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Abstract

Replication is a powerful technique for increasing avail-
ability of a distributed service. Algorithms for replicat-
ing distributed services do however face a dilemma: they
should be (1) efficient (low latency), while (2) ensuring con-
sistency of the replicas, which are two contradictory goals.
The paper concentrates on active replication, where all the
replicas handle the clients’ requests. Active replication is
usually implemented using the Atomic Broadcast primitive.
To be efficient, some Atomic Broadcast algorithms deliber-
ately sacrifice consistency, if inconsistency is likely to occur
with a low probability. We present in the paper an algorithm
that handles replication efficiently in most scenarios, while
preventing inconsistencies. The originality of the algorithm
is to take the client-server interaction into account, while
traditional solutions consider Atomic Broadcast as a black
box.

1. Introduction

Replication is a widely used technique for providing
high-availability and fault-tolerance of critical services.
Nevertheless, developing replicated services is a challeng-
ing task: a replicated service must appear as a single
highly-available logical entity to its client, which specifi-
cally means that the different copies must remain synchro-
nized and consistent with each other. In the so-calledac-
tive replication technique the client request is sent to all the
server replicas using an Atomic Broadcast primitive (also
called Total Order Broadcast) [6], which ensures that the
requests are delivered in the same order by all replicas. Ev-
ery replica handles the request and sends back the reply to
the client. While Atomic Broadcast preserve the consis-
tency of a replicated service, it is considered costly to imple-
ment (leading to high latency). To reduce the latency, some
Atomic Broadcast algorithms (e.g., [2, 13]) have sacrificed
consistency: in some scenarios the total order delivery prop-
erty of messages can be violated, leading to inconsistencies

in the state of the servers. However, the fact that the servers
are not always consistent with each other is not a problem
in itself, as long as (1) inconsistencies can be repaired, and
(2) they do not propagate to the clients. This requires how-
ever integration of the Atomic Broadcast algorithm with the
client-server interaction schema, i.e., Atomic Broadcast can
no more be considered as a black box.

The paper present an active replication algorithm, in-
spired by the Atomic Broadcast algorithm of [2, 13], which
has a low latency in “good” runs with no failures and no
failure suspicions, while ensuring that, in runs with failures
or failure suspicions, inconsistencies can be repaired and
do not propagate to clients. Repairing the inconsistencies
requires the ability for the replicas to rollback, which can
be done for instance using transactions. The algorithm is
optimistic in the sense that it assumes that failures are rare
and is optimized for this case.

The rest of the paper is organized as follows. Section 2
introduces background concepts and related work about
replication and optimistic algorithms. Section 3 describes
the system model. Section 4 presents an overview of the
optimistic active replication algorithm, and Section 5 gives
a formal description of that algorithm. Due to space con-
straints, the proof of the algorithm has been omitted. It can
be found in [8]. Finally, Section 6 concludes the paper.

2. Background and related work

2.1. Replication techniques

Fault-tolerance in distributed systems is typically
achieved through replication. The literature distinguishes
between two main classes of replication techniques: pas-
sive replication and active replication [15]. In passive repli-
cation the client only interacts with one replica, called the
primary: the primary handles the client request and sends
back the response. The primary also issues messages to
the secondaries (the other replicas) in order to update their
state. In active replication the client sends its request to all
the replicas, which all handle the request and send back the



response to the client. The client waits only for the first re-
ply. Note that active replication requires the servers to be
deterministic.

Ensuring consistency of the replicas is the main difficulty
of replication techniques. One well known technique are
quorum systems[10]. However, quorum systems typically
require a transactional infrastructure. This is not the case for
group communication, another infrastructure for managing
replication, which we consider here.

With active replication, consistency is ensured by hav-
ing the clients invoke a group communication primitive
called Atomic Broadcast(also calledTotal Order Broad-
cast). Atomic Broadcast guarantees that the requests sent
by the clients are received by all replicas in the same order.
With passive replication, consistency requires a group com-
munication infrastructure that provides agroup member-
ship service(to select the primary), and aview synchronous
broadcast(to be used by the primary to update the state of
the secondaries) [11].

