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Abstract—This paper presents PathFinder and PathFinder-
Plus, two novel end-to-end computer vision frameworks designed
specifically for advanced setting strategy classification in vol-
leyball matches from a single camera view. Our frameworks
combine setting ball trajectory recognition with a novel set
trajectory classifier to generate comprehensive and advanced
statistical data. This approach offers a fresh perspective for
in-game analysis and surpasses the current level of granular-
ity in volleyball statistics. In comparison to existing methods
used in our baseline PathFinder framework, our proposed ball
trajectory detection methodology in PathFinderPlus exhibits
superior performance for classifying setting tactics under various
game conditions. This robustness is particularly advantageous in
handling complex game situations and accommodating different
camera angles. Additionally, our study introduces an innovative
algorithm for automatic identification of the opposing team’s
right-side (opposite) hitter’s current row (front or back) during
gameplay, providing critical insights for tactical analysis. The
successful demonstration of our single-camera system’s feasibility
and benefits makes high-level technical analysis accessible to
volleyball enthusiasts of all skill levels and resource availability.
Furthermore, the computational efficiency of our system allows
for real-time deployment, enabling in-game strategy analysis
and on-the-spot gameplan adjustments. The source code of our
framework is publicly available1.

Index Terms—sports analytics, setting trajectory extraction,
setting tactics classification, deep learning, volleyball statistics

I. INTRODUCTION

Volleyball, one of the most popular team sports worldwide,
is renowned for its dynamic strategies and complex tactics.
Analyzing volleyball requires a detailed approach that consid-
ers many factors influencing each play. Over the past decade,
there have been significant strides in integrating computing
technology with tactical analysis in sports such as basketball
[8], [10], [11] and soccer [2], [9], [12]. In contrast to basketball
and soccer, the incorporation of computational assistance
for volleyball tactical analysis is still in its early stages,
holding considerable untapped potential. Current approaches
to recording volleyball technical statistics, such as service
errors, attack points, attack efficiency, and reception efficiency,

1https://github.com/volleyIEEE/VolleyStats

offer only a limited perspective of the game dynamics. These
metrics are often manually recorded during matches and lack
comprehensive support for in-game decision-making.

Scoring in a volleyball match primarily revolves around
attacking, which mostly occurs at the end of a rally. Teams
employ specific tactics and strategies to determine the optimal
player, target location, and technique for ball hitting. Thus,
understanding a team’s setting tactics and distribution during
the game is critical for both coaches and players. By under-
standing these tactics and distributions, players can adapt their
blocking and defensive strategies accordingly.

Advanced technical statistics [3], which include detailed
setting patterns and tactics, have been proposed to enhance
tactics and in-game analysis. These statistics differentiate
between front-row and back-row attack setting patterns (where
players jump from either in front of or behind the 3-meter line
as per volleyball rules [20]). Front-row and back-row attacks
require vastly different defensive strategies to counter. Thus
being able to differentiate between a front- and a back-row set
is highly important for volleyball analysis. Additionally, with
the evolving athletic capabilities of players, the frequency of
back-row sets has increased over the years, making it even
more relevant to accurately analyze these types of sets.

Despite their utility, these advanced statistics must be man-
ually labelled from post-game videos. Although current stats
are relatively straightforward, they are not universally adopted
due to the manual input process and the cost of training a
recorder. Therefore, the implementation of these advanced
setting pattern statistics in real games, especially in non-top
professional level games, is nearly impossible as it requires
recorders to possess extensive knowledge of volleyball.

Other sports such as basketball have paved the way by
successfully incorporating automatic methods to generate ad-
vanced stats that fulfill the demands of professional games and
expert analysts. Companies including STATS (Sports VU) [4],
Second Spectrum [5], and NBN23 [6] have commercialized
advanced game statistics using multi-camera detection. Given
the high cost of multi-camera usage, affordable alternatives
have also been introduced [7].
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In line with basketball, volleyball also needs an automatic
method to produce advanced statistics that meet the needs of
modern professional coaches and players, aiding them to make
on-court decisions. While Chen [13] and Chakraborty [14]
proposed a framework to automatically extract ball trajectory
and classify/detect the setting pattern, their methods do not
differentiate between front-row and back-row attacks. This dis-
tinction is becoming increasingly critical as modern volleyball
accelerates and places more emphasis on three-dimensional
attacks. Commercial solutions such as PlayfulVision [15]
provide tactical statistics for top-level volleyball games using
multi-view cameras. Some studies also demonstrate the supe-
rior performance of multi-view cameras [16], [17], [18] in ball
trajectory extraction. However, it is important to acknowledge
that volleyball, compared to football and basketball, receives
less investment, particularly in non-professional level matches.
Thus, it remains impractical to employ multi-angle cameras for
extracting volleyball information in regions with general levels
of play. Nevertheless, the popularization and advancement of
volleyball remain achievable goals.

To bridge this gap and empower players of average skill and
the general public with these advanced volleyball setting tac-
tics and pattern statistics, we propose a setting tactics pattern
recognition framework, PathFinder. PathFinder is a low-cost,
end-to-end Computer Vision framework that takes raw videos
of volleyball rounds as inputs and outputs detected advanced
statistics, including set tactic classification. Our PathFinder
framework, along with the improved PathFinderPlus frame-
work, serves as a promising foundation for showcasing the
current possibilities of automated advanced volleyball analysis,
yielding satisfactory results across various video angles and
qualities. Notably, our framework is designed to work with a
single camera and incorporates back-row attack recognition.
This not only promotes a deeper understanding of volleyball
but also enhances the overall enjoyment of the sport, ultimately
driving the further growth and popularity of volleyball.

