A Framework for Modeling Agent-Oriented Software’

Haiping Xu and Sol M. Shatz
Department of Eledrical Engineeaing andComputer Science
The University of Illinois at Chicago
Chicago,IL 60607
Email: {hxul, shatzZ}@eeds.uic.edu

Abstract

With the increasing importance of complex software
systems in the software industry, the nead for using agent
techndogies to devdop large-scale mnmercial and
indwstrial software systems is growing rapidly. Swch
systems are amplex and there is a pressng reed for
system nodeling techniques to suppat reliable,
maintainade and exensible design. G-Nets are a type of
Petri net defined to suppat modeling o a system as a set
of independent andloosely-couded modues. In this paper,
we first introduce an exension of G-Nets, agent-based G-
Net, as a generic model for agent design. Then to progress
from an agent-based design model to an agnt-oriented
model, new mechansms to suppat inheritance modeling
are introduwed. To illustrate our formal modeling
technique for multi-agent systems, an example of an agent
family in eledronic commerceis provided.

1. Introduction

With the increasing importance of complex software
systems in the software industry, the need for using agent
techndogies to develop large-scde @mmercia and
industrial ~ software systems is growing rapidly.
Techndogies for multi-agent systems (MAS) stem from
distributed artificial intelligence (DAI) reseach [1], and
MAS are usualy defined as concurrent systems based on
the notion d autonamous, readive, internally-motivated
agents in a decentralized environment [2]. The increasing
interest in MAS reseach is due to the significant
advantages inherent in such systems, including their ability
to solve problems that may be too large for a centraized
single agent, to provide enhanced speeal and reli ability, and
to tolerate uncertain deta and knovledge [1].

Althoughthere ae many efforts on developing multi-
agent systems, there is a ladk of reseach on forma
spedficaion and design o such systems [3][4]. As multi-
agent techndogy begins to emerge & a viable solution for

" This material is based upon work supported by the U.S. Army Research
Office under grant number DAAD19-99-1-035Q and the NSF under
grant number CCR-9988168

large-scde industrial and commercia applicaions, thereis
an increasing real to ensure that the systems being
developed are robust, reliable and fit for purpose [4].
Previous work on formal modeling multi-agent systems
includes: (1) using formal languages, such as Z, to provide
a framework for describing a system at diff erent levels of
abstradions; (2) using temporal modal logic to alow the
dynamic aspeds of agents; (3) designing formal languages,
such as DESIRE, for multi-agent spedficaion [4][12].
Unlike previous work, our approach uses the principle of
“separation o concerns’ in agent-oriented design. We
separate the traditional objed-oriented feaures and
reasoning mechanisms in ou agent-oriented software
model as much as possble, and we discusshow reuse can
be adieved in agent-oriented design.

In this paper, we extend aforma model, cdled a G-Net
(aform of Petri net [7]), to suppat inheritance modeling
of agent classes in multi-agent systems. The alvantage of
our forma mechanism is that it provides a dean interface
between agents with asynchronows communicaion ability
and suppats forma reasoning for an agent design.
Furthermore, our formal mechanism is based on Petri net
formalism, which is a mature formal model in terms of
both existing theory and tod suppat.

2. An Agent-based Model

2.1.The Standard G-Net M odel

A widely accepted software engineaing pinciple is
that a system shoud be composed o a set of independent
modues, where eath modue hides the internal detail s of
its processng adiviti es and modues communicae through
well-defined interfaces. The G-Net model provides grong
suppat for this principle [8]. G-Nets are an oljed-based
extension d Petri nets. We asaume that the reader has a
basic understanding o Petri nets [7], so we begin with
some introduction to the G-Net model. A G-Net system is
composed o a number of G-Nets, eahr o them
representing a self-contained modue or objed. A G-Net is
composed of two perts: a speda place cled Generic
Switch Place (GSP) and an Internal Structure (1S). The
GSP provides the @stradion d the modue, and serves as
the only interface between the G-Net and aher modues.

The IS amodified Petri net, represents the detail ed design
of the modue. An example of G-Nets is $own in Figure
1. Here the G-Net models represent two oljeds — the
Buyer and the Sdler. The generic switch places are
represented by GSP(Buyer) and GSP(Seller) enclosed by
ellipses, and the internal structures of these models are
represented by roundcornered redangles that contain the
detailed design d four methods: buyGoods(), askPrice(),
returnPrice) and sellGoods(). In G.IS, the internal
structure of G-Net G, Petri net places represent primitives,
whil e transiti ons, together with arcs, represent conredions
or relations among thase primitives. The primitives may
define locd adions or method cdls. Method cdls are
represented by speda places cdled Instantiated Switch
Places (ISP). A primitive beaomes enabled if it receves a
token, and an enabled primitive can be exeauted. Given a
G-Net G, an ISP of G isa 2-tuple (G'.Nid, mtd), where G’
could be the same G-Net G or some other G-Net, Nid is a
unique identifier of G-Net G’, and mtd is amethod defined
in G'.IS Eadh ISP(G’.Nid, mtd) denotes a method cadl
mtd() to G-Net G'. An example ISP (denoted as an elli psis
in Figure 1) is shown in the method askPrice() defined in
G-Net Buyer, where the method askPricg) makes a
method cdl returnPricg) to the G-Net Sdler to query
abou the pricefor some goodk.

