A Security Infrastructure for Mobile Transactional Systems

Peter J. Keleher, Bobby Bhattacharjee, Kuo-Tung Kuo, and Ugur Cetintemel

Dept. of Computer Science
University of Maryland
{keleher, bobby, ktg, ugur} @cs.umd.edu

In this paper, we present an infrastructure for yithng secure transactional support for mobile
databases. Our infrastructure protects against exdkthreats — malicious actions by nodes not
authorized to access the data. The major contidioubf this paper, however, is to classify and
present algorithms to protect agairisternalsecurity threats. Internal threats are malicious a
tions by authenticated nodes that misrepresenbpaitspecific information. We quantify the cost
of our security mechanisms in context of Deno: stesy that supports object replication in a
transactional framework for mobile and weakly-cocted environments.

Our results show that protecting against interrtakiats comes at a cost, but the marginal cost for
protecting against larger cliques of malicious ohsis is low. However, even with all the security
mechanisms in place, our system commits updatess09é faster than systems that depend on
the Read-once Write-all commit protocol. Lastly,mesent results from a probabilistic version of
our algorithm that has several orders of magnitlioer computation cost than the traditional
public-key based schemes.

1. Introduction group membership, and make few demands on the

underlying network topology. However, this func-
We present an infrastructure for providing secureionality comes at a price. Asynchronous solutions
transactional support for mobile databases. In paare generally either slow and require reconciliations,
ticular, we concentrate on providing solutions toor have lower availability because they rely on pri-
internal security threats, and quantifying their costs.mary-copy schemes [8].

This work is done in the context of Deno, a sys- Deno’s protocol retains the advantages of cur-
tem that supports object replication in a transacrent asynchronous protocols, but generally performs
tional framework for mobile and weakly-connectedbetter, has fewer connectivity requirements, and
environments. Deno’s system model is illustrated irprovides higher availability. No server ever needs to
Figure 1. One or more clients connect to each ped¢rave complete knowledge of group membership,
server, which communicate through pair-wise in-and a given server only needs to be in intermittent
formation exchanges. The servers are not necessabntact with at least one other server to take full part
ily ever fully connected. The server labeled “(CA)” in the voting and commitment process. As such, the
is acertificate authority which will be explained in protocol is highly suited for environments with
Section 3. weak or intermittent connectivity.

Deno’s underlying protocols are based on an Despite the good performance, however, no
asynchronous protocol called bounded weighteduch system could be widely deployed in mobile
voting [1, 2]. Asynchronous solutions [3-7] for environments without ensuring that the infrastruc-
managing replicated data have a number of advamdre is secure. We distinguish between internal and
tages over traditional synchronous replication protoexternal security threats. The priragternalthreat
cols in large-scale, mobile, and weakly-connecteds of an unauthenticated server attempting to read or
environments. They can operate with less than fulinodify data. We prevent this through public-key
connectivity, easily adapt to frequent changes imryptography mechanisms. A request for data or

Se rvert-"

........... Server (CA)

