
Distributed Network Simulations using the Dynamic Simulation Backplane *

George F. Riley, Mostafa H. A m m a r , Richard M. Fujimoto, Donghua X u , li'alyan Perumalla
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{ riley,ammar,fujimoto,xu,kalyan}@cc.gatech .edu
(404)894-6705, Fax: (404)385-0332

Abstract

We present an approach for creating distributed,
component-based, simulations of communication
networks by interconnecting models of sub-networks
drawn from different network simulation packages.
This approach supports rapid construction of simu-
lations for large networks by reusing existing mod-
els and software, and fast execution using paral-
lel discrete event simulation techniques. A dy-
namic simulation backplane is proposed that pro-
vides a common format and protocol for message
exchange, and services for transmitting data and
synchronizing heterogeneous network simulation en-
gines. In order to achieve "plug-and-play" interop-
erability, the backplane uses existing network com-
munication standards, and dynamically negotiates
among the participant simulators to define a mini-
mal subset of required information that each simu-
lator must supply, as well as other optional infor-
mation. The backplane then automatically creates a
message format that can be understood by all partic-
ipating simulators and dynamically creates the con-
tent of each message by using callbacks to the simu-
lation engines. This paper describes our approach to
interoperability as well as an implementation of the
backplane. We present results that demonstrate the
proper operation of the backplane by distributing a
network simulation between two different simulation
packages, ns2 developed at USC/ISI and GloMoSim
developed at UCLA. We present performance results
that show that the overhead for the creation of the
dynamic messages is minimal. Although this work
is specific to network simulations, we believe our
methodology and approach can be used to achieve
interoperability in other distributed computing ap-
plications as well.

1 Introduction
Distributed network simulations exchange infor-

mation using event messages, which typically model
the data packets flowing between the simulated net-

'This work is supported in part by NSF under contract num-
ber ANI-9977544 and DARPA under contract number N66007-
00-1-8934.

work elements. When the processes composing the
distributed simulation are homogeneous, then all
can easily agree on the content and meaning of the
event messages. However, when exchanging event
messages between heterogeneous simulators, several
interesting problems arise. How do the simulators
agree in advance on the representation of a simu-
lated data packet? How can a simulator insist that
a particular protocol header must be present? How
can a simulator specify the level of detail that is
modeled for a particular protocol? What should a
simulator do when presented with protocol informa-
tion for which it has no internal representation?

To address these issues, we introduce the Dy-
namic Simulation Backplane, which provides a coni-
mon event message-passing interface between dis-
tributed simulations. The backplane creates a dy-
namic format for network event messages, which is
defined dynamically by the backplane using regis-
tration calls provided by the simulators. By using
the backplane, a simulation engine can exchange
meaningful event messages with other simulators,
even when they do not share a common event nies-
sage format. The backplane defines a common eAPZ
for simulators to describe which network protocols
are supported and which data elements within each
protocol are required or available by that simula-
tor. Finally, the backplane supports baggage data,
which occurs when a given simulator must retain
protocol information of interest only to another sim-
ulator.
1.1 Motivation

There are several commercially or publicly avail-
able network simulation packages, each of which
has its strengths and weaknesses. The ns [l] net-
work simulator has a rich set of end-to-end network
protocols, and a variety of routiFg element queuing
disciplines. The OPNET [a] simulator has a large
database of network equipment models, including
routers and switches from several network equip-
ment vendors. The Gloh4oSim [3] simulation engine
provides strong support for wireless networks with
mobility. Our research studies the interoperability
of these heterogeneous network simulators, thereby
allowing the simulator modeler to describe and sim-
ulate each portion of a network with the simulator

1063-6927/01$10.00 0 2001 IEEE
181

most well suited for that portion of the network.
In an ideal world, a network modeler could use a
different network simulator for different portions of
the entire network model, selecting the best simu-
lator for the simulation requirements of th,at por-
tion of the model. For example, we might choose
the ns simulator to model the behavior of the TCP
endpoints, using one of the rich set of TCP models
available in ns. Next we might choose GloMoSim to
model a wireless local area network where the TCP
endpoints are attached. Finally, we might choose
OpNet to model a wide area wired network con-
necting the wireless LANs together, selecti.ng the
network routers from the large database of network
equipment supported by OpNet.

