
 1

A Framework for Modeling Agent-Or iented Software*

Haiping Xu and Sol M. Shatz
Department of Electrical Engineering and Computer Science

The University of Illi nois at Chicago
Chicago, IL 60607

Email : {hxu1, shatz}@eecs.uic.edu

Abstract

 With the increasing importance of complex software
systems in the software industry, the need for using agent
technologies to develop large-scale commercial and
industrial software systems is growing rapidly. Such
systems are complex and there is a pressing need for
system modeling techniques to support reliable,
maintainable and extensible design. G-Nets are a type of
Petri net defined to support modeling of a system as a set
of independent and loosely-coupled modules. In this paper,
we first introduce an extension of G-Nets, agent-based G-
Net, as a generic model for agent design. Then to progress
from an agent-based design model to an agent-oriented
model, new mechanisms to support inheritance modeling
are introduced. To ill ustrate our formal modeling
technique for multi -agent systems, an example of an agent
family in electronic commerce is provided.

1. Introduction

 With the increasing importance of complex software
systems in the software industry, the need for using agent
technologies to develop large-scale commercial and
industrial software systems is growing rapidly.
Technologies for multi -agent systems (MAS) stem from
distributed artificial intelli gence (DAI) research [1], and
MAS are usually defined as concurrent systems based on
the notion of autonomous, reactive, internally-motivated
agents in a decentralized environment [2]. The increasing
interest in MAS research is due to the significant
advantages inherent in such systems, including their abilit y
to solve problems that may be too large for a centralized
single agent, to provide enhanced speed and reliabilit y, and
to tolerate uncertain data and knowledge [1].
 Although there are many efforts on developing multi -
agent systems, there is a lack of research on formal
specification and design of such systems [3][4]. As multi -
agent technology begins to emerge as a viable solution for

* This material is based upon work supported by the U.S. Army Research
Off ice under grant number DAAD19-99-1-0350, and the NSF under
grant number CCR-9988168.

large-scale industrial and commercial applications, there is
an increasing need to ensure that the systems being
developed are robust, reliable and fit for purpose [4].
Previous work on formal modeling multi -agent systems
includes: (1) using formal languages, such as Z, to provide
a framework for describing a system at different levels of
abstractions; (2) using temporal modal logic to allow the
dynamic aspects of agents; (3) designing formal languages,
such as DESIRE, for multi -agent specification [4][12].
Unlike previous work, our approach uses the principle of
“separation of concerns” in agent-oriented design. We
separate the traditional object-oriented features and
reasoning mechanisms in our agent-oriented software
model as much as possible, and we discuss how reuse can
be achieved in agent-oriented design.
 In this paper, we extend a formal model, called a G-Net
(a form of Petri net [7]), to support inheritance modeling
of agent classes in multi -agent systems. The advantage of
our formal mechanism is that it provides a clean interface
between agents with asynchronous communication abilit y
and supports formal reasoning for an agent design.
Furthermore, our formal mechanism is based on Petri net
formalism, which is a mature formal model in terms of
both existing theory and tool support.

2. An Agent-based Model

2.1. The Standard G-Net Model

 A widely accepted software engineering principle is
that a system should be composed of a set of independent
modules, where each module hides the internal details of
its processing activities and modules communicate through
well -defined interfaces. The G-Net model provides strong
support for this principle [8]. G-Nets are an object-based
extension of Petri nets. We assume that the reader has a
basic understanding of Petri nets [7], so we begin with
some introduction to the G-Net model. A G-Net system is
composed of a number of G-Nets, each of them
representing a self-contained module or object. A G-Net is
composed of two parts: a special place called Generic
Switch Place (GSP) and an Internal Structure (IS). The
GSP provides the abstraction of the module, and serves as
the only interface between the G-Net and other modules.

 2

The IS, a modified Petri net, represents the detailed design
of the module. An example of G-Nets is shown in Figure
1. Here the G-Net models represent two objects – the
Buyer and the Seller. The generic switch places are
represented by GSP(Buyer) and GSP(Seller) enclosed by
elli pses, and the internal structures of these models are
represented by round-cornered rectangles that contain the
detailed design of four methods: buyGoods(), askPrice(),
returnPrice() and sellGoods(). In G.IS, the internal
structure of G-Net G, Petri net places represent primitives,
while transitions, together with arcs, represent connections
or relations among those primitives. The primitives may
define local actions or method calls. Method calls are
represented by special places called Instantiated Switch
Places (ISP). A primitive becomes enabled if it receives a
token, and an enabled primitive can be executed. Given a
G-Net G, an ISP of G is a 2-tuple (G’ .Nid, mtd), where G’
could be the same G-Net G or some other G-Net, Nid is a
unique identifier of G-Net G’ , and mtd is a method defined
in G’.IS. Each ISP(G’ .Nid, mtd) denotes a method call
mtd() to G-Net G’ . An example ISP (denoted as an elli psis
in Figure 1) is shown in the method askPrice() defined in
G-Net Buyer, where the method askPrice() makes a
method call returnPrice() to the G-Net Seller to query
about the price for some goods.

 GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods()

Figure 1. G-Net model of buyer and seller objects

askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

 From the above description, we can see that a G-Net
model essentially represents a module or an object rather
than an abstraction of a set of similar objects. In a recent
paper [9], we have extended the G-Net model to support
class modeling. The idea of this extension is to generate a
unique object identifier, G.Oid, and initialize the state
variables when a G-Net object is instantiated from a G-Net
G. An ISP method invocation is no longer represented as
the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple (G’ .Oid,
mtd), where different object identifiers could be associated
with the same G-Net class model.
 The token movement in a G-Net object is similar to that
of original G-Nets [8]. A token tkn is a triple (seq, sc, mtd),
where seq is the propagation sequence of the token, sc is
the status color of the token and mtd is a triple (mtd_name,
para_list, result). The usage of these elements can be

found in [8][9]. For ordinary places, tokens are removed
from input places and deposited into output places by
firing transitions. However, for the special ISP places, the
output transitions do not fire in the usual way. For
example, in Figure 1, when the Buyer object calls the
returnPrice() method of the Seller object, the token in
place ISP(Seller, returnPrice()) is removed and a token is
deposited into the GSP place GSP(Seller). Through the
GSP of the called G-Net object Seller, the token is then
dispatched into an entry place of the appropriate called
method, i.e., returnPrice(), for the token contains the
information to identify the called method. During
“execution” of the method, the token wil l reach a return
place (denoted by double circles) with the result attached
to the token. As soon as this happens, the token will return
to the ISP of the caller. At this time, the output transition
(i.e., t4 in Figure 1) can become enabled and fire.
 We call a G-Net model that supports class modeling a
standard G-Net model. Notice that the example we
provide in Figure 1 follows the Client-Server paradigm, in
which a Seller object works as a server and a Buyer object
is a client. Although the standard G-Net model works well
in object-based design, it is not suff icient in agent-based
design for the following reasons. First, agents in multi -
agent systems are usually developed by different vendors
independently, and those agents will be widely distributed
across large-scale networks such as the Internet. To make
it possible for those agents to communicate with each
other, it is essential for them to have a common
communication language and to follow common protocols.
However the standard G-Net model does not directly
support protocol-based language communication between
agents. Second, the underlying agent communication
model is usually asynchronous, and an agent may decide
whether to perform actions requested by some other
agents. The standard G-Net model does not directly
support asynchronous message passing and decision-
making, but only supports synchronous method
invocations in the form of ISP places. Third, agents are
commonly designed to determine their behavior based on
individual goals and their knowledge. They may
autonomously and spontaneously initiate internal or
external behavior at any time. Standard G-Net models can
only directly support a predefined flow of control.

2.2. Extending G-Nets to Suppor t Agent Modeling

 To support agent-based design, we first need to extend
a G-Net to support modeling an agent class. The basic idea
is similar to extending a G-Net to support class modeling
for object-based design [9]. When we instantiate an agent-
based G-Net (an agent class model) G, an agent identifier
G.Aid is generated and the mental state of the resulting
agent object (an active object [4]) is initialized. In
addition, at the class level, five special modules are
introduced to make an agent autonomous and internally-
motivated, namely the Goal module, the Plan module, the

 3

Knowledge-base module, the Environment module and the
Planner module. The outline of an agent-based G-Net
model is shown in Figure 2. We describe each of the
additional modules as follows. A Goal module is an
abstraction of a goal model [5], which describes the goals
that an agent may possibly adopt. A Plan module is an
abstraction of a plan model [5] that consists of a set of
plans. A plan may be intended or committed, and only
committed plans will be achieved. A Knowledge-base
module is an abstraction of a belief model [5], which
describes the information about the environment and
internal state that an agent of that class may hold. An
Environment module is an abstract model of the
environment, i.e., the model of the outside world that of
interest to the agent and that can be sensed by the agent.
The Planner module can be viewed as the heart of an
agent, where committed plans are achieved. It may decide
to ignore an incoming message, to start a new
conversation, or to continue with the current conversation
The Goal, Plan and Knowledge-base modules of an agent
are updated after each communicative act or if the
environment changes.