/ buwGoods() askPrice() \ returnPrice() sell Goods() \

“ 3 5 7
ISP(Seller, IS(Seller,
sall Goods) refurnPrice()) calculate sell_
price goods
V\
2 “_y 6 ®

Figure 1. G-Net model of buyer and seller objects

From the &ove description, we can seethat a G-Net
model esentialy represents a modue or an oljed rather
than an abstradion d a set of similar objeds. In a recent
paper [9], we have extended the G-Net model to suppat
classmodeling. The ideaof this extension is to generate a
unique objed identifier, G.Oid, and initialize the state
variables when a G-Net objed isinstantiated from a G-Net
G. An ISP method invocation is no longer represented as
the 2-tuple (G’'.Nid, mtd), insteal it is the 2-tuple (G’.Qid,
mtd), where different objed identifiers could be sswciated
with the same G-Net classmodel.

The token movement in a G-Net objed is smilar to that
of original G-Nets[8]. A token tkn isatriple (seq, sc, mtd),
where seq is the propagation sequence of the token, sc is
the status color of the token and mtd is atriple (mtd_name,
para_list, result). The usage of these dements can be

foundin [8][9]. For ordinary places, tokens are removed
from inpu places and deposited into ouput places by
firing transitions. However, for the spedal ISP places, the
output transitions do nd fire in the usual way. For
example, in Figure 1, when the Buyer objed cdls the
returnPrice)) method d the Sdler objed, the token in
placel SP(Sler, returnPrice()) is removed and a token is
deposited into the GSP place GSP(Sdler). Through the
GSP of the cdled G-Net objea Sdler, the token is then
dispatched into an entry place of the gpropriate cdled
method, i.e., returnPrice(), for the token contains the
information to identify the cdled method During
“exeaution” of the method, the token will read a return
place (denoted by doulbe drcles) with the result attached
to the token. As onas this happens, the token will return
to the ISP of the cdler. At this time, the output transition
(i.e., t4in Figure 1) can become enabled andfire.

We cdl a G-Net model that suppats classmodeling a
standad G-Net model. Notice that the example we
provide in Figure 1 foll ows the Client-Server paradigm, in
which a Seller objed works as a server and a Buyer objed
isa dient. Althoughthe standard G-Net model works well
in oljed-based design, it is not sufficient in agent-based
design for the following reasons. First, agents in multi-
agent systems are usually developed by dfferent vendars
independently, and thase agents will be widely distributed
acrosslarge-scde networks auch as the Internet. To make
it posgble for those ajents to communicate with ead
other, it is esentia for them to have a ©mmon
communication language and to follow common protocols.
However the standard G-Net model does nat diredly
suppat protocol-based language communicaion between
agents. Seoond, the underlying agent communication
model is usualy asynchronous, and an agent may dedde
whether to perform adions requested by some other
agents. The standard G-Net model does not diredaly
suppat asynchronows message passng and dedsion
making, but only suppats g/nchronoss method
invocdions in the form of ISP places. Third, agents are
commonly designed to determine their behavior based on
individual goads and their knowledge. They may
autonamously and sportaneously initiate internal or
external behavior at any time. Standard G-Net models can
only diredly suppat a predefined flow of control.

2.2 Extending G-Netsto Support Agent M odeling

To suppat agent-based design, we first need to extend
a G-Net to suppat modeling an agent class The basic idea
is dmilar to extending a G-Net to suppat class modeling
for objed-based design [9]. When we instantiate an agent-
based G-Net (an agent classmodel) G, an agent identifier
G.Aid is generated and the mental state of the resulting
agent objed (an adive objed [4]) is initialized. In
addition, at the dass level, five speda modues are
introduced to make an agent autonamous and internall y-
motivated, namely the Goal modue, the Plan modue, the

Knowledge-base modue, the Environment modue and the
Planrer modue. The outline of an agent-based G-Net
model is diown in Figure 2. We describe eab of the
additional modues as follows. A Goal modue is an
abstradion d a goal model [5], which describes the goals
that an agent may possbly adopt. A Plan modue is an
abstradion d a plan model [5] that consists of a set of
plans. A plan may be intended or committed, and ony
committed plans will be adieved. A Knowledge-base
modue is an abstradion d a belief model [5], which
describes the information abou the elvironment and
internal state that an agent of that class may hdd. An
Environment modue is an abstrad model of the
environment, i.e., the model of the outside world that of
interest to the agent and that can be sensed by the agent.
The Planrer modue can be viewed as the heat of an
agent, where ommitted plans are adieved. It may dedde
to ignae a incoming messge, to stat a new
conversation, or to continue with the airrent conversation
The Goal, Plan and Knowledge-base modues of an agent
are upckted after eady communicdive ad or if the
environment changes.