As a second example, suppose that a network
modeler has previously developed a detailed model
of a local area network using the OpNet sirnulator.
A second modeler has created a model of a wide area
network using ns. Finally a third modeler ‘has de-
veloped a good model of wireless local area network
using GloMoSim. Each of the three models has been
thoroughly tested and each modeler is confident of
the correctness of the model. Should the three mod-
elers want to combine the simulation into one large
model, they are faced with two possibilities. One
solution is to convert two of the three mod’els into
the same environment as the third (i.e. convert all
models to the ns simulation environment). By do-
ing this, the confidence in two of the three existing
models is lost, due to the modifications to the model
required by the conversion. A better solution would
be to run each of the three simulations in their na-
tive environment, together with a method to allow
event messages to be exchanged between th’e simu-
lation engines.

For a third example, suppose that a given net-
work model is too large to be defined and simulated
within the physical memory constraints of a single
workstation. With a good method for distributing
the simulation on two or more workstations, the
overall size of the network being simulated can grow
almost linearly with the number of workstat.ions.
1.2 Related Work

The distributed execution of a single network
simulation, either on several workstations o r on a
tightly coupled SMP system, has been studied for
some t.ime. Cowie et a1.[4, 51 describe the Scaleable
Simulation Framework (SSF) as a method for par-
allel simulation of large scale networks. Nicol et
al. [6] propose IDES, a Java based simulation engine
designed specifically for distributed network simula-
tions. Perumalla et al. [7, 81 created the Telecomniu-
nications Description Language (TED), which al-
lows multithreaded network simulations on am SMP
processor. Bagrodia et al. [3] developed the Glo-
MoSim simulation environment, which is built on
top of the Parsec 91 parallel simulation environ-
ment. Riley et al. t IO] designed and implemented
Parallel/Distributed ns (pdns) , which allowis a sin-
gle ns simulation to be distributed on a network of
workstations. All of the previous work ha:<, how-
ever, been focused on a homogeneous simulation

environment. All of the distributed processes are
running the same simulation engine, and thus the
semantics of event messages transferred between re-
mote simulators is the same. Event messages can
be transmitted between simulators as just a “Bag of
Bits”, without regard to the internal representation
of these events. Clearly, when exchanging messages
between heterogeneous simulators, the bag of bits
approach will not work.

The High Level Architecture (HLA) [Ill provides
a standardized API for simulation engines to regis-
ter objects and request notification of object u p
dates. While this approach does not limit the dis-
tributed simulation to a common simulation engine,
it does require the simulations to agree on the for-
mat of the objects being exchanged. To contrast
this with our work, we make no assumptions re-
garding representation of messages internally in the
simulator.

1.3 The Dynamic Backplane Approach
In order for heterogeneous simulators to ex-

change meaningful event messages, there must be
some common ground for the semantics and mean-
ing of the information being exchanged. In the
realm of network simulations, a good starting point
is the published standards for network protocols.
Any simulator that supports the simulation of data
flows using the TCP protocol [12] must have some
understanding of at least some subset of the data
itenis specified in RFC793. While a complete im-
plementation for all TCP variations and all TCP
protocol fields may not be present, each simulation
must at least have some notion of a Sequence Num-
ber. Similarly, if the simulator supports the routing
of simulated packets using the IP protocol [13], then
some parts of the data items specified in RFC791
must be known. Again, all of the items may not
be supported, such as the fragmentation of pack-
ets, but a t a minimum some notion of a Destznatzon
Address must be understood.

With this in mind, we designed the backplane us-
ing the concept of Protocols and Data Items. Each
simulator registers with the backplane a complete
lisi, of the protocols that are known to that simu-
lator. Within each protocol, the simulator registers
which of the data items defined in that protocol are
supported. However, with the understanding that
network simulations are often used to promote ex-
perimental protocols or extensions to existing pro-
tocols, the backplane does not limit the registration
only to standardized protocols or data items. A sini-
ulator may register any protocol, or any data item
within a protocol. As long as one other simulator
registers a protocol or item by the same name, those
simulators can exchange meaningful information.

Once all protocols and items are registered, the
backplane negotiates between the participants, us-
ing a Slobal consensus protocol, to obtain a com-
plete picture of the registered protocols and items.
Using the information from the global consensus,
the backplane can then create dynamic format mes-
sages (on a message-by-message basis) to exchange

182

System I

Simulator I U
I T h e Dyn

I

System 2

m i c S i m u l a t i o i

: R T I K I T L i b r

System 3

Simulator 3 7
B a c k p l a n e

Y

Figure 1. Dynamic Simulation Backplane
Architecture

information between simulators. The details of the
registration process and the global consensus are
given later.