Our framework offers three significant advantages. Firstly,
it aligns well with current match recording practices, as
many coaches save game recordings round-by-round during
the match. Our framework is capable of directly analyzing
these recordings and generating an advanced version of real-
time setting tactics and pattern statistics, aiding coaches in
making informed decisions during the game. Secondly, our
solution eases the burden on statistic recording personnel,
removing the need for a background in volleyball or an
understanding of complex data recording tasks. Lastly, our
framework exhibits extensive applicability, catering to various
levels of play, including university, high school, and other non-
professional games. Irrespective of the specific setting, as long
as a camera is available, our algorithm can be easily deployed
for analysis and statistics generation.

In summary, our contributions are primarily four-fold:
• We propose the first end-to-end computer vision frame-

work capable of detecting and classifying volleyball set-
ting patterns, including distinguishing between back-row
and front-row setting patterns.

• We introduce PathFinderPlus, a modified version of
our PathFinder framework with a novel ball extraction
method that improves the performance of our setting pat-
tern classifier by 4%-5% under various game conditions.

• We are the first to propose an algorithm that leverages
rally scoring information to determine if the opposing
team is in the back-row or front-row, which can be
expanded to track all player game rally rotations.

• Finally, our system’s high computational efficiency allows
for real-time deployment. This can enable coaches and
players to analyze in-game strategies and make on-the-
spot adjustments to their game plans based on the statis-
tics generated by our system. In addition, the system’s
capability for after-game film study could provide an
additional tool for teams to review their performance and
strategize for future matches.

The remainder of this paper is organized as follows. Section
2 discusses related work. The formal problem description is
in Section 3. The proposed framework is described in Section
4. Experiments and results are discussed in Section 5. A
discussion of future work is presented in Section 6.

II. RELATED WORK

In this section, we review related work on automated setting
pattern classification, as well as volleyball trajectory extraction
methodologies.

A. Automatic setting pattern detection and classification

With the modernization of volleyball, athletes’ physical
fitness is continually improving, leading to increased speed
and height in attacks. As the game progresses, acquiring real-
time tactical statistics of the opposing team has become more
important than ever. Existing statistical methods, however, are
inadequate for monitoring the distribution of the opponent’s
tactics. Volleyball experts constantly emphasize the importance
of real-time access to detailed tactical distribution statistics
of opponents, as this information enables coaches to analyze
potential setting routes used by the opponents in critical
moments, allowing them to establish suitable blocking and
defensive systems. This is crucial for securing key points and
ultimately, winning the game. Therefore, introducing a more
advanced method for setting distribution statistics is essential.

In a 2012 article [13] by Chen, the author proposed a classi-
fication concept for setting tactics. However, this classification
has become less significant in modern volleyball era because
the importance of back-row attacks has significantly increased
over the past decade, and the blocking defense formation
corresponding to back-row attacks is completely different from
front-row attacks. Failure to distinguish the difference between
these setting patterns can result in ineffective defense and
negatively impact the team as a whole. Xia [3] introduced
a technical statistical model in his article that better addresses
the requirements of volleyball experts, incorporating separate
concepts for front and back-row tactics. However, the im-
plementation of their methods for recognizing setting tactics
relied on manual labeling, which is challenging to achieve
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in real-time gameplay. This is because accurately identifying
and categorizing each tactic would necessitate the recorder
possessing a moderate level of volleyball knowledge, which is
often unrealistic for most locations and levels of matches.

B. Ball extraction methodologies

To achieve the objective of automatically recognizing and
classifying set patterns, the initial step involves extracting
the ball trajectory from video footage. Playfulvision [15],
Takahashi [16], Chen [17], and Cheng [18] have intro-
duced methods for trajectory recognition using 3-D multi-
view cameras. However, these methods do not align with
our goal of providing players at all levels with access to
the advanced technical statistics offered by our framework
since it is challenging to ensure the availability of multi-
view cameras in most games, expecially at lower levels. For
trajectory recognition with a single camera, Chen [13] and
Chakraborty [14] combined physical methods with traditional
computer vision (CV) techniques for trajectory recognition in
2011 and 2012, respectively. However, as volleyball’s speed
continues to increase, these methods face greater challenges.
In 2020, Toporov [19] proposed a fusion of deep learning and
traditional computer vision for trajectory recognition which
provides improved performance and speed. We have based our
ball extraction methodologies in our PathFinder framework off
of Toporov’s method [19], as well as improved upon it in our
PathFinderPlus framework.

III. PROBLEM FORMULATION

In modern volleyball games, single-camera in-game videos
are commonly used to facilitate coaches’ technical analysis
post-game. These recordings are typically captured from a
camera placed behind one of the teams, allowing for a round-
by-round documentation of the game for meticulous exam-
ination. Since our input data follows a similar round-based
structure, we frame our problem formulation accordingly:

A. Inputs

• G = {g1, g2, ..., gn}: A volleyball game is represented as
a series of rallies, where each rally gi is a sequence of
rounds gi = {r1, r2, ..., rm}.

• R = {r1, r2, ..., rm}: Each round consists of a series of
video frames ri = {v1, v2, ..., vk} depicting the volleyball
play during that round.

• B = {b1, b2, ..., bq}: Within each round, a sequence of
the ball’s positions are detected from the video frames,
represented as the trajectory of the ball B.