=
] §
‘ Plener ‘

’

incoming message outgoing message private utility
action_1 action_m action_1 action_n utility_1 utility_p

I

message_ messge_ message_ message_ utility_1 ility_p
processing | processing processing processing

w(seu) MSP(self) MSP(G' Aid) MSP(G' Aid) return raurn/

Notes: G'.Aid = mTkn.body.msg.recever as defined later in this sedtion

Figure 2. A generic agent-based G-Net model

The internal structure (IS) of an agent model consists
of three sedions. incoming message, outgoing message,
and private utility. The incoming/outgoing message sedion
defines a set of message processng unts (MPU), which
correspond to a subset of communicaive ads [10][11].
Each MPU, labeled as action_i in Figure 2, is used to
process incoming/outgoing messges, and may use |SP-
type modeling for cdls to methods defined in its private
utility sedion. Only the agent itself can cdl those private
utility functions defined in its private utility sedion.

Although bth obeds (passve objeds) and agents
(agent objeds) use message-passng to communicate with
ead ather, message-passng for objedsisaunique form of
methodinvocation, while ayents distinguish dff erent types
of messages and model these messages frequently as
speedtr-ads and use complex protocols to negatiate [4]. In
particular, these messages must satisfy standardized

communicaive (speed) ads that define the type and the
content of the messge (eg., the FIPA agent
communication language, or KQML) [10][11]. Note that
in Figure 2, eahh named MPU action i refers to a
communicaive ad, thus our agent-based model suppats
an agent communicaion interface In addition, agents
anayze these messages and can dedde whether to exeaute
the requested adion. As we stated before, agent
communicaions are typicdly based on asynchronows
message passng. Since aynchronols message passng is
more fundamental than synchronous message passng, it is
useful for us to introduce a new mechanism, cdled
Message-passng Switch Place (MSP), to dredly suppat
asynchronows messge passng. When a token readies an
MSP (we represent it as an ellipsis in Figure 2), the token
isremoved and deposited into the GSP of the cdl ed agent.
But, unlike with the standard G-Net ISP mechanism, the
cdling agent does not wait for the token to return before it
can continue to exeaute its next step. Since we usualy do
not think of agents as invoking methods of one-ancther,
but rather as requesting adions to be performed [12], in
our agent-based model, we restrict the usage of ISP
mechanisms, so they are only used to refer to an agent
itself. Thus, in ouw models, al communicaions between
agents must be caried ou through asynchronous message
passng as provided by the MSP mechanism.

GSRG)

from transition
“ update”

action

automatic_ private

—

dispatch_
outgaing_
message

toplace” GoaJ update
to place* Pla
to place* melaig je base’

ASP(super)

outgoing messages

Figure 3. A template of planner module

A template of the Planner modueis siown in Figure 3.
The modues Goal, Plan, Knowledge-base and
Environment are represented as four speda places
(denoted by doulbe dlipses in Figure 3), ead of which
contains a token that represents a set of goals, a set of
plans, a set of beliefs and a model of the environment,
respedively. These four modues conned with the Planner
modue through abstrad transitions, denoted by shaded
redangles in Figure 3 (eg., the &strad transtion
make _dedsion). Abstrad transitions represent abstrad
units of dedsion-making a mental-state-updating. At a
more detail ed level of design, abstrad transitions would be

refined into sub-nets; however how to make dedsions and
how to updite an agent’s mental state is beyond the scope
of this paper, and will be mnsidered in ou future work. In
the Planner modue, there isa unit cdled autonamous unit
that makes an agent autonamous and internall y-motivated.
An autonamous unit contains a sensor (represented as an
abstrad transition), which may fire whenever the pre-
condtions of some cmmitted plan are satisfied or when
new events are cgtured from the ewvironment. If the
abstrad transition sensor fires, based onan agent’s current
mental state (goal, plan and knowvledge-base), the
autonamous unit will then dedde whether to start a
conversation a to simply update its mental state. This is
dore by firing either the transition start_a_conversation or
the trandtion automatic_updde after exeauting any
necessary adions asociated with placenew_action.