The remainder of this paper is organized as fol-
lows. Section 2 describes in detail the design and
operation of the backplane. Section 3 gives a de-
scription of experiments we used for demonstrating
the viability of the backplane and lists some perfor-
mance results. Finally, Section 4 states some con-
clusions and gives the future direction of our re-
search

2 The Dynamic Simulation Backplane

Figure 1 shows the overall architecture of a dis-
tributed simulation using the Dynamic Simulation
Backplane. The figure shows a distributed simu-
lation running on three systems. Each simulator
sends and receives event messages from the back-
plane in native format, using the internal represen-
tation for events that are specific to that simulator's
implementation. The backplane converts the event
messages to a common, dynamic format and for-
wards the events to other simulators. The format of
the dynamic messages is determined at runtime, on
a message-by-message basis. The backplane uses
the services provided by a Runtzme-Infrastructure
library, known as RTIKIT. The RTIKIT assists the
backplane by providing the message distribution
and simulation time management services required
by all distributed simulations. The backplane itself
provides services specific to the support for hetero-
geneous simulations.

The backplane and RTIKIT services fall into five
basic categories:

1. Protocol/Item Registration Services
2. Consensus Computation
3. Message Importing/Exporting Services,
4. Simulation Time Management Services, and
5. Event Distribution Services.

2.1 Protocol and Item Registration Services
Within the networking community, there are well

known and widely adopted standards for exchang-
ing data packets between end systems. The Re-
quest For Comments (RFC's) published by the In-
ternet Engineering Task Force (IETF) define clearly
a number of protocols and required data items to
be exchan ed by those protocols. For example,
RFGi'91[1$ defines the widely used Internet Pro-
tocol (IP) and specifies a total of 14 individual data
items within the protocol. We chose to use these
standards as the starting point for our registration
services. Each simulator will register with the back-
plane the protocols that are supported, and the
data items within those protocols. A unique ASCII
string identifies each protocol within the backplane.
An ASCII string unique within the protocol defines
each data item. We emphasize however that the
published standards are simply a starting point, and
in no way are all-inclusive. With the backplane,
simulators can register any data item for a proto-
col, as long as the ASCII name is unique within the
protocol. Simulators can also ignore items within
a published protocol if the particular item has no
meaning or use within that simulator. Additionally,
simulators can register completely new protocols for
which there is no standard.

As protocols and data items are registered, each
simulator must specify whether each is requzred or
optzonal. A required protocol is one for which all
simulators participating in the distributed siniula-
tion must provide support, or the distributed sim-
ulation cannot continue. An example of a required
protocol might be the Internet Protocol. If IP were
specified as required by any simulator, then all other
simulators must also specify support for 1P or the
distributed simulation cannot continue. Data items
within a protocol also are specified as required or
optional. While all simulators might support the
IP protocol, they may have differing levels of detail
represented. For example, the Header Checksum
data item may be modeled in one simulator, but
may have no meaning in another. If the simula-
tor supporting the header checksum field has some
way to determine a reasonable default value, then
that item should be specified as optional. Other
items within IP might be required items, such as the
Destination Address. When registering data items,
the simulators also specify whether or not the data
item needs byte-swappzng or not. The backplane
will later use this information to insure that all data
items exchanged with peers is in a common byte or-
dering format. Lastly, simulators specify whether
individual data items should be considered baggage
when they are exported to simulators with no cor-
responding items. Baggage items are discussed in
detail later.

When registering protocols, each simulator speci-
fies the address of a callback function, called the Ex-
port Querycullback, which the backplane later uses
to determine if that protocol is to be exported for
a given event message. During the registration
process, simulators will register all protocols that

183

have some meaning to that simulator. However,
any given event message may not in fact have in-
formation for all registered protocols. For exam-
ple, a given simulator may support the HTTP pro-
tocol, but a given event message may have only
TCP/IP information meaningful. By using the Ex-
port QueryCallback, the simulator can inform t,he
backplane, on a message-by-message basis, which
of the registered protocols are meaningful, arid thus
keep the size of the dynamic event messages to a
minimum for each message. The dynamic determi-
nation of the message format is described later.