2.2. Design issues for Atomic Broadcast algorithms

We consider in the paper only active replication and
Atomic Broadcast. Numerous Atomic Broadcast algo-
rithms have been published in the last 15 years. A good
survey can be found in [5]. The different algorithms differ
mainly by the assumptions they make with respect to the
system model: they typically assume either a synchronous
system, or an asynchronous system augmented with failure
detectors. From a practical point of view, modeling the sys-
tem as synchronous when the network and processor load
are variable requires to be pessimistic for the bounds on
message transmission delay and relative processor speeds.
This leads to a large crash detection time, i.e., a large fail-
over time, which is inadequate for time critical applications.

A better approach consists in assuming an asynchronous
model augmented with a failure detector, which makes
Atomic Broadcast solvable [3]. In this context, Atomic
Broadcast algorithms can further be classified in two cat-
egories: (1) those that rely on a group membership or-
acle,1 and (2) those that rely on a failure detector ora-
cle. The Isis Atomic Broadcast algorithm [2] belongs to
the first category, while the Chandra-Toueg Atomic Broad-
cast algorithm [3] belongs to the second category.MULTI -
PAXOS [18], which can be seen as an Atomic Broadcast al-
gorithm, also belongs to the second category and has a cost
similar to the Chandra-Toueg Atomic Broadcast algorithm.
As argued in [4], the algorithms in the first category force
the crash of processes that have been incorrectly suspected,
which is not the case of the algorithms in the second cate-
gory. This has an important consequence: the overhead due
to an incorrect failure suspicion is higher with algorithms in

1Also called group membershipservice.

the first category, where the incorrectly suspected processes
join again after being excluded (to keep the same degree of
replication), which includes the costly state transfer opera-
tion.2 For this reason we consider in the paper an optimistic
active replication technique that does not rely on a group
membership oracle.

2.3. Optimistic algorithms

Achieving low cost in the absence of failures is an im-
portant — but not new — idea. Achieving fault-tolerance
is often considered to be expensive and to lead to a sig-
nificant overhead. The same holds for Atomic Broadcast,
which was often criticized as being too expensive. In spite
of that, designingoptimisticAtomic Broadcast algorithms
or optimistic active replication techniques was largely ig-
nored until recently [17], even though optimistic algorithms
were known since several years in the context of concur-
rency control [1] and file system replication [12]. In the
context of active replication, Pedone distinguishes two di-
mensions of optimism [16]:

i) Optimism at the level of the Atomic Broadcast algo-
rithm.

ii) Optimism at the level of the treatment of the client re-
quest by the replicated service.

The Optimistic Atomic Broadcast algorithm [17] is an ex-
ample of (i). The algorithm makes the optimistic assump-
tion that in a LAN messages are spontaneously received in
total order with high probability, which is experimentally
confirmed. If this assumption is met, the algorithm delivers
messages faster than known Atomic Broadcast algorithms.
However, if the assumption does not hold, the algorithm is
less efficient than other algorithms (but still delivers mes-
sages in total order).

The optimistic processing of transactions over Atomic
Broadcast [14] is an example of (ii). [14] distinguishes
two delivery events following the Atomic Broadcast of
messagem: the optimistic delivery denoted byOpt-
deliver(m) and the traditional total order delivery denoted
by Adeliver(m). Opt-deliver(m) occurs upon reception
of m. Even though the order ofm is not yet decided, the
processing of the request contained inm is optimistically
started. As in [17], the optimism is related to the sponta-
neous total order property of LANs. IfAdeliver(m) in-
validates on some serversi the temporary order defined by
Opt-deliver(m), then the replicasi must rollback and undo

2As explained in [4], the only advantage of the algorithms in the first
category over those in the second category is the “finite storage” issue re-
lated to the implementation of reliable channels over fair-lossy channels.
It is trivial to extend algorithms that belong to the second category with a
group membership oracle in order to address the “finite” storage problem
(without requiring a perfect failure detector). A full discussion of this issue
is out of the scope of the paper.



the processing of requestm. Notice that in this case the in-
consistency isinternal to the serversi: no response is sent
to a client before the Adelivery ofm.

This last example leads us to suggest another classifica-
tion of optimism in the context of active replication and/or
Atomic Broadcast:

a) Optimism that never leads to inconsistency.
b) Optimism that leads to internal inconsistencies only

(server inconsistencies only).
c) Optimism that leads to external inconsistencies (server

and client inconsistencies).