Note that the Planner modue is both gcal-driven and
event-driven becaise the transition sensor may fire when
any committed plan is realy to be adieved or any new
event happens. In addition, the Planner modue is aso
message-triggered because cetain adions may initiate
whenever a message arives (either from some other agent
or from the agent itself). A message is represented as a
message token with a tag o internal/external/private. A
messge token with a tag of external represents an
incoming message which comes from some other agent, or
a newly generated ougoing message before sending to
some other agent; while a message token with a tag o
internal is a message forwarded by an agent to itself with
the MSP medanism. In either case, the messge token
with the tag of internal/external shodd nd beinvolved in
an invocdion o amethodcdl. On the ontrary, a message
token with a tag of private indicaes that the token is
currently involved in an invocaion d some method cdl.
When an incoming message/method arrives, with a tag of
external/private in its correspondng token, it will be
dispatched to the gpropriate MPU/method defined in the
internal structure of the gent. If it isamethodinvocaion,
the method defined in the private utility sedion o the
internal structure will be exeauted, and after the exeaution,
the token will return to the cdling urit, i.e., an ISP of the
cdling agent. However, if it is an incoming message, the
message will be first proceseed by a MPU defined in the
incoming message sedion in the internal structure of the
agent. Then the tag o the token will be dhanged from
external to internal before it is transferred badk to the
GSP of the recaver agent by using MSP(self). Here the
keyword self refers to the agent objed itself. Upon the
arrival of a token tagged as internal in a GSP, the
transition internal may fire, followed by the firing o the
abstrad transition make_dedsion. Note that at this point of
time, there would exist tokens in those speda places Goal,
Plan and Knowledge-base, so the transition bypass is
disabled (due to the “inhibitor arc”) and may na fire (the
purpose of the transition bypass is for inheritance
modeling, which will be aldressd in Sedion 23). Any

necessry adions may be exeauted in place nex_action
before the @mnwversation is either ignared or continued. If
the aurrent conversation is ignared, the transition ignare
fires, otherwise, the transition continue fires. If the
trangition continue fires, a newly constructed ougoing
message, in the form of atoken with atag of external, will
be dispatched into the gpropriate MPU in the outgoing
messge sedion d theinternal structure of the agent. After
the message is processed by the MPU, the message will be
sent to a recaver agent by using the MSP(Recever)
mechanism. In either case, a token will be depaosited into
placeupdae_god/plarvkb, allowing the abstrad transition
updae to fire. As a mnsequence the Goal, Plan and
Knowledge-base modues are updated if needed, and the
agent’ s mental state may change.

As aresult of this extension, the structure of tokens in
the aent-based G-Net model shoud be redefined.
Esentidly there ae five types of tokens, namely the
message token mTkn, the goal token gTkn, the plan token
pTkn, the knowledge token kTkn and the environment
token eTkn. One way to construct the gTkn, pTkn, KTkn
and €Tkn is as linked lists. In aher words, a gTkn
represents a list of goals, pTkn represents a list of plans, a
kTkn represents a list of fads, and an €Tkn represents a list
of events that are of the gyent’s interests. Since these four
types of tokens confine themselves to those spedal places
of their correspondng modues, we do nd describe them
further in this paper.

A mTkn isa2-tuple (tag, body), wheretag O {internal,
external, private} and body is a variant, which is
determined by the tag. According to the tag, the token
deposited in a GSP will finally be dispatched into a MPU
or a method defined in the internal structure of the agent-
based G-Net. Then the body of the token mTkn will be
interpreted dfferently. More spedficdly, we define the
mTkn bodyasfoll ows:

struct Message{

int sender; /I the identifier of the message sender
int receiver; /I the identifier of the message receiver
string protocol_type; /I contract net protocol type
string name; /I incoming/outgoing messages name

string content; // the content of this message

h
enum Tag {internal, external};
struct MtdIinvocation {

Triple (seq, sc, mtd);
}

if (mTkn.tag O {internal, external})
then mTkn.body = struct {
Message msg; /I message body

/Il as defined in Section 2.1

else mTkn.body = struct {
Message msg; /I message body
Tag old_tag; /I to record the old tag: internal or external
MtdInvocation miv; // to trace method invocations

When mtkn.tag O {internal, external}, and an ISP
method cdl occurs, the following steps will t ake place

1. Thetwo variables old_tag and miv are dtached to the
token mTkn to define mTkn.body.old_tag and
mTkn.body.miv, respedively. Then, mTkn.tag (the
current tag, either internal or external) is recorded
into mTkn.body.old_tag, and mTkn.tag is temporarily
set to private.

2. Further method cdls are traced by the variable
mTkn.body.miv, which is atriple of (seq, sc, mtd). The
tradng algorithm isas defined in [8].

3. After al the ISP method cdls are finished and the
mTkn token returns to the original ISP, the mTkn.tagis
set back as mTkn.body.old_tag, and bah the variables
old_tag and miv are detached.

We now provide a few key definitions giving the
formal structure of our agent-based G-Net models.

Definition 2.1 An agent-based G-Net is a 7-tuple AG =
(GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic
Switch Place providing an abstrad for AG, GL is a Goa
modue, PL is a Plan modue, KB is a Knomedge-base
modue, EN is an Environment modue, PN is a Planner
modue, and ISisan internal structure of AG.

Definition 2.2 A Planrer modue of an agent-based G-Net
AG is a mlored sub-net defined as a 7-tuple (IGS, 1GO,
IPL, IKB, IEN, IIS DMU), where IGS, IGO, IPL, IKB,
IEN and Il S are interfaces with GSP, Goa modue, Plan
modue, Knowledge-base modue, Environment modue
andinternal structure of AG, respedively. DMU is a set of
dedsionrmaking unt, and it contains three dstrad
transitions: make _dedsion, sensor and update.