When registering protocol data items, the sim-
ulator specifies the address of three callback func-
tions, called the ProtocolltemExport callbacli, Pro-
tocolltemlmport callback and ItemDefault callback.
The ProtocolltemExport callback is used by the
backplane during a message export action to’ query
the simulator for the correct value of the corre-
sponding data item. The Protocolltemlmport call-
back is used by the backplane to inform the sim-
ulator of the correct value for data items during a
message import action. The ItemDefault callback is
used by the backplane to inform the simulat,or that
an optional data item has not been provided by a
peer on a message import. In this case, the sim-
ulator can determine a suitable default value. For
each of the three callbacks, a corresponding con-
text pointer is specified, which is returned to the
simulator when the callbacks are executed. The
context can be used to provide details specific to
a given item, and allow a single callback function to
be used for many data items. Complete details con-
cerning the message exporting and importing are
given later.

We discuss the operation of the backplane in
terms of protocols and data items within tholse pro-
tocols, since the target application for our research
is the simulation of computer networks. As previ-
ously mentioned, a protocol in this context might be
IP, and the data items associated with this protocol
might be Source Address, Destination Address, etc.
However, from the point of view of the backplane,
a protocol simply refers to a collection of individual
data items that can be referred to as an agg;regate
by a single name. If the target application were an
air traffic control application, a protocol could be
”Aircraft Characteristics”, and the individual data
items might be ”Maximum Cruising Speed”, ”Fuel
Consumption Rate”, and items of that nature. For
the remainder of this paper, we will continue to use
the simulation of computer networks as the basis for
discussion.
2.2 Consensus Computation

After all simulators have specified the protocols
and data items needed, a global consensus protocol
is performed to find a minimal subset of required
items, and a maximal set of optional items. The
purpose of the consensus protocol is twofold. First,
it insures that all participating simulators support
the required protocols. Secondly, each protoc:ol and
each item within the protocols is assigned a glob-
ally unique Protocol Identifier and Item Identifier,

184

which 3.11 participating simulators are aware of. The
identifiers are later used in the creation of the dy-
namic message format during message exporting,
explained later.

To accomplish the global consensus, each simu-
lator calls a RegistrationComplete function after all
protocols and data items have been registered. This
function acts as a barrier, which blocks until all sim-
ulators have called t.he function. A single system
is nominated as the Master system. In our imple-
mentation, each simulator is assigned a unique node
identifier in the range 0 . . .(IC - l), where k is the
number of participating simulators, and the master
is 1,hen chosen as the system with node identifier
0. Each system, other than the master, reports the
list of t,he registered protocols and data items to the
master. For each reported protocol, the master first
determines if some other simulator has already re-
ported the same protocol. If not, the master adds
this protocol to the list of known protocols. The
master also counts the number of simulators report-
ing a given protocol, and the number of simulators
tha.t specify it as required. The same is done for
dat,a items within a protocol.

Once all simulators have reported all protocols
and data items, the master has a complete view of
all reported protocols and items. The first step is to
determine that all participants support the required
protocols and data items. The complete discussion
of the possibilities is omitted due to space consider-
ations, but they include complete agreement where
all simulators agree on the requirements, and imme-
diate disagreement where the backplane can report
an error and abort the simulation. Other agreement
errors may go undetected unt,il the simulation is ac-
tua.lly running and messages are exchanged.

Once the master has determined the validity of
the protocol and item registrations as described
above, each protocol is assigned a unique protocol
identifier by simply numbering them starting frorn
0. Each item within each protocol is also assigned
an identifier, again starting with 0 in each protocol.
Once the master system has assigned the identifiers,
the cornplete set of protocols and data items is re-
turned to all participants, along with the assigned
identifiers. At this point, all participants agree on
the complete set of protocols and data items, along
with the unique int.eger identifiers assigned to each.

2.3 Message Importing/Exporting Services
Once the registration and global consensus phase

of t.he backplane execution has completed, the sim-
ulation phase of each participant can begin. The
backplane provides a mechanism for exchanging
event messages between simulat.ors. Consider the
distributed simulation shown in Figure 2. This sim-
ulation defines a network model to be simulated,
consisting of eight nodes and eight links as shown.
The actual simulation execution is distributed on
two systems, simulators A and B as shown. A data
packet event message will need to be transferred
from simulator A to simulator B when a simulated
transmit data packet event is generated at simulator

Simulator 1 Simulator 2 I Simulator 3 - Simulator 2 Simulator 3 Simulator A Simulator B