B. Outputs

T : a set of volleyball tactics, T = {t1, t2, ..., tp}, identified
for each round in each rally of the volleyball game.

C. Objective

Our objective is to accurately identify and classify the
setting tactics T used in each round of a volleyball game, given
the input video frames V in each round and the ball’s trajectory

B. This can be formalized as an optimization problem where
the accuracy of our tactic classification is maximized:

maximize: accuracy(T, Tdetected),

where Tdetected are the tactics detected by our model for each
round, and accuracy is a function that calculates the fraction
of correct tactic detections in each round. The exact definition
of accuracy can vary but is usually defined as

accuracy(T, Tdetectd) =
number of correct detection
total number of detection

.

This optimization problem consists of two parts: ball trajec-
tory detection and tactic classification. In order to complete our
objective, we must first achieve precise ball detection in the
video frames V to extract the ball’s trajectory B. However,
due to the typically poor quality of cameras used in filming
volleyball games, even with advanced computer vision models,
this task poses significant challenges. After detecting the ball
trajectory, our next step is to determine what setting tactic
T was used. Accurate set tactic classification would enable
automated detection and labelling of one of the most important
advanced volleyball variables analyzed in Xia et al. [3].

IV. METHOD

In order to automatically classify volleyball setting strate-
gies and patterns from the video, we break the framework
down into the following steps: Ball’s Trajectory Extraction,
Setting Trajectory Extraction, opposite Front-Back-Row Ro-
tation Recognition, and Setting Path Classification. With all
these steps combined, we call this framework PathFinder.

A. Ball Trajectory Extraction

1) Initial Volleyball Extraction Methodologies
We initiate our analysis by applying established Computer

Vision (CV) techniques, i.e., pre-trained deep neural net-
work models such as YOLOv8 [22], for volleyball detection.
However, the challenges presented by poor camera quality,
noisy backgrounds, and variable ball designs have hindered
the success of pre-trained deep neural network models in
achieving accurate trajectory prediction, making it largely
unfeasible. Recognizing the limitations of solely relying on
these pre-trained deep neural network models, we explore a
combination of neural network and traditional CV techniques,
specifically tailored for volleyball detection.

Toporov’s blended methodology for volleyball extraction
[19] consists of four primary phases: a preprocessing step for
ball detection using traditional CV strategies, a Convolutional
Neural Network (CNN) for ball tracking (Video processing &
model training in figure 1), a step for path trajectory detection
(Video ball detection in figure 1), and a filter for ball trajectory
selection (ball trajectory selection in figure 1). The prepro-
cessing phase involves applying Gaussian Blur, Background
Subtraction, morphological operations, and Contour Detection
to identify potential ball areas from a series of images.
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Figure 1. Overview of the PathFinder and PathFinderPlus frameworks is presented. The PathFinder framework incorporates Toporov’s ball trajectory extraction
method [19] (represented by the uncolored blocks), along with our proposed Setting Pattern Extraction and Setting Pattern Detection Classifier (represented by
the yellow blocks) to yield the outcome of the setting pattern tactics classification (represented by the green block). The PathFinderPlus framework enhances
the PathFinder by integrating the PathFinderPlus filter (represented by the blue block) to achieve improved setting trajectory extraction results.

Specifically, Gaussian Blur is employed to minimize high-
frequency noise in the images, resulting in smoother images.
The Gaussian function in two dimensions is represented as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (1)

where x and y represent the horizontal and vertical distances
from the origin, respectively, and σ denotes the standard
deviation of the Gaussian distribution, the selection of which
is automated.

Subsequently, a Background Subtractor is utilized to dif-
ferentiate static and dynamic elements in the video footage.
Morphological operations, namely dilation and erosion [23],
are executed to minimize noise and refine the segmented
foreground. Finally, contours are detected and outlined around
potential ball regions. These potential ball regions are fed
into a pre-trained CNN model for ball classification and
tracking. The CNN model, constructed using the Keras library,
consists of two Convolutional layers (32 filters for the first
and 64 for the second, both with a filter size of 3x3 and
ReLU activation), two Max Pooling layers, a Flatten layer, a
Fully Connected layer with 64 neurons and ReLU activation,
a Dropout layer with a rate of 0.1, and a Softmax output
layer with two neurons. The model was compiled using the
Stochastic Gradient Descent (SGD) optimizer with a learning
rate of 0.01, categorical cross-entropy as the loss function, and
accuracy as the performance metric. The model was trained

on a dataset of 32x32 RGB images for 50 epochs with a batch
size of 32. The trained model weights and architecture were
saved for subsequent usage.

In the post-detection phase, this method [19] utilized a
custom-defined Blob class to track and manage the identified
balls. This Blob class represents an object being tracked and
updated at each frame according to the CNN output. It contains
variables such as “id” (a unique identifier for each blob), “pts”
(a list that stores the positions of the blob), and status (status
of the blob such as “still” or “directed moving”).

During tracking, each Blob object maintains a “pts” list,
to which the new position of the ball is appended at each
frame. This list effectively forms the trajectory of the ball, as it
records all the ball positions in a time-sequential manner. This
“pts” list is then utilized to predict the ball’s next position. It
is assumed in the method that the ball’s movement is uniform
in the short term, hence the next position of the ball can be
predicted by fitting a linear model on the most recent positions.