The optimistic Atomic Broadcast algorithm of [17] is an
example of (a). The optimistic delivery and processing of
[14] is an example of (b). The optimistic concurrency con-
trol in the context of transactions is another example of (b)
(optimistic concurrency control never leads a client to see
an inconsistent state of the data). The Isis Atomic Broad-
cast algorithm based on a sequencer [2] is an example of (c):
in some runs the total order delivery of messages can be vi-
olated leading clients, in the context of active replication,
to receive inconsistent responses (see Section 2.4). The vi-
olation of total order can occur with a variable probability,
depending on the network/processor load, and on the time-
out value chosen for suspecting crashed processes. Despite
the potential inconsistencies the algorithm was chosen in
Isis for its low cost in absence of failures.

The optimistic active replication technique given in the
paper builds on this last algorithm. It prevents however ex-
ternal inconsistencies, even though internal inconsistencies
are possible. For this reason the technique is to be classified
under category (b). In the next section we briefly recall the
Isis Atomic Broadcast algorithm [2]. The same idea appears
in [13].

2.4. The Isis sequencer-based Atomic Broadcast al-
gorithm

Consider a groupG of replicated servers, and a client
process issuing an Atomic Broadcast ofm to G. The se-
quencer algorithm works as follows:

1. The messagem is sent to the replicas inG.

2. One of the replicas inG, called the sequencer, assigns
sequence numbers to messages and sends these num-
bers toG.

3. Each replica inG delivers the messages according to
their sequence numbers.

A run of this algorithm, with no failure and no failure
suspicion, is shown in Figure 1(a): two clientsc1 and c2

performpush andpop operations on a stack replicated on
three processesp1, p2, andp3. Processp1 is the sequencer,
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Figure 1. Sequencer-based Atomic Broadcast
algorithm

and it orders thepop operation ofc1 before thepush opera-
tion of c2. A run with a failure leading to external inconsis-
tency is depicted in Figure 1(b). The sequencerp1 crashes
(or is incorrectly suspected) after sending the reply to the
client; the sequencing message is not received by the other
replicas. The new sequencerp2 decides upon a different
ordering of messages: the reply previously received by the
client is inconsistent with the state ofp2 andp3.

3. System model

For our optimistic active replication algorithm we con-
sider an asynchronous system with processes that commu-
nicate by message passing. Processes are eitherclient pro-
cesses orserverprocesses. For simplification, we consider
one single replicated service, with server processes denoted
by Π = {p1, . . . , pn}. The client processes, which are not



part of Π, are denoted byc1, . . . , cn. Each server process
maintains a replica which supports a limited form ofroll-
back: at any time a suffix of the sequence of messages may
be undone, which returns the replica to a former state. Note
that we never need to undo messages other than a suffix.

Processes only fail by crashing (i.e., we do not consider
Byzantine failures). Processes are connected by reliable
FIFO channels, defined in terms of the two primitivessend
andreceive. Moreover, we assume the existence of a Reli-
able Multicast primitive, denoted byR-multicast(m,Π), de-
fined by the following properties:(Validity) if a correct pro-
cess executes R-multicast(m,Π), then every correct process
in Π eventually R-deliversm, (Agreement)if a correct pro-
cess R-deliversm, then all correct processes inΠ eventually
R-deliverm, and(Integrity) for any messagem, every pro-
cess R-deliversm only once, and only ifm was previously
R-multicast.

To handle the cases where the current sequencer process
crashes or is incorrectly suspected (and only in these cases),
our optimistic active replication algorithm relies on a con-
sensusoracle. It is well known that such an oracle is not
implementable in an asynchronous system [9]. However, as
shown in [3], the consensus oracle is implementable in an
asynchronous system augmented with the failure detector
♦S and a majority of correct processes. The paper assumes
the failure detector♦S amongΠ and a majority of correct
processes inΠ.

4. Overview of the algorithm

Like most optimistic algorithms, the optimistic active
replication (OAR) algorithm is based on the assumption that
failures are infrequent, i.e., the algorithm is optimized for
failure-free runs. It uses a lightweight sequencer protocol
similar to the protocol described in Section 2.4, which re-
quires a minimal number of communication phases in ab-
sence of failures. The originality of the algorithm is that,
despite the fact that the replies sent to a client may be dif-
ferent, it guarantees that the client will never “adopt” an in-
consistent reply. The algorithm also includes mechanisms
for resolving the temporary inconsistencies that may affect
some servers.