Figure 3. Baggage Example
'Simulated Link I

Figure 2. Simple Distributed Simulation 2.3.2 I m p o r t i n
When a s m u l a t o r 8 ~ e ~ f % a dynamic format
data packet event from a peer, the message must be
converted back to an internal representation for that
simulator in order to be meaningful. The simulator
calls the ImportMessage function of the backplane
to accomplish this conversion. This function scans
the dynamic format message, and for each protocol
included will determine if this simulator has regis-
tered the existence of the protocol. If the protocol
has not been registered, and if any peer specified the
baggage indicator for the protocol, then all items in
the protocol become baggage (as described in the
next section). If the protocol was registered, then
the Protocolltemlmport or ItemDefault callback is
called for each registered item. Protocolltemlmport
is called for each data item included in the dynamic
message, and ItemDefault is called for each item not
included in the dynamic message. For items present
in the dynamic message but not registered by the
simulator, the item may become baggage.

After all of the callbacks for registered data items
have been called, the simulator receiving the dy-
namic message will have a complete picture, in na-
tive format, of the meaningful content of the mes-
sage that was exported by the peer, plus any de-
faulted data items.

2.3.3 Ba ga e
Baggage da%a ifems are information that must be
carried along with a simulated data packet within
a given simulator, but in fact have no meaning for
that simulator. Consider the distributed simulation
shown in Figure 3. For this example, we assume
that simulators 1 and 3 have the same level of de-
tail for the T C P protocol, but that simulator 2 has
support for IP only and no notion of the TCP pro-
tocol. Now suppose that the overall simulation is
to model the behavior of a T C P flow from node 1
to node 2. It is clear that when simulated packets
arrive at node 2 in simulator 3, the TCP proto-
col information from node 1 must be included for
the simulation to function properly. However, since
simulator 2 does not have an internal representa-
tion of TCP protocol items, there must be some way
for simulator 2 to retain this information that was
provided by simulator 1. When packets flow from
simulator 1 to simulator 2 (on link l) , the back-
plane will convert the data packets to the dynamic
format, using all of the registered data items from
simulator 1 (which will include both TCP and I P in-
formation). When simulator 2 receives the dynamic

A on link 1. The backplane will export this event
message, by converting it from an internal format
specific to simulator A, to a common dynamic for-
mat that can be understood by all simulators. Sim-
ulator B will need to import the event message when
a simulated receive data packet event is received on
link 1. The message import action is the conver-
sion of the dynamic format message received from a
peer simulator to an internal representation specific
to a given simulator. Details on the exporting and
importing actions are given in the next sections.

2.3.1 Exporting Messages
When a given simulator must transmit a data packet
event to a peer simulator, the ExportMessage func-
tion of the backplane is called. This function calls
the ProtocolExistsQuery (P B Q) callback for every
protocol registered by that simulator, to determine
if this particular data packet event contains data
items for each protocol. This technique allows a
simulator to register all protocols that are known
to that simulator, even if all protocols do not exist
for all data packet events. If the PEQ callback re-
ports that the protocol is present in the packet, the
backplane notes in the dynamic format message that
data items for this protocol are following. Then the
ProtocolZtemExport callback is called for every item
registered for that protocol, and the reported value
for each item is noted in the dynamic format mes-
sage. In response to the ProtocolItemExport call-
back, a simulator can report that no value exists for
a given item, allowing all possible items for each pro-
tocol to be registered, even if they are not present
in all data packets. As data items are copied to the
dynamic format message, they are byte-swapped as
needed t20 a common byte-ordering representation.

The PEQ callback is called only for those pro-
tocols registered by the simulator calling the Ex-
portMessage function. Recall that after the global
consensus computation each simulator has a com-
plete picture of all protocols and all data items reg-
istered by any participant. Clearly, if some simu-
lator has not registered a given protocol, then that
protocol cannot exist in native format data packet
events for that simulator, and thus the protocol is
assumed to be absent.

185

I '

-
S,m"la,or I

TCP

POI I

Scqucnce

nags

-

IP
source

Lks1l"aU""

MAC802.3
Source

Backplane - -

_- -

_-

Syslcln 2
~~

Simulator2

Destination

nap

Figure 4. Exportingllmporting Example

message, the backplane will convert the information
back to an internal representation known to simula-
tor 2. Any data item (or protocol) that is included
in the dynamic message but is NOT known to simu-
lator 2 will be retained as baggage. In this case the
baggage will be all data items from the TCP pro-
tocol supplied by simulator 1. The baggage buffer
will be returned to simulator 2 as an output of the
Importklessage function, and must be retained by
simulator 2 as part of the data packet. Simulator 2
does not need to be aware of the meaning of any of
the baggage, but rather must just carry the baggage
along with the packet as a bag of bits.