Definition 2.3 Aninternal structure (1S) of an agent-based
G-Net AG is atriple (IM, OM, PU), where IM/OM is the
incoming/outgoing message sedion, which defines a set of
message processng urits (MPU); and PU is the private
utility sedion, which defines a set of methods.

Definition 2.4 A message processng urit (MPU) is a
triple (P, T, A), where P is a set of places consisting o
threespedal places: entry place ISP and MSP. Each MPU
has only ore entry place ad ore MSP, but it may contain
multiple ISPs. T is a set of transitions, and ead transition
can be @ociated with a set of guards. A is a set of arcs

defined as: (P-{MSP}) x T) O ((T x (P-{ entry}).

Definition 2.5 A methodis atriple (P, T, A), where P isa
set of places with threespedal places: entry place ISP and
return place Each method res only ore entry place ad
one return place but it may contain multiple ISPs. T isa
set of transitions, and ead transition can be as<ciated
with a set of guards. A is a set of arcs defined as: ((P-

{return}) x T) O ((T x (P-{entry}).

2.3.Inheritance Modeling in Agent-based G-Nets

Althoughthere ae different views with resped to the
concept of agent-oriented design [12], we mnsider an
agent as an extension d an obed, and we believe that
agent-oriented design shoud keep most of the key feaures
in ohjed-oriented design. Thus, to progressfrom an agent-
based model to an agent-oriented model, we need to
incorporate some inheritance modeling capabiliti es. But
inheritance in agent-oriented design is more complicaed
than in oljed-oriented design. Unlike an oljed (passve
objed), an agent objed has mental states and reasoning
mechanisms. Therefore, inheritance in agent-oriented
design invokes two isaues: an agent subclass may inherit
an agent superclasss knowledge, godls, plans, the model
of its environment and its reasoning mechanisms; on the
other hand, as in the cae of objed-oriented design, an
agent subclass may inherit al the services that an agent
superclass may provide, such as private utility functions.
There is existing work on agent inheritance with resped to
knowledge, goals and dans [2][6]. However, we believe
that since inheritance happens at the dasslevel, an agent
subclass may be initiaized with an agent superclasss
initial mental state, but new knowledge aquired, new
plans made, and new goals generated in aindividual agent
objed (as an instance of an agent superclasg, can na be
inherited by an agent objed when creding an instance of
an agent subclass A superclasss reasoning mechanism
can be inherited, however it is beyond the scope of this
paper. For simplicity, we asume that an agent subclass
always uses its own reasoning medanisms, and thus the
reasoning mechanisms in the gent superclass $oud be
disabled in some way. This is necessry becaise diff erent
reasoning mecdhanisms may deduce diff erent results for an
agent, and to resolve this type of conflict may be time-
consuming and make a1 agent’s reasoning mechanism
inefficient. Therefore, in this paper we only consider how
to initialize asubclassagent’s mental state while an agent
subclassis instantiated; meanwhile, we mncentrate on the
inheritance of services that are provided by an agent
superclass i.e., the MPUs and methods defined in the
internal structure of an agent class Before presenting ou
inheritance scheme, we neeal the following definition:

Definition 2.6 When an agent subclassA is instantiated as
an agent objed AO, a unique agent identifier is generated,
and all superclases and ancestor clases of the aent
subclass A, in addition to the agent subclass A itself, are
initialized. Each of those initialized classes then bemmes
a part of the resulting agent objed AO. We cd an
initialized superclassor ancestor classof agent subclassA
a subagent, and the initialized agent subclass A the
primary subagent.

The result of initializing an agent classis to take the
agent classas atemplate and creae a oncrete structure of
the gyent classand initialize its gate variables. Since we

represent an agent class as an agent-based G-Net, an
initiali zed agent classis modeled by an agent-based G-Net
with initiaized state variables. In particular, the four
tokens in the spedal places of an agent-based G-Net, i.e.,
gTkn, pTkn, KTkn and eTkn, are set to their initial states.
Since different subagents of AO may have goals, plans,
knowledge and environment models that conflict with
those of the primary subagent of AQ, it is desirable to
resolve them in an ealy stage. In ou case, we ded with
those @nflicts in the instantiation stage in the following
way. All the tokens gTkn, pTkn, kTkn and eTkn in eat
subagent of AO are removed from their asociated spedal
places, and these tokens are cwmbined with the tokens
gTkn, pTkn, kTkn and eTkn in the primary subagent of AO."
The resulting tokens gTkn, pTkn, kTkn and eTkn (newly
generated by unfying those tokens for ead type), are put
badk into the spedal places of the primary subagent of AO.
Consequently, all subagents of AO lose their abiliti es for
reassoning, and orly the primary subagent of AO can make
necessry dedsions for the whae aent objed. More
spedficdly, in the Planner modue (as $rown in Figure 3)
that belongs to a subagent, the &strad transitions
make _dedsion, sensor and updae can never be enabled
becaise there ae notokensin the foll owing spedal places:
Goal, Plan and Knowmedge-base. If a message tagged as
internal arrives, the transition bypass may fire and a
message token can dredly go to a MPU defined in the
internal structure of the subagent if it is defined there. This
is made posshle by conreding the transition bypasswith
inhibitor arcs (denoted by dashed lines terminated with a
small circlein Figure 3) from the spedal places Goal, Plan
and Knowledge-base. So the transition bypasscan only be
enabled when there ae no tokens in these places. In
contrast to this behavior, in the Planner modue of a
primary subagent, tokens do exist in the speda places
Goal, Plan and Knowledge-base. Thus, the transition
bypass will never be enabled. Instead, the transition
make _dedsion must fire before ax ougoing message is
dispatched into a MPU defined in the primary agent or any
subagents.