To send its request to the servers, a client uses aReli-
able Multicastprimitive, which ensures that if one correct
server receives the request, all correct servers eventually re-
ceive the request. The client then waits for replies from
the servers. Contrary to the usual active replication tech-
niques, the replies might here not be identical. To allow the
client to select a “correct” reply, each server replyr con-
tains an additionalweightfield. This field identifies the set
of servers that endorse replyr. The client waits for a quo-
rum of replies, and selects the reply according to a majority
rule. The rule ensures the selection of the “correct” reply.

The details are given later.
The algorithm responsible for ordering the messages

among the servers proceeds in a sequence ofepochs. Each
epoch has twophases. In phase 1 — the optimistic phase
— the algorithm uses a sequencer to optimistically order the
messages fast, assuming no failure. The optimistic message
delivery is calledOpt-deliver. As soon as a request mes-
sage is Opt-delivered by some server, the server processes
the request and generates a reply, which is sent back to the
client.

If the sequencer crashes or is incorrectly suspected, the
algorithm proceeds to phase 2 — the conservative phase —
where it uses a different paradigm (based on consensus) to
conservatively order messages. The conservative message
delivery is calledA-deliver. As with optimistic delivery,
upon A-delivery of a request message, the request is imme-
diately processed and the reply sent back to the client. If the
sequences of messages Opt-delivered by each server dur-
ing phase 1 are not identical, the conservative ordering of
phase 2 might invalidate the optimistic ordering of phase 1.
However, the following safety property holds:

Majority guarantee. If a majority of processes Opt-
deliverm1 beforem2, then no process A-deliversm2

beforem1.

For the (rare) cases where — because of the crash or the
(false) suspicion of the sequencer — the conservative order
is different from the optimistic order, we introduce theOpt-
undeliver(m)primitive. This primitive notifies the server
that messagem has been Opt-delivered in a wrong order,
and that the effects induced by the processing ofm must
be undone. A message Opt-undelivered by a correct pro-
cess will eventually be delivered again (Opt-delivered or
A-delivered). The A-delivery of a message can never be
undone.

Phase 2 is handled by the problem that we call
Conservative-order(or simplyCnsv-order), which is solved
by reduction to a consensus problem.Cnsv-orderhas two
input parameters (O delivered, O notdelivered), and out-
puts two sequences of messages (Bad, New):

{Bad; New} ← Cnsv-order(O delivered, O notdelivered)

For each serverp, O delivered is the sequence of
messages Opt-delivered byp during the current epoch;
O notdelivered is the sequence of messages received but
not yet delivered byp; Bad is the sequence thatp has to
Opt-undeliver, andNew is the sequence thatp has to A-
deliver (after the Opt-undelivery operation).

Note that a minority of processes can deliver messages
out of order only if the minority is suspected by the major-
ity (e.g., a minority partition cannot communicate with the
majority partition). However, this minority partition does
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Figure 2. The OAR algorithm with no failure nor suspicion.

not need to be declared faulty and commit suicide, like in
the primary partition paradigm [2, 19].

Figures 2, 3, and 4 illustrate different runs of the OAR al-
gorithm. Serverspi receive incoming messages from clients
unordered (white circles in the figures). Processp1 is the
sequencer. Black circles represent the reception of the or-
dering message from the sequencer. Message delivery (Opt-
delivery, A-delivery) is represented by white diamonds, and
message undelivery is represented by grey diamonds. Each
time a message is delivered to a server, it is immediately
processed, and a reply is sent back to the client (this is rep-
resented in the figures by the outgoing arrow on the deliv-
ery events). In Figure 2, no failure occurs, processes only
execute phase 1 of the OAR algorithm, and the client re-
ceives the reply after three communication steps(request,
sequencing message, response).3

In Figure 3, the sequencerp1 fails just after Opt-delivery
of m3 andm4, or is incorrectly suspected. Only process
p2 receives ordering information fromp1 and Opt-delivers
m3 andm4. As a result of the suspicion, processes proceed
to phase 2. In this example, since a majority of processes
(p1 andp2) have Opt-deliveredm3 beforem4, no process
can deliver these messages in a different order. Thus,Cnsv-
order returnsBad = ε (the empty sequence),New = ε for
p2 andBad = ε, New = {m3;m4} for p3.

