably worse than the rest
which means that performing clustering and segmentation at
the same time is paramount. Secondly, the model that imposes
the regression coefficients to be equal across clusters and
segments (Reg — (Clust+Seg)) explains unseen data as
well as a model that does not have access to the exogenous
variables (Clust+Segq), hinting at overfitting.

Finally, the best two models are the ones that both per-
form clustering and segmentation at the same time, while
still allowing variable contributions to differ between seg-
ments ((Clust+Seg) — Reg and Clust+Seg+Req).
Between them, the proposed approach that performs
clustering/segmentation and regression at the same time
(Clust+Seg+Req) is significantly better than the sequential
model where the estimation of the contributions is done after
the estimation of the partition (p < 0.01 using an unpaired
t-test).

However, this improvement comes at the cost of a higher
computational burden: using a desktop computer?, the imple-
mentation that estimates all parameters at the same time with
the EM algorithm takes fifteen minutes to converge on average
(15.4 4 2.25 min), which is four times longer to run than its
sequential counterpart (4.0 £ 0.6 min for (Clust+Seg) —
Req).

Using cross-validation, we demonstrated that the proposed
model is able to reach a higher log-likelihood than its coun-
terparts, indicating a better ability to model the data. We will
now use this model to understand the effects of the pandemic
on public transport ridership.

3a computer with an Intel I7 @ 2.80GHz and a 15 Go RAM, along with
Ubuntu 20.04



Model validation LL parametes | are computed | cosfiients ate..
Reg — Clust — Seg —2.02 x 108 £+ 3.0 x 103 73 Sequentially Common
(Clust+Reg) — (Seg+Reg) | —1.96 x 10% +8.2 x 102 424 Sequentially Different
Clust+Seg 2.03 x 10% £ 5.6 x 103 34 Simultaneously Absent
Reg — (Clust+Seq) 2.05 x 10 + 5.9 x 103 73 Simultaneously Common
(Clust+Seg) — Reg 2.86 x 106 + 7.0 x 103 424 Simultaneously Different
Clust+Seg+Reg (Proposed) 3.14 x 10% £ 8.2 x 103 424 Simultaneously Different

TABLE III: The mean and standard deviation of the log-likelihood computed on the validation dataset, using five-fold cross-

validation. The best result is in bold.

E. Analysis of the results on public transport ridership

As mentioned at the beginning of the previous section, we
apply the proposed model with five clusters and two segments.
As the changes between segments are easier to explain than the
difference between clusters, we will begin by explaining how
the model provides insights into the public transport ridership
before and after the pandemic, before using this behavior to
understand how clusters differ from each other.

Figure 2 displays the sum of the mean and contributions
of the time and the year-periodic splines. As expected, the
mean of the second segment is noticeably lower than the first
segment’s, and the (positive) regression coefficient associated
with the time models the recovery of each cluster. The impact
of the pandemic on ridership is the gap between the recon-
structions of the two segments, when their prior probability is
equal (approximately early 2020, depending on the clusters).
As expected, the gap between the extension of the first segment
and the second segment is at its highest at the start of the
pandemic, after which the number of entries increase to model
the recovery of the network.

Given the importance of the pandemic on the population’s
trips, one could expect the model to pick up the start of the
pandemic (and the first lockdown) as the change point between
segments. What happened is slightly different: a major strike
occurred between December 2019 and January 2020. Even
though we created a dummy variable to model the effect of
this specific strike, one variable is not enough to model the
continuous recovery of the signal. As a consequence, for some
clusters, the model underestimates the effect of this strike,
and assigns the lowest days to the next segment, the segment
dedicated to the pandemic. This is why the transition between
segments is sometimes located at the very beginning of the
year 2020.

The small number of days assigned this way to the second
segment is not, however, enough to prevent the model from
accounting correctly for the events of the pandemic. In March
2020, the French government decreed a lockdown to fight
against the pandemic. While people were allowed to travel
to work, companies and institutions alike were encouraged
to implement teleworking to avoid their employees taking
public transport. After the end of the first lockdown, even
though travel for personal reasons became allowed again, the
teleworking measures remained in place to a certain extent and

kept on affecting public transport ridership. This is what we
want to measure with our model.

Another source of information is the regression coefficients
for each day of the week (fig. 3). Both segment one (cor-
responding to normal behavior) and segment two (during and
after the pandemic) have an increased number of entries during
the weekdays and a decreased ridership on weekends. But
when we look at the difference between the coefficients of
two segments, we notice that in several cases, the coefficients
associated with weekdays decreased with the pandemic and
the weekend’s coefficients increased. This means that the
difference between weekdays and weekends is less noticeable
after the pandemic. We hypothesize that this effect is due to
the use of teleworking policies that reduced the number of
commuters using public transport every day. Please note that
fig. 3 is not affected by modal shift, as the effect of the sum
of the seven covariates is absorbed by the mean (my 5 in eq.
5) and not the variables encoding for the day of the week.
The influence of the covariates varies from cluster to cluster,
which will be helpful when understanding what makes clusters
specific.