Serverf:-

Figure 1: Basic Deno system model

protocol information must be accompanied by acommit performance. Finally, Section 6 describes
signed hash of the request. The destination verifie®lated work and Section 7 concludes.
the hash via the server’s certificate, which is signe :
by a trusted Certificate Authority (CA) and is ap-%' Background: Deno
pended to the request. Data privacy can be providddeno is a replicated-object system that relies on a
by conventional symmetric encryption algorithms,decentralized, asynchronous replica management
such as Triple-DES or IDEA. protocol to addresses concerns of performance and
Dealing withinternal threats to security is much reliability. Under Deno, no server ever needs to
more problematic. Internals threats arise from duljpave complete knowledge of group membership,
authenticated servers that attempt to cheat. As a triend a given server only needs to be in intermittent
ial example, a user of a distributed meeting roontontact with at least one other server to take full part
scheduler might attempt to falsify votes of otherin the voting and commitment process. As such, the
servers in order to ensure that he or she gets a prirpeotocol is highly suited for environments with
reservation. More serious scenarios could arise iweak connectivity.
collaborative intranet and Internet applications, such The protocol’s strengths result from a novel
as scheduling and workflow applications. Finally,combination of weighted voting and epidemic in-
this work has obvious applications in military sce-formation flow, a process where information flows
narios. Consider communication among tanks opairwise through a system like a disease passing
mobile command posts. There is a clear need fdrom one host to the next [9]. The protocol is com-
secure, highly-available, replicated, consistata, pletely decentralized. There is no primary server
which is not easily met using traditional protocols. that “owns” an item or serializes the updates to that
The base, non-secure Deno system has bediem (as in Bayou [10]). Any server can create new
fully implemented. Deno’s source consists ofobject replicas, and servers need only be able to
~10,000 lines of multi-threaded C++ code. We haveommunicate with a minimum of one other server at
also fully implemented thevrite-all protocol dis- a time in order to make progress. Instead of syn-
cussed below, as well as the changes to the basibronously assembling quorums, which has been
protocol needed to tolerate malicious servers. Howextensively addressed by previous work (e.g., [11-
ever, we are still building the public-key infrastruc-13]), votes are cast and disseminated among system
ture that will be used to address external threats. servers asynchronously through pair-wise, epi-
The rest of the paper is structured as followsdemic-style propagation. Any server can either
Section 2 briefly describes the design and performsommit or abort any transaction unilaterally, and alll
ance of Deno’s asynchronous protocol. Section 3ervers eventually reach the same decisions.
describes a public-key based infrastructure that ad- The use of voting allows the system to have
dresses external threats by providing secure authehigher availability than primary-copy protocols. The
tication and encryption without compromising use of weighted voting allows implementations to
Deno’s ability to make progress with low or non-improve performance by adapting currency distribu-
existent connectivity. Section 4 describes our aptions to site availabilities, update activity, or other
proach to handling internal threats, which is thecelevant characteristics [14]. Each server has a spe-
main contribution of this paper, and Section 5cific amount of currency, and the total currency in
evaluates the effect of our security measures ote system is fixed at a known value. The advantage
of a static total is that servers can determine when a

plurality or majority of the votes have been accumu
lated without complete knowledge of group mem:-
bership. This last attribute is key in dynamic, wide-
area environments because it allows the protocol 1
operate in a completely decentralized fashion
eliminating performance bottlenecks and single
points of failure.

The use of epidemic protocols divorces protoco
requirements from communication requirements

First, an epidemic algorithm only requires protocol |—

information to move throughout the system eventu
ally. The lack of hard deadlines and connectivity
requirements is ideally suited to mobile environ-
ments, where individual nodes are routinely discon
nected. Second, epidemic protocols remove relianc
on network topology. Synchronization partners in
epidemic protocols are usually chosen randomly,
eliminating any potential single point of failure.

The protocol is defined for both single-object
updates and serialized multi-item transactions [15]
The voting protocol ensures mutual exclusion
among conflicting transactions, guaranteeing that no
two concurrent conflicting transactions can both
commit. However, all transactions execute locally
and no local or global deadlocks are possible.

2.1 Deno prototype

This section briefly describes the basic architecture
of Deno object replication system. The overriding

goal of the Deno project is to investigate replica,
consistency protocols for dis- and weakly-connected
environments. We are therefore not motivated to
build large and complicated interfaces to the object
system. By the same token, we feel that lightweight
interfaces are the appropriate choice for many appli-
cations, and that more complex services can be effi-
ciently built on top of Deno services if needed. The

basic Deno API supports operations for creating
objects, creating and deleting object replicas, and

(in memory)

\Comm“ 109 Transaction Pool Vote Lists

Deno API

|

Server Manager

” Network

i

Version vectors

Figure 2: Basic Deno ar chitecture

particular, it maintains a vote pool that summa-
rizes the votes known to the server.