The scenario of Figure 4 is similar to the one of Fig-
ure 3, except that the sequencing message{m3;m4} is not
received byp2. ThereforeCnsv-ordermay decide on a dif-
ferent ordering and returnsBad = ε, New = {m4;m3} at
p2 andp3. If p1 does not crash but is incorrectly suspected
(e.g., because of a network partition),Cnsv-orderreturns
Bad = {m3;m4} and New = {m4;m3} at p1, which
leadsp1 to undeliverm3 andm4.

5. The Optimistic Active Replication algorithm

5.1. Notation

The OAR algorithm manages sequences of mes-
sages. This leads us to introduce the following nota-
tion. Sequences (of messages) are denoted as follows:

3Both the Chandra-Toueg Atomic Broadcast algorithm [3] and the
MULTIPAXOS algorithm [18] require in the best case one additional com-
munication step.

{m1;m2;m3}. Sets are denoted as usual using commas:
{m1,m2,m3}. An empty sequence is represented byε, and
an empty set by the usual∅ symbol.

As in [17], we use the operators⊕ and	 for represent-
ing concatenation and decomposition of sequences, and the
function� for representing the common prefix of a set of
sequences. More precisely,seq1 ⊕ seq2 is the sequence of
all the messages fromseq1 followed by all the messages of
seq2; seq1	seq2 is the sequence of all messages fromseq1

that are not inseq2; and�(seq1, . . . , seqn) is the longest
sequence that is a common prefix toseq1, . . . , seqn.

Additionally, we use the symbol] to designate a func-
tion that takes a list of sequencesseq1, . . . , seqn as argu-
ment and produces a new sequence by appending all se-
quences together and removing duplicates. We also assume
an implicit conversion from a sequence to a set, whenever
we use the following set operators:∩, ∪, ∈, and /∈. For
instance,seq1 ∩ seq2 = ∅ means that there is no common
element inseq1 andseq2.

5.2. The client-side algorithm

Figure 5 describes the client-side code of the OAR algo-
rithm. The client R-multicasts its request to all processes of
Π (line 2) and waits for a quorum of replies (line 3). The
weightWm

i (m is the request message) ofreplym
i is a set

that identifies the servers that endorsereplym
i . Said differ-

ently, letpi be the server that has sentreplym
i : the weight

Wm
i contains the identifiers of all servers thatpi knows to

deliver the request in the same order as itself, i.e., to gen-
erate the same reply. The valuek in the reply identifies the
epoch number during which the servers generate the reply.

The client waits until it receives a set of replies that con-

tribute to a total weight greater than or equal to
⌈
|Π|+1

2

⌉
(majority weight). Our algorithm guarantees that individ-
ual replies of an epochk that have a minority weight are all
identical. Similarly, individual replies that have a majority
weight are all identical. If replies with a majority weight
are different from the replies that have a minority weight
for an epochk, the latter cannot have together a total weight

greater than or equal to
⌈
|Π|+1

2

⌉
and the former are the cor-

rect replies. Therefore, when the set of replies received by
the client reaches a majority weight, the client adopts any
reply with the largest weight (lines 5–6).
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1: procedureOAR-multicast(m, Π)
2: R-multicast(m, Π)
3: wait until for somek, for j processesp1, . . . , pj :

received(replym
i , W m

i , k) from pi and
∣∣∣∪j

i=1W m
i

∣∣∣ ≥ ⌈
|Π|+1

2

⌉
4: Wmax ← largestW m

i such that received(replym
i , W m

i , k) from pi

5: r ← select onereplym
i such that received(replym

i , Wmax, k) from pi

6: return r

Figure 5. The OAR algorithm: client code

5.3. The server-side algorithm

Figure 6 gives the server-side code of the OAR algo-
rithm. Each process ofΠ maintains a list (i) of incom-
ing messages (R delivered, line 2), (ii) of messages con-
servatively delivered (A delivered, line 3), and (iii) of
messages optimistically delivered during the current epoch
(O delivered, line 4). The algorithm progresses through
a sequence of epochs, represented by a monotonously in-
creasing integerk (line 5). An epoch is composed of two
parts: the optimistic phase (phase 1) and the conservative
phase (phase 2).

The OAR algorithm consists of several tasks. These
tasks can execute in any order, but in mutual exclusion.
Task 0 receives incoming messages and adds them to
R delivered (line 8). This task is active in phase 1 and
in phase 2.