GSP(G)

message_
processing

incoming message

Figure 2. A generic agent-based G-Net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’ .Aid) MSP(G’ .Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private utilit y

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.Aid = mTkn.body.msg.receiver as defined later in this section

 The internal structure (IS) of an agent model consists
of three sections: incoming message, outgoing message,
and private utilit y. The incoming/outgoing message section
defines a set of message processing units (MPU), which
correspond to a subset of communicative acts [10][11].
Each MPU, labeled as action_i in Figure 2, is used to
process incoming/outgoing messages, and may use ISP-
type modeling for calls to methods defined in its private
utilit y section. Only the agent itself can call those private
utilit y functions defined in its private utilit y section.
 Although both objects (passive objects) and agents
(agent objects) use message-passing to communicate with
each other, message-passing for objects is a unique form of
method invocation, while agents distinguish different types
of messages and model these messages frequently as
speech-acts and use complex protocols to negotiate [4]. In
particular, these messages must satisfy standardized

communicative (speech) acts that define the type and the
content of the message (e.g., the FIPA agent
communication language, or KQML) [10][11]. Note that
in Figure 2, each named MPU action_i refers to a
communicative act, thus our agent-based model supports
an agent communication interface. In addition, agents
analyze these messages and can decide whether to execute
the requested action. As we stated before, agent
communications are typically based on asynchronous
message passing. Since asynchronous message passing is
more fundamental than synchronous message passing, it is
useful for us to introduce a new mechanism, called
Message-passing Switch Place (MSP), to directly support
asynchronous message passing. When a token reaches an
MSP (we represent it as an elli psis in Figure 2), the token
is removed and deposited into the GSP of the called agent.
But, unlike with the standard G-Net ISP mechanism, the
calli ng agent does not wait for the token to return before it
can continue to execute its next step. Since we usually do
not think of agents as invoking methods of one-another,
but rather as requesting actions to be performed [12], in
our agent-based model, we restrict the usage of ISP
mechanisms, so they are only used to refer to an agent
itself. Thus, in our models, all communications between
agents must be carried out through asynchronous message
passing as provided by the MSP mechanism.

GSP(G)

Figure 3. A template of planner module

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utilit y

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utili ties

incoming messages

autonomous unit

Environment

 A template of the Planner module is shown in Figure 3.
The modules Goal, Plan, Knowledge-base and
Environment are represented as four special places
(denoted by double elli pses in Figure 3), each of which
contains a token that represents a set of goals, a set of
plans, a set of beliefs and a model of the environment,
respectively. These four modules connect with the Planner
module through abstract transitions, denoted by shaded
rectangles in Figure 3 (e.g., the abstract transition
make_decision). Abstract transitions represent abstract
units of decision-making or mental-state-updating. At a
more detailed level of design, abstract transitions would be

 4

refined into sub-nets; however how to make decisions and
how to update an agent’s mental state is beyond the scope
of this paper, and will be considered in our future work. In
the Planner module, there is a unit called autonomous unit
that makes an agent autonomous and internally-motivated.
An autonomous unit contains a sensor (represented as an
abstract transition), which may fire whenever the pre-
conditions of some committed plan are satisfied or when
new events are captured from the environment. If the
abstract transition sensor fires, based on an agent’s current
mental state (goal, plan and knowledge-base), the
autonomous unit will t hen decide whether to start a
conversation or to simply update its mental state. This is
done by firing either the transition start_a_conversation or
the transition automatic_update after executing any
necessary actions associated with place new_action.
 Note that the Planner module is both goal-driven and
event-driven because the transition sensor may fire when
any committed plan is ready to be achieved or any new
event happens. In addition, the Planner module is also
message-triggered because certain actions may initiate
whenever a message arrives (either from some other agent
or from the agent itself). A message is represented as a
message token with a tag of internal/external/pr ivate. A
message token with a tag of external represents an
incoming message which comes from some other agent, or
a newly generated outgoing message before sending to
some other agent; while a message token with a tag of
internal is a message forwarded by an agent to itself with
the MSP mechanism. In either case, the message token
with the tag of internal/external should not be involved in
an invocation of a method call . On the contrary, a message
token with a tag of pr ivate indicates that the token is
currently involved in an invocation of some method call .
When an incoming message/method arrives, with a tag of
external/pr ivate in its corresponding token, it will be
dispatched to the appropriate MPU/method defined in the
internal structure of the agent. If it is a method invocation,
the method defined in the private utilit y section of the
internal structure will be executed, and after the execution,
the token will return to the calli ng unit, i.e., an ISP of the
calli ng agent. However, if it is an incoming message, the
message will be first processed by a MPU defined in the
incoming message section in the internal structure of the
agent. Then the tag of the token will be changed from
external to internal before it is transferred back to the
GSP of the receiver agent by using MSP(self). Here the
keyword self refers to the agent object itself. Upon the
arrival of a token tagged as internal in a GSP, the
transition internal may fire, followed by the firing of the
abstract transition make_decision. Note that at this point of
time, there would exist tokens in those special places Goal,
Plan and Knowledge-base, so the transition bypass is
disabled (due to the “inhibitor arc”) and may not fire (the
purpose of the transition bypass is for inheritance
modeling, which will be addressed in Section 2.3). Any