The packet will be routed through the simulated
network by simulator 2, and eventually be passed
to simulator 3, via link 2. When exporting the data
packet via the ExportMessage function, the baggage
buffer is provided to the backplane, and all baggage
items are included in the dynamic format message
sent to simulator 3. When the data packet arrives
at simulator 3 (via link 2) it will contain all of the IP
protocol information provided by simulator 2, plus
the T C P protocol information provided by simula-
tor 1 that was carried as baggage.

2.3.4 Importing/Exporting Example
Figure 4 shows a simple esample of message im-
porting and exporting. Simulator 1 has reg;istered
three protocols, TCP, IP, and MAC 802.3, each
with several data items as shown. TCP and MAC
have been registered as optional, and IP has been
registered as required. Simulator 2 has registered
TCP as optional and IP as required, with three and
four data items respectively, again as shown. The
IP/Destination item and the TCP/Sequence item
have been registered as required by both simula-
tors. All other items are optional. At some point
in the distributed simulation, simulator 1 will cre-
ate a data packet transmission event that must be
received by simulator 2. Simulator 1 calls the EE-
portMessage function of the backplane, which cre-
ates a dynamic format message as follows. First,
the ProtocolEEzstsQuery callback is called, for the
TCP protocol. Assuming that simulator 1 reports
that T C P exists for this message, the Protocolltem-
Export callbacks are called for the Port, Sequence,
and Flags items, and the reported values are stored

in the dynamic message. The process is repeated for
the IP and MAC protocols, resulting in a total of 7
data items being represented in the dynamic mes-
sage. Any value for which the byte-swapping spec-
ification was included during registration is byte
swapped to a common byte ordering representation.
The resulting dynamic message is then transmitted
to simulator 2 by whatever system interconnect ex-
ists between the participants in the distributed sim-
ulation.

When simulator 2 receives the dynamic message,
it in turn calls the Importklessage function of the
backplane, which converts the dynamic message to
a format internal to simulator 2. It does this by
using the Protocolltemlmport callbacks that were
specified for TCP/Sequence, TCP/Port, IP/Source,
and IP/Destination, and passing the values (byte
swapped as necessary) reported for those fields by
simulator 1. Since no value for TCP/Window,
IP/TTL, or IP/Flags was specified by simulator 2,
the ItemDefuult callbacks for each of those items is
called, allowing simulator 2 to determine a suitable
default value. Since simulator 2 has no represen-
talion for TCP/Flags or MAC 802.3 (or any MAC
layer), the simulator will create baggage items for
those if they were specified as baggage by simula-
tor 1 when registered. If the baggage flag was not
specified, the items are simply discarded.

One of the strengths of the backplane design
is that it allows simulators to interact at differing
levels of abstraction and still eschange meaningful
event messages. In the above example, simulator
1 has less detail in T C P and IP than does simula-
tor 2, but has more detail for the MAC layer. By
allowing simulators to calculate reasonable defaults
for optional data items, and by abstracting away
entire optional protocol layers, simulators can still
interact and exchange messages, providing that all
required protocols and items are present.

2.4 Simulation Time Management Services

An important requirement for any distributed
discrete event simulation is the proper management
of simulation time advancement. The participat-
ing simulators cannot just advance their own lo-
cal view of the simulation time as fast as possible.
Instead, they must insure that they will never re-
ceive an event message in the simulated past. To
accomplish this constraint, the simulators must pe-
riodically participate in a global consensus compu-
tation to determine a lower bound on the times-
tamp of the smallest unprocessed event message, in-
cluding event messages that are in transit from one
simulator to another. This global minimum times-
tamp value is called the Lower Bound Time Stamp
(LBTS). Once this LBTS value is determined, all
simulators can use this value as an upper bound on
the local simulation time advancement. If no simu-
lator advances the local simulation time beyond the
computed LBTS value, and if no simulator sends an
event message in the simulated past, then it can be
guaranteed that no simulator will receive events in
their local view of the simulated past.