Task 1a, 1b, and 1c are active during phase 1. In Task

1a, the sequencers periodically checks whether there are
some messages which have been received but not yet or-
dered (line 9). If so,s orders these messages in a sequence
and sends the sequence to all processes ofΠ (line 11). Af-
ter that, and in order to simplify the algorithm, we assume
that the sequencer immediately delivers this message, i.e.,
immediately executes Task 1b.

In Task 1b, when some processp — including the
sequencer itself — delivers the sequencemsgSetk from
the sequencer (line 12), it iterates through this sequence
(line 17) and performs the following operations: for each
messagem, processp Opt-deliversm, processes the request
and generates the reply (line 18), addsm to O delivered
(line 19), and sends a reply to the client (line 20). The
weight (lines 13–16) is equal to{s} if p is the sequencer,
and to{s, p} otherwise (p knows thats deliversm in the
same order).

In Task 1c, when a process suspects the sequencer to
have failed (i.e., when the sequencer belongs to the list
Dp of processes suspected byp’s failure detector), it R-
multicasts a PHASEII message to notify the other processes
to proceed to the conservative phase 2 (line 22).

Task 2 is the task of the conservative phase 2. Process
p proceeds to that phase upon delivery of a PHASEII mes-
sage (line 23).4 Processp then invokes theCnsv-orderfunc-
tion, which conservatively orders messages (line 25). The
functionCnsv-ordertakes as argument two sequences: the

4Note that the reception of multiple PHASEII messages for epochk is
not a problem: at line 33, the algorithm proceeds to epochk + 1, thus
making redundant messages obsolete.



1: Initialization:
2: R delivered← ε
3: A delivered← ε
4: O delivered← ε
5: k ← 0 {current epoch}
6: s← p1 {p1 is the first sequencer}

7: whenR-deliver(m) {Task 0: buffer incoming client message}
8: R delivered← R delivered⊕ {m}

9: whenp = s and (R delivered	 A delivered)	O delivered 6= ε
{Task 1a: sequencer orders messages}

10: O notdelivered← (R delivered	A delivered)	O delivered
11: send(k, O notdelivered) to all

12: whendeliver(k, msgSetk) {Task 1b: processes opt-deliver messages}
13: if p = s then
14: W ← {s}
15: else
16: W ← {p, s} {p knows thats deliversm in the same order}
17: for all m ∈ msgSetk do
18: reply ← Opt-deliver(m)
19: O delivered← O delivered⊕ {m}
20: send(reply, W, k) to sender(m)

21: whens ∈ Dp {Task 1c: suspicion}
22: R-multicast(k,PHASEII, Π) {to all servers}

23: whenR-deliver(k,PHASEII) {Task 2: conservative ordering}
24: O notdelivered← (R delivered	A delivered)	O delivered
25: {Bad; New} ← Cnsv-order(k, O delivered, O notdelivered)
26: for all m ∈ Bad do
27: Opt-undeliver(m)
28: for all m ∈ New do
29: reply ← A-deliver(m)
30: send(reply, Π, k) to sender(m)
31: A delivered← A delivered⊕ (O delivered	 Bad)⊕New
32: O delivered← ε
33: k ← k + 1
34: s← p(k mod n)+1 {next sequencer}

Figure 6. The OAR algorithm: code of server
process p

sequence of messages Opt-delivered byp during epochk
(O delivered), and the sequence of messages that have
been R-delivered byp but not yet ordered. The function
returns two values: a sequence of messages thatp Opt-
delivered in the wrong order (Bad) and a sequence of mes-
sages that have just been conservatively ordered but not yet
delivered (New). The Cnsv-orderfunction is defined in
Section 5.4.

In the (unlikely) event of the sequenceBad being
not empty, processp first Opt-undelivers these messages
(line 27).5 Thenp A-delivers sequentially all the messages
in New (line 29) and sends a reply with a weight equals
to Π to the client (line 30). The weight indicates agree-
ment of the order that has been decided. Finally,p adds the
messages delivered during epochk to A delivered, clears
O delivered, and proceeds to epochk + 1 (lines 31–34).

5Although not shown in the algorithm, undelivery of messages should
generally be performed in the reverse order of delivery, i.e., starting by the
last message ofBad.

Epochk + 1 starts in the “optimistic” mode, with an-
other process acting as the sequencer: the new sequencer is
the next process modulon (line 34). Another policy can be
easily implemented, e.g., the next sequencer can be decided
as part of the agreement problem solved in phase 2. In the
new epoch the algorithm behaves exactly as in the previ-
ous epoch, i.e., client requests are R-delivered (line 7), the
sequencer sends sequencing messages (line 11), etc.