necessary actions may be executed in place next_action
before the conversation is either ignored or continued. If
the current conversation is ignored, the transition ignore
fires; otherwise, the transition continue fires. If the
transition continue fires, a newly constructed outgoing
message, in the form of a token with a tag of external, will
be dispatched into the appropriate MPU in the outgoing
message section of the internal structure of the agent. After
the message is processed by the MPU, the message will be
sent to a receiver agent by using the MSP(Receiver)
mechanism. In either case, a token will be deposited into
place update_goal/plan/kb, allowing the abstract transition
update to fire. As a consequence, the Goal, Plan and
Knowledge-base modules are updated if needed, and the
agent’s mental state may change.
 As a result of this extension, the structure of tokens in
the agent-based G-Net model should be redefined.
Essentially there are five types of tokens, namely the
message token mTkn, the goal token gTkn, the plan token
pTkn, the knowledge token kTkn and the environment
token eTkn. One way to construct the gTkn, pTkn, kTkn
and eTkn is as linked lists. In other words, a gTkn
represents a list of goals, pTkn represents a list of plans, a
kTkn represents a list of facts, and an eTkn represents a list
of events that are of the agent’s interests. Since these four
types of tokens confine themselves to those special places
of their corresponding modules, we do not describe them
further in this paper.
 A mTkn is a 2-tuple (tag, body), where tag ∈ { internal,
external, pr ivate} and body is a variant, which is
determined by the tag. According to the tag, the token
deposited in a GSP will finally be dispatched into a MPU
or a method defined in the internal structure of the agent-
based G-Net. Then the body of the token mTkn will be
interpreted differently. More specifically, we define the
mTkn body as follows:

struct Message{
 int sender; // the identifier of the message sender
 int receiver; // the identifier of the message receiver
 string protocol_type; // contract net protocol type
 string name; // incoming/outgoing messages name
 string content; // the content of this message
};

enum Tag {internal, external};

struct MtdInvocation {
 Triple (seq, sc, mtd); // as defined in Section 2.1
}

if (mTkn.tag ∈ {internal, external})
then mTkn.body = struct {
 Message msg; // message body
}
else mTkn.body = struct {
 Message msg; // message body
 Tag old_tag; // to record the old tag: internal or external
 MtdInvocation miv; // to trace method invocations
}

 5

 When mTkn.tag ∈ { internal, external} , and an ISP
method call occurs, the following steps will t ake place:

1. The two variables old_tag and miv are attached to the

token mTkn to define mTkn.body.old_tag and
mTkn.body.miv, respectively. Then, mTkn.tag (the
current tag, either internal or external) is recorded
into mTkn.body.old_tag, and mTkn.tag is temporarily
set to pr ivate.

2. Further method calls are traced by the variable
mTkn.body.miv, which is a triple of (seq, sc, mtd). The
tracing algorithm is as defined in [8].

3. After all the ISP method calls are finished and the
mTkn token returns to the original ISP, the mTkn.tag is
set back as mTkn.body.old_tag, and both the variables
old_tag and miv are detached.

 We now provide a few key definitions giving the
formal structure of our agent-based G-Net models.

Definition 2.1 An agent-based G-Net is a 7-tuple AG =
(GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic
Switch Place providing an abstract for AG, GL is a Goal
module, PL is a Plan module, KB is a Knowledge-base
module, EN is an Environment module, PN is a Planner
module, and IS is an internal structure of AG.

Definition 2.2 A Planner module of an agent-based G-Net
AG is a colored sub-net defined as a 7-tuple (IGS, IGO,
IPL, IKB, IEN, IIS, DMU), where IGS, IGO, IPL, IKB,
IEN and IIS are interfaces with GSP, Goal module, Plan
module, Knowledge-base module, Environment module
and internal structure of AG, respectively. DMU is a set of
decision-making unit, and it contains three abstract
transitions: make_decision, sensor and update.