To reuse the services (i.e., MPUs and methods) defined
in a subagent, we neeal to introduce anew mechanism
cdled Asynchronows Superclass svitch Place (ASP). An
ASP (denoted by an dllipsis in Figure 3) is smilar to a
MSP, but with the difference that an ASP is used to
forward a message or a method cdl to a subagent rather
than to send a message to an agent objed. For the MSP
medhanism, the recaver could be some other agent objed
or the agent objed itself. In the cae of MSP(sdf), a
message token is always ent to the GSP of the primary
subagent. However, for ASP(super), a message token is
forwarded to the GSP of a subagent that is referred to by
super. In the cae of single inheritance, super refersto a

! The processof generating the new token values would involve agions
such as corflict resolution among gals or plans, which isatopic outside
the scope of our model and this paper.

uniqgue superclass G-Net, however with multiple
inheritance, the reference of super must be resolved by
seaching the dasshierarchy diagram.

When a messge/method is not defined in an agent
subclass model, the dispatching medanism will depaosit
the messge token into a rrespondng ASP(super).
Consequently, the message token will be forwarded to the
GSP of a subagent, and it will be again dispatched. This
processcan be repedaed urtil the root subagent is readed.
In this case, if the messge is dill not defined at the roat,
an exception cceurs. In this paper, we do nd provide
exception handling for our agent-based G-Net models, and
we aume that all incoming messages have been corredly
defined in the primary subagent or some other subagents.

3. Examples of Agent-Oriented Design

Consider an agent family in an eledronic marketplace
domain. Figure 4 shows the aents in a UML class
hierarchy ndation. A shopgng agent is defined as an
abstrad agent that has the aility to register in a
marketplacethrough a fadlit ator, which serves as a well -
known agent in the marketplace A shoppng agent canna
be instantiated as an agent objed, in aher words, a
shopping agent canna register itself as a shoppng agent.
Rather, the functionality of a shoppng agent classcan be
inherited by an agent subclass such as a buying agent or a
selling agent. Both the buying agent objed and selling
agent objed may reuse the functiondity of a shopgng
agent by registering themselves as a buying agent or a
selling agent through a fadlit ator. Furthermore, a retail er
agent is an agent that can sell goods to a austomer, but it
also neals to buygoods from some selling agents. Thus a
retailer agent classis designed as a subclass of both the
buying agent classand the selling agent class In addition,
a astomer agent class may be defined as a subclass of a
buying agent class and an auctionee agent classmay be
defined as a subclassof a selling agent class In this paper,
we only consider four types of agent class i.e, the
shopgng agent class the buying agent class the selling
agent class and the retailer agent class The modeling o
the austomer agent classand auctionee agent classcan be
dorein asimilar way.

Shoppng agent

JAY

‘ Sdlling agent

‘ Buying agent

Figure 4. The class hierarchy diagram of agents in an
electronic marketplace

To illustrate how to design agents by using ou agent
model, we use the foll owing examples. Figure 5 (a) depicts

atemplate of a mntrad net protocol expressed as an agent
UML (AUML) sequence diagram [11] for a registration-
negotiation protocol between a shoppng agent and a
fadlit ator agent. Figure 5 (b) is a modified example of a
contrad net protocol adapted from [11], which depicts a
template of a protocol expressd as an AUML sequence
diagram for a price-negatiation protocol between a buying
agent and a selling agent. Some of the notations of AUML
are aapted from [11] as extensions of UML sequence
diagrams for agent design. In addition, to corredly draw
the sequence diagram for the protocol templates, we
introduce two new notations, i.e., the end d protocol
operation“s” andtheiteration d communication operation
“x”. Figure 5 (c¢) shows an example price-negactiation
protocol that is instantiated from the protocol template
shown in Figure 5 (b).

[shoppingagen] [fadiitator agen] [bwingagent | [sdlingagent |

request-price il
T erefuse

I buyingagent | [singagen]

request-price
I propose
1 propose
cogtproposd reed-proposd
rged-proposd ;
propase
; propose i, .