Additionally, the Blob object also holds a “status” property
to denote the status of the ball, such as whether it is moving
and the direction of its movement. If the ball’s position
changes between two consecutive frames, the method updates
its status to “directed moving”. Otherwise, the status remains
“still” if the ball’s position does not change or if the ball direc-
tion is not the same during the last three frames. This process
can be denoted as the new added point (x, y), the second last
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point (x−1, y−1), and the third last point (x−2, y−2) in each
1-d array in the “pts”. The method defines dx1 = x − x−1,
dx2 = x−1 − x−2. If dx1 · dx2 > 0, it indicates that they
are in the same direction. The y direction can be checked in
a similar way. For the condition of being “still”, we check the
distance between the newly added point (x, y) with the second
last point in each 1-d array in the “pts”. If the distance is less
than a threshold (e.g., 5 pixels), we consider the ball as “still”.
This mechanism allows us to detect the ball’s movement status
while tracking it.

By utilizing the Blob object, we gain access to crucial
information about the ball, including its real-time position,
movement trajectory, and status. To facilitate this, we created
a list of Blob objects, which serves as a container for storing all
detected balls within the current frame. Through an iterative
process, we iterate over this list, enabling us to update the
position and status of the ball. This procedure ensures the
continuous tracking and monitoring of moving balls, providing
real-time updates on their positions and status.

Upon completing the tracking process, the final recognized
trajectories consist of the “pts” arrays of all Blob objects
with the status “directed moving”. These trajectories represent
the continuous paths followed by all detected balls exhibiting
directed movement throughout the series of video frames,
hence providing valuable data for further tactical analysis.

However, this original method has its limitations as it only
considers whether the most recent movements are in the same
direction without effectively filtering false positives. This can
lead to inaccuracies as it neglects the overall trend of the ball
movement, but instead focusing on localized changes between
frames. For instance, certain paths might be mistakenly la-
beled as “still” because the method was influenced by a few
false positives towards the end of the trajectory. These false
positives could briefly divert the direction of the ball, causing
the method to inaccurately update the ball’s status to “still”.
This scenario higlights the potential issues when the analysis
only considers recent movements without studying the overall
trend of the ball’s movement.

2) The PathFinderPlus Ball Detection Approach
To address the limitations of the original ball extraction

method describe above, we propose an improved blended ball
detection and trajectory tracking algorithm. The new method
is called PathFinderPlus, the same PathFinder framework but
with superior ball detection and tracking ability. The PathFind-
erPlus ball detection method introduces a filter including two
new mathematical functions, namely evaluateXDecrease and
evaluateXIncrease.

The evaluateXDecrease function is defined as follows: given
a series of points (x1, y1), (x2, y2), . . . , (xn, yn) in the “pts”
list, we calculate the differences between consecutive x-
coordinates, dxi = xi+1 − xi for 1 ≤ i < n. We then
determine if a majority of these differences are negative.
Similarly, the evaluateXIncrease function checks if a majority
of these differences are positive. Mathematically, this can be
interpreted as checking if the derivatives of most of the x-
coordinates are negative or positive, respectively.

Furthermore, the PathFinderPlus Filter function has been
added to the Blob class, which applies the majority decreasing
or increasing check on the path of the ball. If a majority of
the x-coordinates in the path follow a decreasing or increasing
pattern, the ball’s path is considered as a valid trajectory.

This global approach is beneficial since it considers the
overall trajectory of the ball rather than just the most recent
movements. This is particularly useful when there are false
positives in the “pts” array, which may temporarily deviate
the ball’s trajectory but do not affect the overall movement
direction. Even if such points appear at the end of the tra-
jectory, our method would still be able to correctly recognize
the general movement trend, making it more robust than the
original approach. Therefore, with the PathFinderPlus ball
detection method, we can more accurately recognize and track
the path of moving objects, even when they have some slight
changes in their direction due to less-than-ideal ball detection
with the poor camera quality. The PathFinderPlus ball tracking
algorithm also allows us to track and update the status and
position of each detected ball in real-time, achieving continu-
ous tracking of moving balls, but with improved accuracy and
robustness compared to the original approach.

We are aware that there are other numerical methods for
curve fitting and outlier detection [13], [17] that can be
used for ball tracking. For instance, according to the laws of
physics, a ball in motion influenced by gravity will follow
a parabolic trajectory. By considering the general viewing
conditions, where a 3D parabolic curve is projected onto a 2D
plane, we can utilize quadratic fitting techniques to predict the
future locations of the ball based on its trajectory observed in
the game video.

Regarding outlier detection, standard RANSAC [21] outlier
filtering methods can be employed to identify and elim-
inate outliers in the ball detection process. However, we
chose not to utilize such methods for two primary reasons.
Firstly, PathFinderPlus’s straightforward global approach al-
ready demonstrates satisfactory performance in handling out-
liers. Secondly, since our system is designed for real-time
game strategy analysis, we prioritize computational efficiency.
Simpler numerical methods tend to excel in this aspect. In our
testing, the PathFinderPlus framework can process a round
of data in 16.83 seconds on average on a Macbook Pro
equipped with an Apple M1 Pro chip. The average round
clip length consists of 152 frames and takes around 6.33
seconds on average. This performance already allows for
near real-time analysis. Additionally, considering the breaks
between volleyball rallies, which typically last between 15 to
20 seconds (between points scored and the next serve), our
framework has even more leeway to achieve real-time analysis
during a volleyball match. Furthermore, opting for simpler
methods not only supports real-time analysis but also opens
up possibilities for IoT (Internet of Things) deployment and
reduces hardware requirements, making it more accessible for
traditional deployments.
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B. Setting Trajectory Extraction

Both the originally proposed blended volleyball extraction
methodology and our PathFinderPlus volleyball detection ap-
proaches are only the first step in our proposed PathFinder
pipelines. Next we extract the trajectory for the set specifically
in order to make a set tactic classification.