Definition 2.3 An internal structure (IS) of an agent-based
G-Net AG is a triple (IM, OM, PU), where IM/OM is the
incoming/outgoing message section, which defines a set of
message processing units (MPU); and PU is the private
utilit y section, which defines a set of methods.

Definition 2.4 A message processing unit (MPU) is a
triple (P, T, A), where P is a set of places consisting of
three special places: entry place, ISP and MSP. Each MPU
has only one entry place and one MSP, but it may contain
multiple ISPs. T is a set of transitions, and each transition
can be associated with a set of guards. A is a set of arcs
defined as: ((P-{ MSP}) x T) ∪ ((T x (P-{ entry}).

Definition 2.5 A method is a triple (P, T, A), where P is a
set of places with three special places: entry place, ISP and
return place. Each method has only one entry place and
one return place, but it may contain multiple ISPs. T is a
set of transitions, and each transition can be associated
with a set of guards. A is a set of arcs defined as: ((P-
{ return}) x T) ∪ ((T x (P-{ entry}).

2.3. Inheritance Modeling in Agent-based G-Nets

 Although there are different views with respect to the
concept of agent-oriented design [12], we consider an
agent as an extension of an object, and we believe that
agent-oriented design should keep most of the key features
in object-oriented design. Thus, to progress from an agent-
based model to an agent-oriented model, we need to
incorporate some inheritance modeling capabiliti es. But
inheritance in agent-oriented design is more complicated
than in object-oriented design. Unlike an object (passive
object), an agent object has mental states and reasoning
mechanisms. Therefore, inheritance in agent-oriented
design invokes two issues: an agent subclass may inherit
an agent superclass’s knowledge, goals, plans, the model
of its environment and its reasoning mechanisms; on the
other hand, as in the case of object-oriented design, an
agent subclass may inherit all the services that an agent
superclass may provide, such as private utilit y functions.
There is existing work on agent inheritance with respect to
knowledge, goals and plans [2][6]. However, we believe
that since inheritance happens at the class level, an agent
subclass may be initialized with an agent superclass’s
initial mental state, but new knowledge acquired, new
plans made, and new goals generated in a individual agent
object (as an instance of an agent superclass), can not be
inherited by an agent object when creating an instance of
an agent subclass. A superclass’s reasoning mechanism
can be inherited, however it is beyond the scope of this
paper. For simplicity, we assume that an agent subclass
always uses its own reasoning mechanisms, and thus the
reasoning mechanisms in the agent superclass should be
disabled in some way. This is necessary because different
reasoning mechanisms may deduce different results for an
agent, and to resolve this type of conflict may be time-
consuming and make an agent’s reasoning mechanism
ineff icient. Therefore, in this paper we only consider how
to initialize a subclass agent’s mental state while an agent
subclass is instantiated; meanwhile, we concentrate on the
inheritance of services that are provided by an agent
superclass, i.e., the MPUs and methods defined in the
internal structure of an agent class. Before presenting our
inheritance scheme, we need the following definition:

Definition 2.6 When an agent subclass A is instantiated as
an agent object AO, a unique agent identifier is generated,
and all superclasses and ancestor classes of the agent
subclass A, in addition to the agent subclass A itself, are
initialized. Each of those initialized classes then becomes
a part of the resulting agent object AO. We call an
initialized superclass or ancestor class of agent subclass A
a subagent, and the initialized agent subclass A the
primary subagent.

 The result of initializing an agent class is to take the
agent class as a template and create a concrete structure of
the agent class and initialize its state variables. Since we