{ ‘accept-proposal

request-regisration

accept-proposdl

rejed-proposal

« corfirm

H‘ « corfirm i

@ i (b) (c)

Figure 5. Contract net protocols (a) A template for the registration
protocol (b) A template for the price-negotiation protocol (c) An
example of the price-negotiation protocol

Consider Figure 5 (a). When a conversation based ona
contrad net protocol begins, the shopfdng agent sends a
request for registration to a fadlit ator agent. The fadlit ator
agent can then choaose to respondto the shopgng agent by
refusing its registration a requesting agent information.
Here the “x” in the dedsion damond indicaes an
exclusive-or dedsion. If the fadlitator refuses the
registration based onthe marketplacés sze the protocol
ends, otherwise, the fadlitator agent waits for agent
information to be suppied. If the aent information is
corredly provided, the fadlitator agent then still has a
choice of either acceting a reeding the registration
based on the shoppng agent’'s reputation and the
marketplacées functiondity. Again, if the fadlit ator agent
refuses the registration, the protocol ends; otherwise, a
confirmation message will be provided afterwards.
Similarly, the price-negatiation protocol between a buying
agent and a selling agent can beill ustrated in Figure 5 (b).
Based on the mmunicaive ads (e.g., request-
registration, refuse, etc.) nealed for the ntrad net
protocol in Figure 5 (a), we may adopt the design template
of the shopgng agent shown in Figure 6. The Goal, Plan,
Knowledge-base and Environment modues remain as
abstrad units and can be refined in a further detaled
design stage. The Planner modue may reuse the template
shown in Figure 3. The design d the fadlitator agent is
similar, however it may suppat more protocols.

With inheritance, a buying agent class as a subclass of
a shoppng agent class may reuse MPUs/methods defined
in a shopgdng agent classs internal structure. Similarly,
based on the mmmunicaive ads (e.g., request-price
refuse, etc.) needed for the contrad net protocol in Figure
5 (b), we may design the buying agent classasin Figure 7.
Note that we do nd define the MPUs of refuse and
confirmin the internal structure of the buying agent class
for they can be inherited from the shoppng agent class A
retailer agent can be designed in the same way. In addition
to its own MPU/methods, a retail er agent classinherits all
MPU/methods of both the buying agent class and the
selling agent class

=

‘ Planner ‘

i

incoming messages outgoing messages private utilities
fequestinfo refuse aceptinfo confim requestregistration supply-info. utility_1 utility_p

‘ ‘ Plan ‘ Knowledge-base ‘ ‘ Environment‘

mesg P mesg_pT mesg_pr- mesg_pr- mesg_pT” mesg_p> utili- utili>
ocessng| ocessng | ocessng ocessng ocessng | ocesdng ty_1 v_p

tas
\ﬁ’(sﬁﬂ) MSPell) MP(sdl) MSP(self) return rauy

Figure 6. An agent-based G-Net model for shopping agent class

GSHBC)
BC extends SC. Godl Plan

‘ Plaoner ‘
'

incoming messages outgoing messages private utilities
propose request-price accept-proposal reject-proposal utility_1 utility_p

MSP(G Aid) MSP(G'.Aid)

Knowledge-base ‘ ‘ Environment ‘

message_ 3

essage message. message_ utility_1 utility_p
processing processing processing processing

MSP(self) MSP(G'.Aid) MSP(G'.Aid) MSP(G' Aid) return

=,

Figure 7. An agent-based G-Net model for buying agent class

Now we discussan example to show how the reuse of
MPU/methods works. Consider a buying agent objed BO,
which recdves a messge of request-info from a fadlit ator
agent objed FO. A mTkn token will be depaosited in the
GSP of the primary subagent of BO, i.e., the GSP of the
correspondng buying agent class (BC). The transition
exernal in BC's Planner modue may fire, and the mTkn
will be moved to the place dispatch_incoming_message.
Since there is no MPU for request-info defined in the
internal structure of BC, the mTkn will be moved to the
ASP(super) place Since super here refers to a unique
superclass— the shoppng agent class(SC) — the mTkn will