In the context of volleyball, a round is typically concluded
by a setting action, as it marks the transition to an attack
against the opponent’s court. Each video segment captures
the relevant time span, starting from the pass (or opponent’s
attack) that initiates a team’s possession and ending at the
moment when the ball is struck, concluding the possession.
The extraction of the ball’s path is synchronized with this
specific period, ensuring that the trajectory of the set should
be the final major trajectory within a round.

In the previous sections, we introduced the “pts” array.
Now, in the context of the ’Setting Trajectory Extraction,’
we will apply additional processing to this “pts” array to
extract the valid setting trajectory for analysis. Mathemat-
ically, a “pts” array can be represented as a 2D array
PTS = [A0, A1, . . . , AM−1], where each Ai is a 1D ar-
ray containing two elements that represent the ball’s 2D
screen positions during the corresponding video frames. The
outcome of our framework can be represented as R =
[PTS0, PTS1, . . . , PTSN−1], where each PTSi is a “pts”
array. Given that the act of setting predominantly occurs
towards the end of a rally, we focus our attention on the
terminal ball path within the video segment.

A filtering procedure is then executed to retain only those
arrays PTSi that satisfy PTSi ≥ 9. The threshold value of
9 is empirically derived based on the observation that valid
setting actions generally yield longer ball path arrays, while
shorter arrays more likely indicate false positives or data noise.

We define a function S(i) : {0, 1, . . . ,M − 1} → PTS′ ∪
{[0, 0]}, where PTS′ is the filtered ball path array. S(i)
returns PTSi if PTSi ≥ 9. If no such PTSi exists, S(i)
defaults to [0, 0]. Hence, the final ball path array utilized for
trajectory analysis corresponds to S(M − 1), signifying the
last valid segment in the processed ball path array, or [0, 0] in
the absence of valid paths.

During this process, we analyze the ball paths in reverse
order to extract the setting path more effectively. We remove
arrays with a length less than 9. This approach is based on
the rationale that, in a volleyball game, the setting action
typically constitutes the last substantial trajectory within a
round. Any shorter trajectories that follow the setting action
are considered noise and are disregarded. In addition, any
trajectories preceding the setting action are not relevant to
set tactic detection (hence the analysis of the video clip in
reverse). To maintain a focus on efficiency and the possibility
of fast IoT implementation, we refrain from employing a more
complex analysis for trajectory segmentation (i.e., segmenting
the trajectory in a round into multiple, sequential quadratic
curves, with each quadratic segment representing the ball’s
trajectory after a contact with a player, the floor, the net, or

the net antenna [13], [17]).

C. Opposite Front-Back-Row Rotation Recognition

In modern volleyball, the attack from the back row on the
right side of the court, commonly referred to as the “D-ball”, is
highly significant. The defensive formation required to counter
the back-row attack differs greatly from that needed for the
front-row attack, specifically the right-side attack, also known
as the “Opposite” attack. Therefore, it is crucial to distinguish
between the back-row attack (D-ball) and the regular front-
row attack (Opposite). To tackle this challenge, we introduce
the rotation check procedure.

To understand the rotation check procedure, it is important
to discuss the rotation rules in volleyball. The rotation rules
in volleyball dictate the positions of the six players on each
team during a game. The court is divided into six numbered
positions from 1 to 6, as illustrated in Figure 2. Positions 1,
5, and 6 are in the back row, while positions 2, 3, and 4 are in
the front row. The 3-meter line, indicated by the white dashed
line, separates the front row from the back row. This line is
crucial in regulating attacks, as players in the back row have
certain restrictions when attacking the ball, such as needing to
jump from behind the 3-meter line. Position 1, known as the
serving position, is located in the right back area of the court.

When the receiving team (Team A) wins a rally while the
serving team (Team B) is serving, Team A regains the serve
and undergoes a rotation. During this rotation, the players
on Team A shift their positions in a clockwise direction.
Specifically, the player in position 2 moves to position 1 to
assume the serving role, the player in position 3 moves to
position 2, and so on. This rotation cycle ensures that players
adopt different roles and positions throughout the match.

The rotation check procedure recognizes if the “Opposite”
player, the position referring to the player that hits on the right
side of the court (e.g., the “opposite” and “d-ball” attacks), is
currently in the front or back row. The players’ locations will
determine if they will be making an “opposite” attack or a
“d-ball” attack. We use several notations in this procedure, as
outlined in the table I:

4 3 2

165

Net

Figure 2. Traditional volleyball court with numbered positions and the 3-
meter line.

Algorithm 1 provides details about the implementation
of the rotation check procedure. The algorithm begins by
initializing the Opposite positions (Lines 5-6), goes through
every file and updates the Opposite’s position based on the
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Table I
Opposite Backrow Check Notation table

Symbol Description
posA, posB Initial rotation positions of teams ’A’ and ’B’
files Sorted array of files (strings following the pattern “score round team”)
score , prevScore The current and previous rally number in the set (resets to 1 with each new set)
round , prevRound The current and previous round in the rally(resets to 1 with each new rally)
team , prevTeam Team that received the serve first in the current and previous rally
BackRowA, BackRowB Boolean lists for back-row status of each rotation for teams ’A’ and ’B’
ListA, ListB Lists of rotation positions for teams ’A’ and ’B’
oppA, oppB Current rotation positions for teams ’A’ and ’B’

current and previous rallies (Lines 7-18), and finally checks
if the Opposite position is in the back row (Lines 19-23).
This procedure is essential for distinguishing between front-
row and back-row Opposite attacks. As front-row and back-
row Opposite attacks have distinct characteristics, the ability
to differentiate them can significantly aid in improving the
coaches’ in-court decision-making.