To know which features distinguish one cluster from an-
other, the first method is to look at the regression coefficients
(fig. 3). We perform a t-test on the difference of regression
coefficients across a couple of clusters to know which are the
coefficients that change significantly between two clusters. To
compare clusters, we focus on the first segment, corresponding
to a more usual behavior. Although the entries of all clusters
increase during weekdays and decrease during weekends, the
amplitude of weekly variations differs between clusters which
is informative to us.

The first cluster has the highest variations between week-
days and weekends, indicating a higher rate of commuters
than the other clusters. It includes stations from the North,
West, and South suburbs, as well as the center and West Paris
boroughs (results not shown), two regions with moderate to
high rates of employments-to-surface [9]. As we expected,
the stations with the highest weekly variations are also those
where this variation dampened the most after the pandemic:
the stations with the most commute are also the ones where
teleworking policies are the most impactful on public trans-
port.

The next three clusters have average weekly variations.
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computing the coefficients such that the effect of the sum of the coefficients is absorbed by each segment’s mean (which does

not appear on this figure).

Cluster two is, by all accounts, close to the average, except for
its variance (see table IV): both its first and second segment
have particularly low variances. This means that this cluster
is dedicated to stations with little noise and average weekly
variations.

Conversely, cluster three has a noticeably high variance
before the pandemic. This means that this cluster comprises all
the stations where variations in the number of entries cannot
be explained using the covariates. Surprisingly, variance in the
second segment is moderate.

Cluster four stands out for its high variance after the
pandemic. It groups all stations for which the number of
entries cannot be accurately explained using the covariates
we provided (such as the official lockdowns, for instance).
It should also be noted that the decrease in the number of
entries in these stations is the largest out of all five clusters,
along with cluster three (fig. 2). This is compensated by the

highest recovery rate of all clusters: if we consider the impact
of time on the logarithm of the number of entries, the number
of entries in the second segment increases by 74% per year
on average. In comparison, the second segment of cluster
three increases by 60% per year, while the other three clusters
increase by 37% to 42% per year during the period following
the pandemic. Thus, cluster four comprising all the stations
whose series of entries were affected by the pandemic.

Finally, cluster five has the smallest differences between
weekdays and weekends of all the clusters. Like cluster two, it
has a small variance, indicating that the stations in this cluster
have variations which the model explains correctly using the
exogenous variables. The decrease in the number of entries
(fig. 2) is among the lowest of all clusters, along with cluster
two. Geographically, the stations in this cluster are located
almost exclusively in inner Paris (table IV), where housings
are the most common [9].



Cluster Variance of Variance of Average distan_ce to
segment one | segment two | the center of Paris (km)
1 1.8x 1072 | 5.4x 1077 16.5
2 5.7x 1073 | 2.2x 1072 7.2
3 3.5x1072 | 5.1x1072 16.0
4 7.9%x 1073 | 1.7x 107! 11.8
5 48 x 1073 | 1.7x 1072 5.8

TABLE IV: The variance in each segment of each cluster,
along with the average distance between the stations in the
cluster and the Center of Paris.

To sum up, the main element that distinguishes the clusters
is the degree of variation between weekdays and weekends:
clusters one and five have the largest and smallest variations,
respectively. Among the middle three clusters, one of them
(cluster two) had a small variance around an average behavior,
while the remaining two had a high variance either before of
after the pandemic. Surprisingly, no cluster had particularly
high variance for both its segments. Additionally, one could
have expected the consequences of the pandemic to be more
diverse on the stations with high a commute, but the model
groups all these stations into a single cluster.

V. CONCLUSION

Clustering, segmentation, and regression are three well-
explored research problems, to the point the intersection
between any two of them has been covered in the literature.
We extended the clustering-segmentation model from [18],
and completed it by adding the contribution of exogenous
variables. We developed the estimation of parameters using the
Expectation-Maximization algorithm, and experimented with
it on both synthetic and real data, demonstrating the interest
in a joint estimation of parameters as opposed to a sequential
one.

Using this model on a dataset of entries in the Paris public
transport network allowed us to understand how the Covid-19
pandemic affected the public transport ridership. As expected,
all stations saw the number of entries decrease sharply at the
start of the first lockdown, with a slow recovery during the two
years that followed. In addition, most clusters saw the number
of entries further decrease during weekdays and increase
during weekends, compared to their respective pre-pandemic
levels. We attribute this effect to teleworking policies all
the more so because the cluster which is defined by the
highest proportion of commuters saw the strongest decrease in
ridership during weekdays and the strongest increase during
weekends. Whenever the variables we provided are not enough
for the model, the model assigns a high variance to the
concerned segment, as this was the case for another of the five
clusters the model uncovered: the second segment of cluster
four had a high variance, indicating that the evolution of the
time series assigned to it is more irregular than the simple
effects we included in with the covariates.

The next step would be to find a way to reduce the compu-
tational load of the proposed model. One could, for instance,
think about initializing the EM algorithm with coefficients

found from a simpler version of the model. Another possibility
for improvement would be to use model selection criteria
to choose the number of segments automatically, such as
penalized criteria (BIC, AIC, etc.) or dedicated heuristics [1].
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