The Synch Controller is responsible for imple-
menting efficient synchronization sessions with
other Deno servers by maintaining version vec-
tors that compactly summarize the events of in-
terests from other servers. This component im-
plements different synchronization policies that
specify when and with whom to synchronize. In
the current implementation, it implements a na-
ive policy that chooses synchronization partners
randomly at regular intervals.

The Trans Manager is mainly responsible for
the local execution of transactions. It maintains
a transaction pool that contains all active (i.e.,
non-obsolete) transactions known to the server.
The Storage Manager provides access to the
object store that stores the current committed
versions of all replicated objects at the server.
The object store is currently a simple in-
memory database.

performing reads and writes on the shared objects ihhe prototype makes relatively few demands on the

a transactional framework.

operating system and is therefore highly portable.

The current prototype runs on top of Linux and

2.2 Architecture

WindowsNT/CE platforms. All communication is

Figure 2 illustrates the basic Deno server architedayered atop UDP/IP.

ture, consisting of the following components:
The Server Manager is in charge of coordinating

2.3 Protocol overview

the activities of the various components. It han/\t its simplest, Deno can be thought of as a set of
dles client requests by implementing the basiS€rvers that are cooperating in order to determine a

sequential ordering otommitted updates. Asyn-
chronous voting is used to determine which updates
actually commit. Asynchronous information pulls
between randomly selected pairs of servers move

Deno API.
The Consistency Controller implements the de
centralized voting protocols used by Deno. In

n
Definition 1: Defineuncommittedy) as: Zvi curr[j], s.t.vij] is equal to .
J:

n
Definition 2: Definevotes, k) as zvi curr[j], s.t.vi[j] is equal to k.
=1

Definition 3: A candidate cwins v's current election when:

1. votegv, j) > 0.5, or Il ¢ gathersnajority of votes
2. Ok #j, votegv;, k) + uncommitted(y < votegv;, j) or /¢ gathersplurality of votes
(votegv;, k) + uncommitted()) = votegv, j) and (j <k)) /I tie-break case

Figure 3: Definitions

newly created update records, together with vote§ Elections
for such, among the servers. There are a number ofl o ,
potential performance problems with this modelA Cleéan way of thinking about update commitment
We will discuss these briefly at the end of the sec!S as a series of elections. A server is analogous to a
tion. voter, creating an update is analogous to a voter de-
We assume a model in which the shared stat@/ding to run for office, and a committed update is
consists of a set of objects that are replicated acrog§alogous to a candidate winning the election. Vot-
multiple servers. Objects do not need to be repli€™s (@nd hence candidates) have indéxewough
cated at all servers, and servers may replicate multi-1, wheren is the total number of voters. We use
ple objects. For simplicity of presentation, however[© réfer to the voter with index andg; to refer to
we limit our discussion to single objects that ardhe candu_jate with mqlelx Candidates win electlon_s
cached at all servers. Our discussion is easily ey cornering a plurality of the votes. Each election
tended to include the more general case. begins Wlt'h an undgrlylng agreement of thg winners
Deno supports strict serializability between arbi-of all previous elections. Once an_electlon is over, a
trary multi-item transactions and queries. However€W €lection commences. Any given election may
the single-object/transactional axis is orthogonal thave multiple candidates (logically concurrent tenta-
the main thrust of this paper, so we restrict our disive updates), and candidates from different elec-
cussion to single-object updates for pedagogicdl®nS might be alive in the system at_the same time.
reasons. In the latter case, however, uncommitted candidates
Individual objects are modified bypdates for any buf[the most recent election have_already
which are issued by servers. An update consists dpst, but this information has not yet made it to all
either a code fragment or a run-length encoding ofOters. , _
binary changes. Updates can be transmitted to other Because of the style of information flow, there
servers and are assumed to execute atomically &t NO centralized vote-counting. Instead, each voter
remote sites. Given a consistent initial state, applicdddependently collects votes from other voters and
tion of the same updates in the same order on mulleduces outcomes. Thls.cr'eates situations in which
ple replicas of the same object result in the sam@e “current” election of distinct servers is te_mporar-
final object state. ily out of sync. Voterv's current election is the
Updates do not commit globally in one atomic?'eCt'on for V_/hlchvi is collecting votes. In order to
phase because we assume an epidemic style of L1[3_1plement this protocol, each voter maintains three
dates and poor connectivity. Instead, each servéi€ces of state: _
commits updates based on local information. How}: V.completed— the number of elections com-
ever, we show below that any update that commits Pléted locally, and ,
at any server eventually commits everywhere, and iR V-l —1is either the index of the candidate voted