186

A number of approaches to computing the LBTS
exist [14, 15, 16, 1'71. The backplane niakes
use of time management services provided by the
RTIKIT [18], which uses a butterfly barrier tech-
nique first proposed by Brooks [19]. Using the but-
terfly barrier, simulators exchange local LBTS and
message count information with each other in a se-
ries of rounds. After the completion of a fixed num-
ber of rounds, all processors have agreement on the
global state of the unprocessed messages, and can
thus compute an LBTS value.
2.5 Event Distribution Services

Another requirement for all distributed simula-
tions is Data Distribution. Often an event mes-
sage is created at one simulator that in fact must
be processed at some other simulator. Considering
again the sample distributed simulation shown in
Figure 2 , simulator A must inform simulator B of
receive packet events for any simulated packets sent
on links 1, 2, 3, or 4. In this case it is not sufficient
for A to inform B of a received packet. It must also
advise B of which of the 4 links the packet is to be
received on. The backplane again makes use of the
services provided by the RTIKIT for this event dis-
tribution. Details of this method are omitted here,
but can be found in [lo].

3 Experiments and Results
To demonstrate the feasibility of the backplane

approach, and to measure the overhead incurred by
the conversion of messages to and from the dynamic
format, we devised a series of three benchmarks.
Those are:

Simulation
Seconds
10.0

1. A micro-benchmark to measure the per-item

2. A homogeneous (all ns simulators) distributed

3. A heterogeneous (ns and GloMoSim) dis-

exporting/importing overhead.

simulation

tributed simulation

CPU Time CPU Time
(Backplane) (No Backplane)
1.7 Sec 1.7 Sec

3.1
The purpose of the micro-benchmark was sim-

ply to measure the CPU overhead associated with
the exporting of data items to the dynamic mes-
sage format, and the importing of data items from
the dynamic message format. A simple wrapper
around the backplane was implemented, which mea-
sured the overall ExportMessage and Importkfessage
time, as a function of the total number of protocols
and data items registered. The detailed results are
omitted due to space considerations, but show the
overhead is less than I u s per item per export. This
benchmark was run on a 200Mhz Pentium Pro sys-
tem running Linux.
3.2 Back lane Overhead in Homogeneous

The parallel/distributed ns software (pdns[20])
was modified to use the backplane for event nies-
sages being sent between the instances of the ns sim-
ulators. A simple distributed simulation consisting
of three local area networks was constructed, and

Item Exporting and Importing Overhead

SimuPation

100.0
1000.0

14.5 Sec 15.0 Sec
144.5 Sec 154.0 Sec

Table 1. Homogeneous Simulation Results

GloMoSim Wirelcss

Figure 5. Heterogeneous Simulation Model

each of the LANs was assigned to a different proces-
sor. The pdns simulators used the backplane to ex-
port and import messages to peer simulators, even
though they share a common event message repre-
sentation. The simulation modeled FTP data flows
between a pair of endpoints on different simulators,
and the sirnulation was run for varying amounts of
simulation time. For a comparison point, the same
simulation was run on the unmodified pdns, without
using the backplane.

The results are shown in Table 1. Given the
small overhead determined in the micro-benchmark,
the difference between the ns to ns run using the
backplane versus the same run without the back-
plane should be negligible, which it is. In fact,
the backplane version runs slightly faster due to the
fact that the backplane produces somewhat smaller
event messages than the standard ns. The standard
ns uses rather large events, where the backplane ex-
ports and sends to peers only the used portion of
any given event message.
3.3 Heterogeneous Simulation Demonstration

Finally we used the backplane to implement the
simple distributed simulation shown in Figure 5,
consisting of two GloMoSim wireless subnetworks
connected via a small ns wired network. Each wire-
less GloMoSim node modeled bulk FTP transfer to
a few other nodes in the same subnet, and there was
one node in subnet 1 transfering FTP data to an-
other node in subnet 2. The ns network forwarded
the simulated packets between the two wireless sub-
networks. All simulators registered the IP and TCP
protocols. Each simulator registered the data items
for those protocols specific to their unique imple-
mentation. We limited the power range of all the

187

GloMoSini wireless nodes such t,hat there was no in-
terference between the two wireless subnetworks. If
the power rage is too large, the two wireless LANs
would interfere with each other, and the ns wired
LAN in between will have to relay radio layer pack-
ets between the two wireless LANs for them to sim-
ulate the interference.

This simulation demonstrates the proper opera-
tion of baggage data items, since a number of Glo-
MoSim specific data items are used which have no
meaning in the ns environment. No performance
numbers are shown here, since there is no easy way
to determine any comparison data.