 6

represent an agent class as an agent-based G-Net, an
initialized agent class is modeled by an agent-based G-Net
with initialized state variables. In particular, the four
tokens in the special places of an agent-based G-Net, i.e.,
gTkn, pTkn, kTkn and eTkn, are set to their initial states.
Since different subagents of AO may have goals, plans,
knowledge and environment models that conflict with
those of the primary subagent of AO, it is desirable to
resolve them in an early stage. In our case, we deal with
those conflicts in the instantiation stage in the following
way. All the tokens gTkn, pTkn, kTkn and eTkn in each
subagent of AO are removed from their associated special
places, and these tokens are combined with the tokens
gTkn, pTkn, kTkn and eTkn in the primary subagent of AO.1
The resulting tokens gTkn, pTkn, kTkn and eTkn (newly
generated by unifying those tokens for each type), are put
back into the special places of the primary subagent of AO.
Consequently, all subagents of AO lose their abiliti es for
reasoning, and only the primary subagent of AO can make
necessary decisions for the whole agent object. More
specifically, in the Planner module (as shown in Figure 3)
that belongs to a subagent, the abstract transitions
make_decision, sensor and update can never be enabled
because there are no tokens in the following special places:
Goal, Plan and Knowledge-base. If a message tagged as
internal arrives, the transition bypass may fire and a
message token can directly go to a MPU defined in the
internal structure of the subagent if it is defined there. This
is made possible by connecting the transition bypass with
inhibitor arcs (denoted by dashed lines terminated with a
small circle in Figure 3) from the special places Goal, Plan
and Knowledge-base. So the transition bypass can only be
enabled when there are no tokens in these places. In
contrast to this behavior, in the Planner module of a
primary subagent, tokens do exist in the special places
Goal, Plan and Knowledge-base. Thus, the transition
bypass will never be enabled. Instead, the transition
make_decision must fire before an outgoing message is
dispatched into a MPU defined in the primary agent or any
subagents.
 To reuse the services (i.e., MPUs and methods) defined
in a subagent, we need to introduce a new mechanism
called Asynchronous Superclass switch Place (ASP). An
ASP (denoted by an elli psis in Figure 3) is similar to a
MSP, but with the difference that an ASP is used to
forward a message or a method call to a subagent rather
than to send a message to an agent object. For the MSP
mechanism, the receiver could be some other agent object
or the agent object itself. In the case of MSP(self), a
message token is always sent to the GSP of the primary
subagent. However, for ASP(super), a message token is
forwarded to the GSP of a subagent that is referred to by
super. In the case of single inheritance, super refers to a

1 The process of generating the new token values would involve actions
such as confli ct resolution among goals or plans, which is a topic outside
the scope of our model and this paper.

unique superclass G-Net, however with multiple
inheritance, the reference of super must be resolved by
searching the class hierarchy diagram.
 When a message/method is not defined in an agent
subclass model, the dispatching mechanism will deposit
the message token into a corresponding ASP(super).
Consequently, the message token will be forwarded to the
GSP of a subagent, and it will be again dispatched. This
process can be repeated until the root subagent is reached.
In this case, if the message is still not defined at the root,
an exception occurs. In this paper, we do not provide
exception handling for our agent-based G-Net models, and
we assume that all i ncoming messages have been correctly
defined in the primary subagent or some other subagents.

3. Examples of Agent-Or iented Design

 Consider an agent family in an electronic marketplace
domain. Figure 4 shows the agents in a UML class
hierarchy notation. A shopping agent is defined as an
abstract agent that has the abilit y to register in a
marketplace through a facilit ator, which serves as a well -
known agent in the marketplace. A shopping agent cannot
be instantiated as an agent object, in other words, a
shopping agent cannot register itself as a shopping agent.
Rather, the functionality of a shopping agent class can be
inherited by an agent subclass, such as a buying agent or a
selli ng agent. Both the buying agent object and selli ng
agent object may reuse the functionality of a shopping
agent by registering themselves as a buying agent or a
selli ng agent through a facilit ator. Furthermore, a retailer
agent is an agent that can sell goods to a customer, but it
also needs to buy goods from some selli ng agents. Thus a
retailer agent class is designed as a subclass of both the
buying agent class and the selli ng agent class. In addition,
a customer agent class may be defined as a subclass of a
buying agent class, and an auctioneer agent class may be
defined as a subclass of a selli ng agent class. In this paper,
we only consider four types of agent class, i.e., the
shopping agent class, the buying agent class, the selling
agent class and the retailer agent class. The modeling of
the customer agent class and auctioneer agent class can be
done in a similar way.

 Shopping agent

Customer agent

Buying agent Selli ng agent

Retailer agent Auctioneer agent

Figure 4. The class hierarchy diagram of agents in an
electronic marketplace

 To ill ustrate how to design agents by using our agent
model, we use the following examples. Figure 5 (a) depicts

 7

a template of a contract net protocol expressed as an agent
UML (AUML) sequence diagram [11] for a registration-
negotiation protocol between a shopping agent and a
facilit ator agent. Figure 5 (b) is a modified example of a
contract net protocol adapted from [11], which depicts a
template of a protocol expressed as an AUML sequence
diagram for a price-negotiation protocol between a buying
agent and a selli ng agent. Some of the notations of AUML
are adapted from [11] as extensions of UML sequence
diagrams for agent design. In addition, to correctly draw
the sequence diagram for the protocol templates, we
introduce two new notations, i.e., the end of protocol
operation “•” and the iteration of communication operation
“ * ” . Figure 5 (c) shows an example price-negotiation
protocol that is instantiated from the protocol template
shown in Figure 5 (b).

shopping agent facili tator agent

request-registration

• refuse

request-info
x

• confirm

(a) (b)