the same order with respect to other committed up- for by v in v's current election, of], which
dates. means that; has not yet seen a vote from

A B C D can committ; because it has gathered a plurality.
Later anti-entropy sessions move the votes back to

0, 0, . . .
25% 25% 25% 25% ss ands,, which also reach the same commit deci-

sion.

Meanwhile,s, has created a conflicting transac-
tion t;. Eventually,sy learns oft; and abortd,. It is
> irrelevant that, is actually created aftéy has been

committed elsewhere in the system.
_V(AB)=t, Note that this example differs slightly from the
real system in that anti-entropy targets are actually
createlt,) chosen randomly, and_that a tie-br_eaking procedure
would allowssz to commit before talking te-.

v(C)=t, 3. External threats
4—.

cr ea'!ce(tl)

V(A)=t,

HWWOD

JILwod

We define arexternalsecurity threat as one that is
posed by a principal that has not been authenticated
into the system. We first discuss authentication, and
then integrity and privacy. A principal is authenti-
cated into the system by identifying itself to a cer-
tificate authority (CA), which responds with ao-
Figure 4: Update commitment cess certificatehat specifies the principal’s rights in
_ _ the system. Certificates may provide eithead or
The size of the array is bounded by the tota}ead/write permission for a given database, and may
number of voters. contain a timestamp that delimits the certificate’s
3. w.curr [j] — The amount of currency voted By |ifetime. Since a certificate is signed by the CA, any
in vi's current election of], which means thai server with the CA's public key can verify that the
has not yet seen a vote franCurrency alloca- certificate is valid, and certificates can not be
tion may change with each election. forged. Note that we assume a priori that all servers

The total amount of currency in any election is 1.0. frust the CA, and know the CA's public key.
Definitions 1-3 essentially say that a candidate Access certificates are checked in three situa-
is committed if it has a plurality of the vote at ations. A server requesting an initial copy of the D_B
given server. Ties are broken with a simple determ{ust present a read certificate. A server performing
nistic comparison between the indexes of the servef$ periodicpull of information from another server

that created thee competing updates. The winner #fust at least provide a read certificate. Finally,
the j™ vote atv; is denotedv..commit(j). When an Servers will not vote for a new transaction unless it

election is won a;, all votesv[j] are reset tal. is accompanied by a valid read/write certificate

It follows naturally from the above definitions from the transaction’s creator. . '
that candidates can win without all the votes being A CA represents a single point of failure in a
known. Similarly, updates can be committed by @YSteém that is otherwise completely decentralized.
server without complete knowledge of which seryHowever, this bottleneck only affects one-time au-

ers have seen the update, or even complete knowhentication into the system. The CA is afterwards
edge of which servers cache the object. not needed to arbitrate even between servers that

More details are provided in [1] and [15]. come into contact for the first time. For ex'amp'le,

consider three salesmen who meet for the first time
2.5 Example on a train and wish to collaborate on a pre-existing
Consider Figure 4. The system has four servers, aflocument, setting up a local ad hoc network in order
with currency of .25. Servey, creates a new update, to communicate among themselves. The salesmen
t;, implicitly votes for it, and sends a message dedo not have to have contact with a CA in order to
scribingt; and its vote t@s via an anti-entropy ses- start collaborating. On the other hand, if only one of
sion.sg votes fort;, and then later transfers notice ofthe salesmen initially has a copy of the data, the
t; and both votes ts.. After adding its own votes,

v(B,C)=t, V(AB.C)=t

HWWOD
10/ JILWWOD

K-PUB g

Random
@ % T

T D)

Figure 5: Integrity with privacy: We use symmetric encryption (i.e. Triple-DES) to encrypt the
message, and asymmetric encryption (i.e. RSA) to encrypt th@edyim key and sign the message.
K-PRIsc and K-PUBes;are private and public keys of the source and destination of tleagegse-
spectively. Double bars indicate concatenation.