4 Conclusions and Future Work
We believe the Dynamic Simulation Backplane is

a viable approach for interconnecting heterogeneous
simulations of computer networks. The experimen-
tal results show that the overhead to convert mes-
sages to a dynamic format is small enough to be
inconsequential; and in fact can give slightly better
performance due to the selective exporting of data
items.

For future work, we are planning on more ex-
perimentation with the GloMoSim to ns interfaces,
using more protocols and more data items. We
also are planning on integrating the OpNet network
simulator into the backplane environment, although
this effort is complicated by the lack of source code
for OpNet.

References

S. McCanne and S. Floyd, “The LBNL network
simulator.” Software on-line: http:/’/www-
niash.cs.berkeley.edu/ns, 1997. Lawrence
Berkeley Laboratory.

S. Bertolotti and L. Dunand, “Opnet 2.4: an
environment for communication network mod-
eling and simulation,” in Proceedings of the Eu-
ropean Simulation Symposium, October 1993.

X. Zeng, R. Bagrodia, and M. Cerla, “Glo-
MoSim: a library for parallel simulakion of
large-scale wireless networks,” in Proceedings
of the 12th Workshop on Parallel arid Dis-
tributed Simlations, May 1998.

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogiel-
ski, “Towards realistic million-node internet
simulations,” in International Conference on
Parallel and Distributed Processing Techniques
and Applications, June 1999.

J . H. Cowie, D. M. Nicol, and A. T. Ogielski,
“Modeling the global internet,” Computing in
Science and Engineering, January 1999.

D. Nicol, M . Johnson, A. Yoshimura, and
M. Goldsby., “Ides: A java-based distributed
simulation engine,” in Proceedings of the In-
ternational Symposium on Modeling, Analysis

and Simulation of Computer and Te1ecomm.u-
nication Systems, July 1998.

[7] K . S. Perumalla and R. M. Fujimoto, “Ea -
cient large-scale process-oriented parallel sim-
ulat ion~,~’ in Proceedings of the Winter Simu-
lation Conference, December 1998.

[8] K . Perumalla, R. Fujimoto, and A. Ogielski,
“Ted - a language for modeling telecommunica-
tions networks,” Performance Evaluation Re-
view, vol. 25, March 1998.

[9] R. Bagrodia, R. Meyer, M. Takai, Y. Chen,
X. Zeng, J . Martin, B. Park, and H. Song,
“Parsec: A parallel simulation environment for
complex syst,enis,” ZEEE Computer, vol. 31,
pp. 77-85, October 1998.

[lo] G. F. Riley, R. M. Fujimoto, and M. A . Am-
mar, “A generic framework for parallelization
of network simulations,” in Proceedings of Se,u-
enth International Sym.posium on Modeling,
Analysis and Simulation of of Computer and
Telecom.munication Systems, October 1999.

[ll] M . D. Myjak, “Implementingobject transfer in
the hla,” in Proceedings of the Spring Simula-
tion Interoperability Workshop, 1999.

[12] J . Postel, “Internet RFC793: Transmission
control protocol.” Network Working Group,
Sep 1981.

[13] J . Postel, “Internet RFC791: Internet proto-
col.” Network Working Group, Sep 1981.

[I41 F. Mattern, “Efficient algorit.hms for dis-
tributed snapshots and global virtual time ap-
proximation,” in Journal of Parallel and Dis-
tributed Computing, 1993.

[15] K . Chandy and J . Misra, “Asynchronous dis-
tributed simulation via a sequence of paral-
lel computations,” in Communications of the
ACM, vol. 24, November 1981.

[lS] G. F. Riley, R. M. Fujimoto, and M. A. Am-
mar, “Network aware time management and
event distribution,” Feb 2000. Technical Re-
port GIT-CC-00-11.

[li‘] J . Steinmann, “Speedes: Synchronous par-
allel enviornment for emulation and discrete
event siniulat,ion,” Advances in Parallel and
Distributed Simulation, SCS Simulation Series,
vol. 23, pp. 95-103, 1991.

[18] R. Fujimoto, “RTI-KIT vO.2 specification,”
March 1998.

[19] D. E. Brooks, “The butterfly barrier,” The In-
ternational Journal of Parallel Programming,
vol. 14, pp. 295-307, 1986.

[20] C;. F. Riley, R. M. Fujimoto, and M. A. Am-
mar, “Parallel/Distributed ns.” Software on-
l ine:
www .cc.gatech.edu/coniputing/compass/pdns/in(~e~.html
2000. Georgia Institute of Technology.

188

http:/�/www