Remark. In the OAR algorithm of Figure 6, execution of
phase 2 allows to “forget” about messages Opt-delivered
(line 32). So, if phase 2 is executed only rarely, the se-
quenceO delivered can become extremely long, which
might slow down the execution of the next instance ofCnsv-
order in phase 2. The problem can easily be solved by
having the sequencer R-multicast a PHASEII message on
a regular basis (e.g., everyn requests or everyt seconds)
to explicitly execute phase 2. More lightweight solutions
to garbage collect theO delivered sequence also exist, but
are not detailed here.

5.4. Specification ofCnsv-order

We specify theCnsv-orderproblem by the following prop-
erties, which are commented below:

Termination. If a correct processp calls Cnsv-orderthen
eventuallyp gets the result{Badp;Newp}.

Agreement. For any two correct processesp and q,
we have (O deliveredp 	 Badp) ⊕ Newp =
(O deliveredq 	Badq)⊕Newq.

Unicity. For all processesp, we have Newp ∩
(O deliveredp 	Badp) = ∅.

Non-triviality. If for a majority of processesq, m ∈
O deliveredq ∪O notdeliveredq, then for all correct
processesp, we havem ∈ (O deliveredp 	Badp)⊕
Newp.

Validity. If for any processp, m ∈ Newp, then for at
least one processq, we havem ∈ O deliveredq ∪
O notdeliveredq.

Undo legality. For all processes p, we have
(O deliveredp 	Badp)⊕Badp = O deliveredp.

Undo consistency.For all processesp, if m ∈ Badp

then for a majority of processesq, we havem /∈
O deliveredq.

The termination property ensures progress. The agreement
property ensures agreement on the sequence of messages
delivered in each epochk. The unicity property forbids a
message to be delivered twice during epochk (a message
can be Opt-delivered and A-delivered only if it is mean-
while Opt-undelivered, i.e., in the sequenceBadp). The
non-triviality property states that any message that has been



received by a majority of processes during epochk will also
be delivered during epochk, and thus prohibits the trivial
solution whereNewp is always empty. The validity prop-
erty prevents arbitrary messages from being inNewp. The
undo legality guarantees thatBadp is well formed, i.e., a
suffix ofO deliveredp. The undo consistency property pre-
vents messages from being inBadp if they have been Opt-
delivered by a majority of processes.

The above properties are sufficient to ensure the correct-
ness of the OAR algorithm. However, we add the following
property, which guarantees that no optimistic delivery will
be unnecessarily undone.

Undo thriftiness. For all processes p, we have
�(Badp, Newp) = ε.

5.5. Implementation ofCnsv-order

The Cnsv-orderproblem can be solved by reduction to
a consensus problem. Recall that consensus is defined in
terms of two primitivespropose(v) and decide(v), and
specified as follows:

Termination. Each correct process eventually decides.
Validity. If a process executesdecide(v), then some pro-

cess has executedpropose(v).
Agreement. No two correct processes decide differently.

For solving theCnsv-orderproblem, we use a slightly dif-
ferent specification. TheValidity property is replaced by the
following Maj-validity property, in which the decisionV is
a sequence of initial values:

Maj-validity. If a process executesdecide(V ), thenV is
a sequence of values such that, for a majority of pro-
cessespi, if pi has executedpropose(vi), thenvi ∈ V .

Said differently, the decision sequence contains the initial
value of a majority of processes. The consensus with the
Maj-validity property can be solved by minor modifications
to the consensus algorithm based on♦S [3]. For a descrip-
tion of these modifications, see [7].

The implementation of theCnsv-orderfunction is given
in Figure 7. Each process computes three sequences:
Good (messages Opt-delivered in the right order during
epochk), Bad (messages Opt-delivered in the wrong or-
der during epochk), and New (messages to A-deliver
during epochk). At line 3, the processes propose their
initial value for consensus, which consists of a pair of
sequences of messages(O dlv,O notdlv). The deci-
sion at line 4 is a sequence of pairs denoted byDk ≡
{(dlv1, notdlv1); (dlv2, notdlv2); . . .}. Upon decision,p
selects the longest sequencedlvi denoted bydlvmax

(line 5).6

6The sequencesdlvi can differ only by their length, i.e., given any two
sequencesdlvi, dlvj , if they are not equal, one is a prefix of the other.