Figure 5. Contract net protocols (a) A template for the registration
protocol (b) A template for the price-negotiation protocol (c) An
example of the price-negotiation protocol

supply-info

x
accept-info *

buying agent sell ing agent

request-price

• refuse

x

accept-proposal

reject-proposal x

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent sell ing agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)

 Consider Figure 5 (a). When a conversation based on a
contract net protocol begins, the shopping agent sends a
request for registration to a facilit ator agent. The facilit ator
agent can then choose to respond to the shopping agent by
refusing its registration or requesting agent information.
Here the “x” in the decision diamond indicates an
exclusive-or decision. If the facilit ator refuses the
registration based on the marketplace’s size, the protocol
ends; otherwise, the facilit ator agent waits for agent
information to be supplied. If the agent information is
correctly provided, the facilit ator agent then still has a
choice of either accepting or rejecting the registration
based on the shopping agent’s reputation and the
marketplace’s functionality. Again, if the facilit ator agent
refuses the registration, the protocol ends; otherwise, a
confirmation message will be provided afterwards.
Similarly, the price-negotiation protocol between a buying
agent and a selli ng agent can be ill ustrated in Figure 5 (b).
Based on the communicative acts (e.g., request-
registration, refuse, etc.) needed for the contract net
protocol in Figure 5 (a), we may adopt the design template
of the shopping agent shown in Figure 6. The Goal, Plan,
Knowledge-base and Environment modules remain as
abstract units and can be refined in a further detailed
design stage. The Planner module may reuse the template
shown in Figure 3. The design of the facilit ator agent is
similar, however it may support more protocols.

 With inheritance, a buying agent class, as a subclass of
a shopping agent class, may reuse MPUs/methods defined
in a shopping agent class’s internal structure. Similarly,
based on the communicative acts (e.g., request-price,
refuse, etc.) needed for the contract net protocol in Figure
5 (b), we may design the buying agent class as in Figure 7.
Note that we do not define the MPUs of refuse and
confirm in the internal structure of the buying agent class,
for they can be inherited from the shopping agent class. A
retailer agent can be designed in the same way. In addition
to its own MPU/methods, a retailer agent class inherits all
MPU/methods of both the buying agent class and the
selli ng agent class.

GSP(SC)

mesg_pr-
ocessing

incoming messages

Figure 6. An agent-based G-Net model for shopping agent class

Goal

 outgoing messages

request-info refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info confirm request-registration supply-info

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private uti li ties

utili ty_1 uti li ty_p

…

…

utili-
ty_1

uti li-
ty_p

mesg_pr-
ocessing

MSP(G’ .Aid) MSP(G’ .Aid)

mesg_pr-
ocessing

Plan Environment

 GSP(BC)
BC extends SC

message_
processing

incoming messages

Figure 7. An agent-based G-Net model for buying agent class

Goal

 outgoing messages

propose request-price

Knowledge-base

 Planner

MSP(self) MSP(G’ .Aid) MSP(G’ .Aid) MSP(G’ .Aid)

accept-proposal reject-proposal

message_
processing

message_
processing

message_
processing

 return return

private util i ties

util i ty_1 util i ty_p

…

…

util i ty_1 util i ty_p

Plan Environment

 Now we discuss an example to show how the reuse of
MPU/methods works. Consider a buying agent object BO,
which receives a message of request-info from a facilit ator
agent object FO. A mTkn token will be deposited in the
GSP of the primary subagent of BO, i.e., the GSP of the
corresponding buying agent class (BC). The transition
external in BC’ s Planner module may fire, and the mTkn
will be moved to the place dispatch_incoming_message.
Since there is no MPU for request-info defined in the
internal structure of BC, the mTkn will be moved to the
ASP(super) place. Since super here refers to a unique
superclass – the shopping agent class (SC) – the mTkn will