Algorithm 1 Opposite Back-Row Check
Require: posA, posB ,files
Ensure: BackRowA,BackRowB

1: Procedure RotationCheck(posA, posB ,files)
2: ListA,ListB ← {}, {}
3: oppA, oppB ← InitialA, InitialB
4: for i = 0→ len(files)− 1 do
5: if i = 0 then
6: oppA, oppB ← posA, posB
7: else
8: score, round , team ← split(files[i],′ ′)
9: prevScore, prevRound , prevTeam ← split(files[i −

int(split(files[i− 1],′ ′)[1])])
10: if team ̸= prevTeam and score ̸= prevScore then
11: if team = a then
12: oppB ← ((oppB − 1) mod 6) or (6 if oppB is

0 after mod)
13: else
14: oppA ← ((oppA − 1) mod 6) or (6 if oppA is

0 after mod)
15: end if
16: end if
17: end if
18: ListA,ListB ← ListA ∪ {oppA},ListB ∪ {oppB}
19: end for
20: for i = 0→ len(ListA)− 1 do
21: ListA[i],ListB [i] ← ListA[i] ∈ {1, 5, 6},ListB [i] ∈

{1, 5, 6}
22: end for
23: BackRowA,BackRowB ← ListA,ListB
24: End Procedure

D. Setting Path Classification

The setting path is a crucial element in a volleyball match
as it reveals the strategic intentions of a team, providing
valuable insights for the coach’s decision-making process. In
the preceding sections, we have discussed the methodology for
detecting the ball’s trajectory, extracting the set pattern, and

determining the position of the “Opposite” player in the front
or back row using a single-camera video. The notations and
definitions used in the algorithm are summarized in Table II.

To this end, we present an algorithm designed to auto-
matically recognize and classify setting paths based on the
positions of the setter and hitter, as well as the trajectory of
the ball. The PathFinder algorithm also has the capability to
output intermediate-step advanced variables such as setter and
hitter contact heights. The detailed set classification process is
outlined in Algorithm 2. Note that the Coefficients Q, M, S,
and C are heuristic values determined through manual analysis
by volleyball experts and scaled by the net width in the 2D
camera space to accommodate different game scenarios and
technical camera angles. In essence, this algorithm examines
the maximum height of the set trajectory and the starting and
ending locations to determine the set tactic using these specif-
ically crafted heuristics. The two main factors that distinguish
different set tactics are the height of the set, which also decides
the speed of the set, and the relative location of the hitter with
respect to the setter. These fundamental factors provide a clear
framework for a heuristic-based approach to set tactic classi-
fication. With the completion of the set classification step, the
PathFinder and PathFinderPlus frameworks are finalized.

Table II
Setting Trajectory Analysis Notation Table

Symbol Definition
B A 2D array representing the ball’s trajectory.
LNX The x-coordinate of the left side of the net.
RNX The x-coordinate of the right side of the net.
UNY The y-coordinate of the top of the net.
LNY The y-coordinate of the bottom of the net.
BRA Boolean indicating if there is a back row player ready to spike in team A.
BRB Boolean indicating if there is a back row player ready to spike in team B.
TR String indicating which team is receiving the ball (’A’ or ’B’).
P1, P2, P3, P4 Points used to divide the court into five equal sections based on x-axis.
NW Net Width.
SP,HP The positions of the setter and hitter along the x-axis, respectively.
HY A The average of the y-coordinates at the highest points of the ball’s trajectory.
XD The x-coordinate difference between the hitter and the setter’s positions.
T The type of the tactic finally inferred.
Q,M,S,C Heuristic Coefficients for different tactics scaled by net width

E. Method Summary
In this section, we have presented a comprehensive method-

ology for analyzing various aspects of a volleyball game using
a single-camera recording. Our PathFinder frameworks are
based on innovative techniques and algorithms, and are divided
into four primary subsections, each addressing a unique aspect
of the volleyball game analysis.

Our method goes beyond simple ball tracking and incorpo-
rates strategic patterns and player rotations, which are essential
for understanding the game dynamics. This comprehensive
approach provides the capability to extract meaningful insights
from match recordings, which can significantly aid coaches
in improving their tactics and strategies. The algorithms pre-
sented in these subsections work in synergy, with the outputs
of one procedure serving as inputs to the next. This integrated
system allows for a seamless flow of information and analysis,
enhancing the overall effectiveness of the framework.