1: procedureCnsv-order(k, O dlv, O notdlv)
2: Bad← New ← ε
3: propose(k, (O dlv, O notdlv))

4: wait until decide(k, Dk)

{Dk is a sequence{(dlv1, notdlv1); (dlv2, notdlv2); . . .}}
5: dlvmax ← longestdlvi such that(dlvi, notdlvi) ∈ Dk

6: if O dlv = �(O dlv, dlvmax) then
7: New ← dlvmax 	O dlv
8: Good← O dlv
9: else

10: Good← �(O dlv, dlvmax)
11: Bad← O dlv 	Good
12: notdlv ← ]i(notdlvi such that(dlvi, notdlvi) ∈ Dk)
13: notdlv ← notdlv 	 dlvmax

14: New ← New ⊕ notdlv
15: if �(Bad, New) 6= ε then
16: prefix = �(Bad, New)
17: Good← Good⊕ prefix
18: Bad← Bad	 prefix
19: New ← New 	 prefix
20: return {Bad; New}

Figure 7. The conservative ordering proce-
dure

If for p, O dlv is a subsequence ofdlvmax (line 6), then
p setsNew equal to the subsequence ofdlvmax that it did
not yet deliver (line 7).Good is set to the sequence already
delivered (line 8). However, if forp, dlvmax is shorter that
O dlv (line 6) (i.e.,p’s initial value is not contained in the
decision), there may be a risk of inconsistent ordering. In
this case,Good is set to the sequence of messages delivered
in the correct order (line 10), andBad is set to the sequence
of wrongly-ordered messages (line 11).

Processp then generates deterministically a sequence
notdlv with all notdlvi sequences in the decisionDk of the
consensus#k (line 12), makes sure that this sequence does
not contain any message correctly Opt-delivered or already
scheduled for delivery (line 13), and adds this sequence to
New (line 14).

Finally, at line 15,p checks ifBad and New have a
common prefix, i.e., if it will undeliver some messages and
re-deliver them in the same order. This may happen if some
messages are added toBad because they are not part of any
dlvi in Dk, but are incidentally rescheduled for delivery in
the same order. In that case,p adds these messages toGood
and removes them from bothNew andBad (lines 17–19).
This ensures that the implementation ofCnsv-ordersatisfies
the undo thriftiness property of Section 5.4.

6. Conclusion

Our optimistic active replication algorithm solves
Atomic Broadcast as a subproblem.7 However, the origi-

7Where the atomic delivery of a message corresponds to the message
being either (1) A-delivered or (2) Opt-delivered but not Opt-undelivered.



nality of the OAR algorithm is to handle Atomic Broadcast
as a white box, rather than as black box as usually done.
This allows us to have an algorithm that is both efficient
in terms of latency in “good” runs, while always preserv-
ing consistency at the client level. Similarly to sequencer-
based Atomic Broadcast algorithms (e.g., [2, 13]), our al-
gorithm requires only one communication step for order-
ing messages in absence of failures, but unlike sequencer-
based protocols it prevents inconsistencies that may occur
with these algorithms.

Reconciliation among the servers is handled thanks to
the Opt-undeliverprimitive. The probability of having to
Opt-undeliver a message is very low. It requires a combi-
nation of three events: (1) the sequencers fails or is sus-
pected in such a way that only a minority of processes (call
themPmin) have received ordering information froms, (2)
no process ofPmin has its initial value in the decision of
the consensus, and (3) the messages Opt-delivered only by
the processes ofPmin are conservatively ordered differently
by Cnsv-order. Events (1) and (2) can happen for example
if s ∈ Pmin andPmin is partitioned from other processes
of Π.

The OAR algorithm is well-adapted to a transactional en-
vironment with a save-point facility. For each replicap, all
changes are made in the context of a single transaction, and
a new savepoint is declared before each Opt-delivery of a
message in phase 1. During phase 2, the system returns
to the savepoint before the first message which is inBadp,
and then applies the messages inGoodp. At this time the
transaction can be committed, and a new transaction begin.

We believe that the OAR algorithm presented in this pa-
per offers a good compromise between efficiency (low la-
tency) and consistency, by not trying to preserve server con-
sistency by all means, but always ensuring consistency at
the client level.
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