 8

be transferred to the GSP of SC. Now the mTkn can be
correctly dispatched to the MPU for request-info. After the
message is processed, MSP(self) changes the tag of the
mTkn from external to internal, and sends the processed
mTkn token back into the GSP of BC. Note that MSP(self)
always sends a mTkn back to the GSP of the primary
subagent. Upon the arrival of this message token, the
transition internal in the Planner module of BC may fire,
and the mTkn token will be moved to the place
check_primary. Since BC corresponds to the primary
subagent of BO, there are tokens in the special places
Goal, Plan, Knowledge-base and Environment. Therefore
the abstract transition make_decision may fire, and any
necessary actions are executed in place next_action. Then
the current conversation is either ignored or continued
based on the decision made in the abstract transition
make_decision. If the current conversation is ignored, the
goals, plans and knowledge-base are updated as needed;
otherwise, in addition to the updating of goals, plans and
knowledge-base, a newly constructed mTkn with a tag of
external is deposited into place dispatch_outgoing_mess-
age. The new mTkn token has the message name supply-
info, following the protocol defined in Figure 5 (a). Again,
there is no MPU for supply-info defined in BC, so the new
mTkn token will be dispatched into the GSP of SC. Upon
the arrival of the mTkn in the GSP of SC, the transition
external in the Planner module of SC may fire. However
at this time, SC does not correspond to the primary
subagent of BO, so all the tokens in the special places of
Goal, Plan, Knowledge-base have been removed.
Therefore, the transition bypass is enabled. When the
transition bypass fires, the mTkn token will be directly
deposited into the place dispatch_outgoing_message, and
now the mTkn token can be correctly dispatched into the
MPU for supply-info defined in SC. After the message is
processed, the mTkn token will be transferred to the GSP
of the receiver mTkn.body.receiver, and in this case, it is a
facilit ator agent object.
 For the reuse of private utilit y functions defined in a
superclass, the situation is the same as in the case of
object-oriented design. Examples concerning reuse of
private utilit y functions and different forms of inheritance,
such as augment inheritance and restrictive inheritance,
can be found in [9].

4. Conclusions and Future Work

 One of the most rapidly growing areas of interest for
distributed computing is that of distributed agent systems.
In this paper, we introduced a framework of agent models
with an example of agent family in electronic commerce.
Using this framework, shopping agent, selli ng agent,
buying agent and retailer agent can be modeled as
intelli gent agents with the characteristics of being
autonomous, reactive and internally-motivated. Examples
of a registration-negotiation protocol between shopping

agents and facilit ator agents, and a price-negotiation
protocol between a shopping agents and buying agents
were used to ill ustrate our basic idea.
 For our future work, we will consider the refinement of
the Goal, Plan, Knowledge-base and Environment
modules. The abstract transitions defined in the Planner
module, i.e., make_decision, sensor and update, will be
refined into correct sub-nets too. We will also look into
issue like deadlock avoidance and state exploration
problems in the agent-oriented design and verification
processes.

5. References

[1] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers,

R. Evans, “Software Agents: A Review,” Technical report
TCD-CS-1997-06, Trinity College Dublin, May 1997.

[2] David Kinny, Michael P. Georgeff , “Modeling and Design
of Multi -Agent Systems,” Proceedings of the 4th Int’ l
Workshop on Agent Theories, Architectures, and Language
(ATAL-97), 1997, pp. 1-20.

[3] T. J. Rogers, R. Ross, V. S. Subrahmanian, “ IMPACT: A
System for Building Agent Applications,” Journal of
Intelli gent Information Systems, 14(2-3): 95-113, 2000.

[4] Carlos Argel Iglesias, Mercedes Garrijo, José Centeno-
González, “A Survey of Agent-Oriented Methodologies,”
Proceedings of the Fifth International Workshop on Agent
Theories, Architectures, and Language (ATAL-98), 1998,
pp. 317-330.

[5] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and
Modeling Technique for Systems of BDI Agents,” Tech.
Rep. 58, Australian Artificial Intelli gence Institute,
Melbourne, Australia, Jan. 1996.

[6] Lobel Crnogorac, Anand S. Rao, Kotagiri Ramamohanarao,
“Analysis of Inheritance Mechanisms in Agent-Oriented
Programming,” IJCAI (1) 1997: 647-654.

[7] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proceedings of the IEEE, 77(4): 541-580,
April 1989.

[8] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net
Based Approach for Logical and Timing Analysis of
Complex Software Systems,” Journal of Systems and
Software, 39(1): 39–59, 1997.

[9] Haiping Xu and Sol Shatz, “Extending G-Nets to Support
Inheritance Modeling in Concurrent Object-Oriented
Design,” IEEE Int’ l Conf. on Systems, Man, and
Cybernetics, Nashvill e, Tenn., Oct. 2000, pp. 3128-3133.

[10] Tim Finin, Yannis Labrou, and James Mayfield, “KQML as
an agent communication language,” in Jeff Bradshaw (Ed.),
Software Agents, MIT Press, Cambridge, 1997.

[11] James Odell , H. Van Dyke Parunak, Bernhard Bauer,
“Representing Agent Interaction Protocols in UML,” ICSE
2000 Workshop on Agent-Oriented Software Engineering
(AOSE-2000), June 10, 2000, Limerick, Ireland.

[12] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia
Methodology for Agent-Oriented Analysis and Design,”
International Journal of Autonomous Agents and Multi -
Agent Systems, 3(3): 285-312, 2000.