In the next section, we aim to empirically validate our
method by demonstrating its effectiveness and reliability
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Algorithm 2 Analyze Setting Trajectory
Require: B,LNX,RNX,UNY,LNY,BRA,BRB, TR
Ensure: T

1: ProcedureAnalyze TrajectoryB, LNX , RNX , UNY ,
LNY , BRA, BRB, TR

2: P1, P2, P3, P4← CalculateAreas(LNX,RNX)
3: NW ← UNY − LNY
4: SP,HP ← mean(x[B[1 : 3]]),mean(x[B[−3 : −1]])
5: HY A← mean(y[sort(B, by = y)[1 : 5]])
6: XD ← HP − SP
7: if TR ==′ b′ then
8: if XD > 0 and XD ≤ 1

5 (RNX−LNX) and HY A >
Q ·NW then

9: T ← “Quick”
10: else if XD > 1

2 (RNX−LNX) and XD ≤ 3
2 (RNX−

LNX) and HP > 1.5·P1 and HP < P4 and HY A >
M ·NW then

11: T ← “Thirty-One”
12: else if XD < 0 and abs(XD) ≤ 1

3 (RNX − LNX)
and HY A > Q ·NW then

13: T ← “Back-One”
14: else if SP < P3 and SP > P1 and HP > P3 and

HP < P4 and HY A > S ·NW then
15: T ← “Short”
16: else if HP > P3 + 1

2 (P4− P3) then
17: T ← “Outside”
18: else if HP > P1 + 1

2 (P2 − P1) and HP < P3 +
1
2 (P4− P3) and HY A < C ·NW then

19: T ← “Bic”
20: else if HP < P1 + 1

2 (P2− P1) then
21: if BRB then
22: T ← “D-ball”
23: else
24: T ← “Oppo”
25: end if
26: else
27: T ← “unknown”
28: end if
29: else
30: Perform the same operations and logic as above for

team ’b’, but with x directions mirrored for team ’a’ on
the opposite side of the net

31: end if
32: return T

through tests conducted on various volleyball match record-
ings. By providing a comprehensive view of volleyball game
analysis, our framework aims to empower coaches, players,
and analysts to gain deeper insights, interpret game data more
effectively, and ultimately improve team performance.

V. EXPERIMENTS AND RESULTS

In this section, we will present the experimental setup and
results to validate the effectiveness of our setting strategy clas-
sification framework, referred to as “PathFinder”. Furthermore,

we will analyze the performance of our proposed improved
ball detection methodology in “PathFinderPlus”.

A. Experiments Setup

For our experimentation, we gathered a dataset comprising
537 video clips of volleyball rounds, sourced from 1280 x
720p recordings of national team Men’s volleyball match play
from 2021-22 (including notable matches such as Cuba vs
USA). The experimental setup was designed to simulate two
common scenarios encountered in technical video analysis of
volleyball matches. In the first scenario (Fig. 3 a), the camera
is positioned parallel to the ground, capturing the game from
a horizontal perspective. In the second scenario (Fig. 3 b),
the camera is positioned at an angle to the ground, and the
recorded footage has a relatively complex background. These
two scenarios present different challenges for trajectory analy-
sis, player position recognition, and setting path classification.

(a) (b)

Figure 3. Illustration of the two scenarios used in the experiments. (A)
Scenario A: the camera angle is horizontal. (B) Scenario B: the camera angle
is slightly downward and the background is noisy.

1) Results
We compared the performance of our proposed PathFind-

erPlus with the existing methodology in PathFinder (without
our proposed PathFinderPlus filter), whose source code was
provided by the original authors, on our setting tactic classifier.
The accuracy of the setting tactic classification was assessed
across both scenarios. The comparison of the classification
results is summarized in Table III.

The results indicate that the PathFinderPlus ball extrac-
tion outperforms the existing blended methodology from
PathFinder as the first step of our pipeline in both scenarios.
Specifically, under the Horizontal Camera Angle condition,
the overall accuracy of PathFinderPlus set tactic classification
improved over baseline PathFinder from 67.32% to 71.24%.
Similarly, under the Non-Horizontal Camera Angle and Noisy
Background condition, PathFinderPlus demonstrated an in-
crease in overall classification accuracy from 45.89% to
51.52%. These results demonstrate the robustness of our
pipeline in handling diverse game situations and technical
video camera angles. For both ball extraction methods, our
framework exhibited a better classification performance under
the Horizontal Camera Angle scenario with a simple back-
ground than that under the Non-Horizontal Camera Angle and
Noisy Background scenario.
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Table III
Comparison of Set Detection Accuracy Under Different Experimental Conditions. “Thirty-one” type refers to a setting strategy where the middle blocker
hits the ball, with a gap existing between the setter and the hitter. “Quick” involves the middle blocker hitting the ball close to the setter. “Back-one” is

similar to “Quick” but here, the middle blocker hits the ball from behind the setter. “Out” refers to the ball being set to an outside hitter position. “Short”
refers to a setting strategy where the outside hitter will hit the ball inside, which is closer to the center of the court compared to a normal outside hit. “Bic”
refers to a back-row attack where the middle back (player positioned at 6) hits the ball. “Oppo” is used when the opposite (right-side) hitter (the one who

traditionally plays across from the setter in the rotation) hits the ball, and the opposite hitter is in the front-row at the time. “D-ball” is used when the
opposite hitter hits the ball and they’re positioned in the back-row.

Experimental Condition Method Accuracy (%) of Each Set Tactic

Thirty-one Out Oppo D-ball Quick Bic Back-one Short Total

Horizontal Camera Angle
PathFinder 36.36% 81.67% 83.33% 69.23% 18.75% 72.22% 25.00% 57.14% 67.32%

PathFinderPlus 36.36% 88.33% 83.33% 76.92% 18.75% 77.78% 25.00% 57.14% 71.24%

Non-Horizontal Camera Angle and Noisy Background
PathFinder 25.00% 60.61% 57.14% 60.00% 18.18% 42.86% 20.00% 33.33% 45.89%

PathFinderPlus 37.50% 69.70% 57.14% 60.00% 21.21% 42.86% 20.00% 33.33% 51.52%

B. Case Study: Analyzing the Accuracy Difference

There are two primary factors that contribute to the superior
performance of our ball extraction methodology in place of the
original blended methodology in our pipeline:

• Camera Angle and Background Complexity: Scenario
2 involves a camera angle and more complex back-
grounds, leading to instances where the ball might go
out of the frame, making it more challenging to track the
ball’s trajectory. This results in a decrease in accuracy
for both methods in Scenario 2 compared to Scenario 1.
However, PathFinderPlus manages to mitigate the adverse
effect to a certain extent due to its robust design, resulting
in higher accuracy under these challenging conditions.