K-PRI

others cannot make copies unless they already hawsethod used in PGP. Integrity is provided by ap-
certificates, or are currently connected to the CA. pending a message authentication code (MAC) to
We solve this problem by allowing the CA to is-each message, in this case the MD5 hash of the
sue ticket-granting tickets(TGT), analogously to message signed by encrypting with the source’s pri-
Kerberos. A TGT gives the bearer a limited abilityvate key. Privacy is provided by encrypting the
to make and grant new certificates for resources andessage and the MAC with a randomly generated,
properties. In our architecture, use of a TGT reone-timesession keyThe session key is then en-
quires direct confirmation from the user. Note thecrypted with the destination’s public key, and the
TGT’s can be used to generalize the system to irconcatenation of the encrypted session key, MAC,
clude a hierarchy of CA’s. This not only providesand message are sent to the destination.
load-balancing for access to the CA'’s, but increases The use of peer-to-peer one-time session'keys
the chances that a CA is available when needed. allows us to avoid the key changing problem in-
We allow certificates to be revoked via the issuecurred by secure multicast trees. Secure multicast
of a certificate revocation lis(CRL) from the pri- trees generally use a single session key for the entire
mary CA. This presents problems because Dengroup. Any change in group membership requires
servers have no notion of simultaneity, unlike securéhe session key to be changed. The key must be
multicast trees and other analogous systems. Ichanged whes; is added to the group because we
other words, given that a CRL has been issuedlo not want, to be able to read messages that were
when are revoked certificates guaranteed to be dsent prior to its joining (we assume thgtmight
nied? We solve this problem by casting the issue diave recorded prior encrypted messages even
a CRL as just another update transaction. The CRthough it could not read them). Similarly, the key
update competes with other transactions to win ashould be changed whenleaves the group because
election. Once the CRL update has been committetje do not want; to be able to read messages that
we can guarantee that no subsequent update will lage sent after it leaves the group. A similar need
committed with the aid of a vote authenticated by @ould exist in a Deno replication group, but is
revoked certificate. A secondary advantage of castvoided by the use of peer-to-peer session keys.
ing the CRL i;sug as an update is that it guarantees | niernal threats
quick dissemination. Otherwise, knowledge of the
CRL might disseminate quite slowly because thdn this section, we consider internal threats —
CA is not consulted during the normal course othreats that result from authenticated but malicious
events. servers. Such malicious insiders misrepresent pro-
tocol-specific information, and can cause potentially

3'_1 Integrity and privacy o corrupt objects to propagate throughout the network.
Figure 5 shows Deno’s approach to providing both

integrity and privacy guarantees for communicated
data. Note that this method is very similar to thg

Note that these peer-to-peer keys need not bémeginstead
hey may be cached and re-used later.

Under certain circumstances, even a single mali-
cious insider with arbitrarily small amount of cur-

rency can cause different transactions to be commit-
ted at different nodes. We begin with a discussion
of the set of malicious actions a node can undertake.