be transferred to the GSP of SC. Now the mTkn can be
corredly dispatched to the MPU for request-info. After the
message is procesed, MSP(self) changes the tag of the
mTkn from external to internal, and sends the processd
mTkn token badk into the GSP of BC. Note that MSP(self)
aways ®nds a mTkn badk to the GSP of the primary
subagent. Upon the arival of this message token, the
trangition internal in the Planner modue of BC may fire,
and the mTkn token will be moved to the place
check primary. Since BC corresponds to the primary
subagent of BO, there ae tokens in the spedal places
Goal, Plan, Knowledge-base and Environment. Therefore
the astrad transition make dedsion may fire, and any
necessary adions are exeauted in placenex_action. Then
the arrent conwersation is either ignared or continued
based on the dedsion made in the &strad transition
make_dedsion. If the aurrent conversation is ignared, the
goals, plans and knovledge-base ae updated as needed;
otherwise, in addition to the updating o gaoals, plans and
knowledge-base, a newly constructed mTkn with a tag of
external is deposited into placedispatch_ougoing_mess
age. The new mTkn token has the message name suppy-
info, following the protocol defined in Figure 5 (a). Again,
there is no MPU for suppy-info defined in BC, so the new
mTkn token will be dispatched into the GSP of SC. Upon
the arival of the mTkn in the GSP of SC, the transition
exerna in the Planrer modue of SC may fire. However
at this time, SC does not correspond to the primary
subagent of BO, so all the tokens in the spedal places of
Goal, Plan, Knowledge-base have been removed.
Therefore, the transition bypass is enabled. When the
transition bypass fires, the mTkn token will be diredly
deposited into the placedispatch_ougoing_message, and
now the mTkn token can be mrredly dispatched into the
MPU for suppy-info defined in SC. After the message is
processed, the mTkn token will be transferred to the GSP
of the recaver mTkn.body.recedver, and in this case, it isa
fadlit ator agent objed.

For the reuse of private utility functions defined in a
superclass the situation is the same & in the cae of
objed-oriented design. Examples concerning reuse of
private utility functions and dfferent forms of inheritance,
such as augment inheritance and restrictive inheritance,
can be foundin [9].

4. Conclusionsand Future Work

One of the most rapidly growing areas of interest for
distributed computing is that of distributed agent systems.
In this paper, we introduced a framework of agent models
with an example of agent family in eledronic commerce
Using this framework, shopping agent, selling agent,
buying agent and retailer agent can be modeled as
intelligent agents with the daraderistics of being
autonomous, readive and internally-motivated. Examples
of a registration-negotiation protocol between shoppng

agents and fadlitator agents, and a price-negotiation
protocol between a shoppng agents and buying agents
were used to ill ustrate our basic idea

For our future work, we will consider the refinement of
the Goal, Plan, Knowledge-base and Environment
modues. The astrad transitions defined in the Planner
modue, i.e.,, make dedsion, sensor and updae, will be
refined into corred sub-nets too. We will aso look into
isse like deallock avoidance and state exploration
problems in the gent-oriented design and \erificaion
processes.

5. References

[1] S. Green, L. Hurst, B. Nangle, P. Cunringham, F. Somers,
R. Evans, “Software Agents: A Review,” Technical report
TCD-CS-1997-06, Trinity College Dublin, May 1997

[2] David Kinny, Michad P. Georgeff, “Modeling and Design
of Multi-Agent Systems,” Procealings of the 4th Int'l
Workshop onAgent Theories, Architedures, and Languag
(ATAL-97), 1997, pp. 1-20.

[3] T.J Rogers, R. Ross V. S. Subrahmanian, “IMPACT: A
System for Building Agent Applicaions” Journa of
Intelli gent Information Systems, 14(2-3): 95113 2000

[4] Carlos Argel Iglesias, Mercedes Garrijo, José Centeno-
Gonzdez “A Survey of Agent-Oriented Methoddogies,”
Procedlings of the Fifth Internationd Workshop onAgent
Theories, Architedures, and Languag (ATAL-98), 1998
pp. 317-330.

[5] D. Kinny, M. Georgeff, and A. Rao, “A Methoddogy and
Modeling Technique for Systems of BDI Agents,” Tedh.
Rep. 58, Australian Artificia Intelligence Institute,
Melbourne, Australia, Jan. 1996

[6] Lobel Crnogaac Anand S. Rao, Kotagiri Ramamohanarao,
“Anaysis of Inheritance Medanisms in Agent-Oriented
Programming,” IJCAI (1) 1997 647-654

[71 T. Murata, “Petri Nets. Properties, Andysis and
Applications,” Procedalings of the IEEE 77(4): 541-580,
April 1989

[8] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net
Based Approach for Logicd and Timing Anayss of
Complex Software Systems,” Journal of Systems and
Sdtware, 39(1): 39-59, 1997.

[9] Haiping Xu and Sol Shatz, “Extending G-Nets to Support
Inheritance Modeling in Concurrent Objed-Oriented
Design” IEEE Int'l Conf. on $Sstems, Man, and
Cybernetics, Nashvill e, Tenn., Oct. 2000 pp. 31283133

[10] Tim Finin, Yannis Labrou, and James Mayfield, “KQML as
an agent communication language,” in Jeff Bradshaw (Ed.),
Sdtware Agents, MIT Press Cambridge, 1997.

[11] James Oddl, H. Van Dyke Parunak, Bernhard Bauer,
“Representing Agent Interadion Protocols in UML,” ICSE
2000 Workshop on Agent-Oriented Sdtware Engineeaing
(AOSE-2000, June 10, 200Q Limerick, Ireland.

[12] M. Woddridge, N. R. Jennings, and D. Kinny, “The Gaia
Methoddogy for Agent-Oriented Analysis and Design,”
Internationd Journal of Autonamous Agents and Multi-
Agent Systems, 3(3): 285312, 2000