• Frame Analysis Depth: The original methodology only
inspects the last three frames of a setting trajectory, lead-
ing to potential misclassifications. For instance, if the last
three frames happen to be false positives, the trajectory
will be labeled incorrectly. In contrast, our method incor-
porates a more comprehensive frame analysis, thereby
reducing the chances of such misclassification. Figure 4
(a) illustrates a ball trajectory drawn using the original
methodology. In this figure,the blue dots represent de-
tected ball locations categorized as “directed moving” and
included in the classification pipeline, while the green
dots represent detected ball locations labeled as “still”
and deemed invalid for classification. It is evident that the
trajectory of the ball is clearly a valid set trajectory, yet
it is considered invalid by the original methodology due
to false positives at the end of the trajectory. However,
Figure 4 (b) demonstrates the same ball trajectory labeled
by our PathFinderPlus ball detection algorithm. It suc-
cessfully recognizes this set trajectory as valid, allowing
it to be used for classification later in the pipeline. This
showcases the improved accuracy and reliability of our
PathFinderPlus methodology in differentiating between
valid and invalid ball trajectories.

We also note that “Thirty-one”, “Back-one”, and “Quick”
perform relatively worse than other setting tactics. The major-
ity of challenges lie in:

• Challenges of ball detection: Since all three tactics are
for middle blockers, who mostly have a lower setting

height and shorter setting distance than other positions,
it is difficult for the camera to capture the ball.

• Challenges of misclassification: In high-level volleyball
games, the setting height for “Bic”, where players hit
from the middle back-row, is similar, albeit with slight
differences from these three setting tactics. This similarity
poses a challenge in distinguishing them, leading to
misclassification.

(a) (b)

Figure 4. The green dashed line indicates the “still” trajectory status set,
i.e., the path is not valid. The blue dashed line indicates a “directed moving”
trajectory status set, i.e., the trajectory is valid. The white dot represents an
object mislabeled as a ball (e.g., a players’ head), possibly due to visual
similarities, but its movement does not even form a trajectory.

In summary, our proposed PathFinderPlus ball detection
methodology outperforms the existing ball detection method
when used in our set classification framework for volleyball
game analysis under varied conditions due to its comprehen-
sive video frame analysis and robust design. Beyond classifica-
tion, PathFinderPlus also enables the extraction of advanced
statistical data from raw volleyball match footage, offering
deeper insights for in-game analysis. Our method proves its
effectiveness in handling complex game situations and diverse
camera angles, making it a valuable tool for coaches, players,
and sports analysts. While both PathFinder and PathFinderPlus
show promising results, future work will focus on further en-
hancing the performance of PathFinderPlus, including the ball
detection methodology and the overall framework, under more
challenging conditions. Additionally, efforts will be made to
improve the classification accuracy of middle blockers’ tactics
and explore the extension of this methodology to other sports.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced and evaluated a novel frame-
work for advanced setting strategy classification in volleyball
matches. Our primary contributions are four-fold:

• Automated Advanced Statistics: With our PathFinder
and PathFinderPlus frameworks, we have provided com-
prehensive advanced statistical data for in-game analysis
fully automatically using a single camera. To our knowl-
edge, this level of granularity and automation in advanced
volleyball statistics has not been achieved before. Our
innovative end-to-end frameworks enable us to take raw
volleyball round videos as input and deliver advanced
volleyball set tactic classifications as output, empowering
coaches with timely and focused advanced setting tactics
statistics to assist them in making informed decisions
during matches.

• Novel PathFinderPlus Ball Trajectory Detection
Methodology: Our proposed ball trajectory detection
method in PathFinderPlus has been shown to outperform
the existing methodology in both a horizontal and non-
horizontal camera angle scenario with a noisy background
on setting tactic classification. This demonstrates the
robustness of our system in varied game conditions.

• Opposite Row Identification: In volleyball, the opposing
opposite hitter’s row (front or back) significantly affects
the team’s defensive strategy. We are the first to propose
an algorithm to automatically identify the opposite’s row
during gameplay, providing crucial insights for subse-
quent tactical analysis.

• Efficient Algorithm Design: As mentioned, our aim is
to provide this analysis in real time during a game so the
coaches and players can dynamically adjust strategies and
game plans. Hence, our design is geared toward simplicity
with potential for real time and IoT implementation.

Furthermore, our study underscores the feasibility and ad-
vantages of a single-camera system. This configuration is
not only cost-effective, but also widens the accessibility of
high-level technical analysis, making it available to volleyball
enthusiasts of varying skill levels and resource availability.

In the future, we envision extending this methodology to
track all player rotations throughout the game. We also plan
to enhance our system’s performance under more challenging
conditions and explore its application to other sports. We
aim to improve our framework accuracy and promote the
enjoyment of volleyball by providing sophisticated analytical
tools to a broader audience.
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