4.1 Malicious actions

Before we classify the actions a malicious intruder
can take, we should note that malicious nodes can
always commit arbitrary transactions to thieical
databases without even advertising the transaction to
other nodes. Maliciouservers can also remain
within the protocol framework and issue updates
that obscure or undo the effects of other updates. Figure6: By telling s ands; different votes,
This type of behavior must be handled in an applica- s can cause them to commit conflicting up-
tion-specific manner and is beyond the scope of this dates.q is the currency held tsy

work. The goal of this section is to classify and

mitigate the damage malicious nodes can inflict om.1.2 \ote misrepresentation

other nodes. Malicious servers can only corrupt th

sl =¢

%here are two types of vote misrepresentation: In
¢ i . " g it Sthe first case, a malicious sengrmisrepresents or
rom other SErvers, or incorrectly reporting itS OWntqrges some other servg's vote to a third serves.

votes. o . . This can happen whes and s are connected
Under certain circumstances, a den|(:1I-of-serV|c<?hroughSm 5 reports its vote ts, ands, forges this

attack can Ic_)e accompli_shed by even one malicioyg,ie ang reports a different vote farto s. This
server refusing to vote its currency. Thls_ls handle pe of malicious behavior can easily be prevented
by the normakurrency reyocatlonnechanlsm that by requiring each server to sign its votes using a
Is used to recover from failed servers [14]. suitable digital signature techniquiéhe worst a ma-
4.1.1 Currency misrepresentation licious server can do then is to never regéstvote

The problem here is of a server misrepresenting tH@ S- Since Deno does not impose any specific con-
amount of currency it has available to vote in amectlv[ty requwements,'thls behawpr will only delay
election. This is possible because the system us&€8Mmitting of transactions and will not affect cor-
peer-to-peer currency exchangés migrate cur- €CtNess. _ o _
rency allocations towards a target distributioh ~ The second vote misrepresentation is more dif-
peer-to-peer exchange is used by two servers to rcult to guard against and can quite easily be used
allocate their currency between them. This is a locdP Violate all correctness guarantees. In this case, a
operation, and cannot be directly verified by otheServer (possibly signs) and illegally votes its own
servers. currency more than once for multiple transactions.
We make this operation secure by requiringcons'der the example shown in Figure 6. Assume

each currency exchange to be formalized as an utﬁat server ;sis malicious. Ifs tells 5 that it votes
date. A “gift” from s to 5 is only considered com- 107 %, ands that it votes fo, then both destinations
plete when an “exchange update” has been commi'i-eaCh the conclusion that their candidates have more

ted. Note that such updates are commutative witHan 50% of the vote and can be committed. Further,

respect to all other updates and are therefore corn®cure signed votes do not help in this case since
mitted more quickly than ordinary updates. can properly sign its own vote for any transaction.
In the rest of this section, we investigate approaches
to detecting such malicious nodes, and develop an
algorithm that guarantees correctness at all non-
2t is not generally possible for the initial allgon to resultin - malicious nodes.

a uniform distribution unless complete informatabout the set

of servers is known a priori [14]. Even if this wetrue, it is

often desirable to change the distribution to respim dynami-

cally changing conditions.

|voteg)| > |votest)| +unknown, [i insecure system
|valid(t;)[+|unvalid{)| - [top(i)| > |votest)| + [top()| +unknown Uf i secure system
Table 1: Commit criteria

o If we consider all votes in the base Deno system to
4.1.3 Appr oaches for hanpllmg internal threats be validated, then the base commit criteria for trans-
We present a new algorithm that (a) guarantees COgetiont; can be stated as in the top row of Table 1,

rectness and (b) allows progress under Contemi%hereunknowris defined as 1 ¥ i [votes(ty)|-
even when not all votes have been repoitéel first In order to provide resilience against a single
develop a version that is parametric in the number,qjicious server, this base commit criteria is gener-
of malicious servers in the system. In Section 5. lized as in the second row of Table 2. Thus, the
we describe an extremely efficient prob.abilisticnumber of votes required to commit a transaction
counterpart that also accepts the probability of g st pe larger than votes for any other transadion
vote being forged as a parameter. even if the largest (unvalidated) vote fpis voted
4.1.4 Algorithm description for any other transactiofy This technique general-
Our approach hinges on the following key observalZ€S to an arbitrary number of maI|C|ou_s servers. If
tion: the server knows of no other transactigndut it
. has not yet seen votes from all other nodes, then it
Up to k. malicious SEIVers can be kept from simply assumes all unknown votes are cast for some
corrupting an election if thi !argest Un-— other transaction (analogous to the quantity
Va“(.j"’.‘ted votes are not used in any commit knownin the base commit criteria). FRmalicious
decision. serverstop(t) simply needs to be re-defined as the
Consider the following example: if there is aset of votes withk largest currency shares im-
single malicious server, then any single vote may bgalid(t). Note that this criteria is equivalent to the

a duplicate. For a given transaction, a server acClyase commit criteria if we sktequal to zero, which
mulates a set of validated votes and a set of unvalgasetop(t) is the null set.

dated votes. The server can commit the transaction |n order to validate a vote for transacttpfrom

if the transaction can obtain pluralijthoutcount- 3 servess, a serves must ensure that all other serv-
ing the largestinvalidatedvote for that transaction. ers in the system have seen the same vote. Thus, for
More precisely, the transaction must have a pluralitgach election, servey must collectreceiptsof the

even if its largest unvalidated vote is cast for anyote cast bys to all other servers. Aeceipt of
other transaction. This follows since (I) validated Servergﬂ.’s vote for electionn from servers; is a

votes cannot be duplicates and (i) of the unvalistatement of the form “Servey votes for transac-
dated votes, at worst the largest unvalidated votgon t, in electionn’, securely signed by servex

may be a duplicate. Therefore, this worst case duplhsmg an appropriate d|g|ta| Signature. Ser/eon-
cate vote cannot be counted towards the comméiders a particular vote valid if and only if it has re-
decision at this node but instead must be thought @feived receipts for that vote from all other servers in
as a duplicate and given to the best known compefhe system or if the vote is cast by seryéself. In
Ing transaction. order to validate a vote, a sengedoes not need to
Formally, letvotes(t)) denote the set of votes for establish a peer-to-peer connection with all other
transactioni. In general,votes(t;) consists of vali- servers in the system — instead, receipts for votes
dated votes and unvalidated votes. We denote thﬁ)m any server can be forwarded by any other
set of validated votes farby valid(t) and the set of server in the system. Since the receipts are protected
unvalidated votes bynvalid(t), respectively. Note py strong cryptographic primitives, even malicious
that we consider votes by the local server to be valservers will not be able to alter the contents of the
dated votes. We denote the currency of any vate receipt. Malicious servers may corrupt or discard
votes(t) by p|. Similarly, we denote the total cur- receipts: corrupt receipts will be detected by the
rency for a se€ of votes by §, e.g., fotes(t;)| de- server validating the receipt, while discarded re-
notes the total currency of all votes for transactiorzeipts will be treated as any lost message. In the

t.. Lettop(t) be the element with the largest cur-worst case, malicious servers may able to affect the
rency inunvalid(t).

liveness properties of the algorithm, but once agaimecessarily require any votes to be validated before
we have been able to restore the safety guardnteesa transaction is committed.
Example 1. Assume five serverss(s,..., S) in

4.1.5 Examples and discussion :
_ _ _ _ the system, each holding equal (0.2) currency, and
In this section, we illustrate, via a set of examples, the following votes:

some of the more subtle properties of the secure plu- Vi={< sy, >, <, 1>, <8, 1>, <Si, 11>,<S5, 1)
rality algorithm. We begin with a simple example of |, terms of the new commit criteria:

applying the secure protocol to the three server case [votest,)| = 0.8,

shown in Figure 6. We had shown earlier that if [valid(t,)] = 0.2 (local vote),

servers is malicious, in the base protocol, under lunvalidg,)| = 0.6, and

appropriate circumstances, it could cause the com- topt.)| = 0.2.

mitted views of servers, ands, to diverge arbitrar- In this cases, can commit transaction without

ily far even if it held arbitrarily small amount of validating a single vote!

currency in the systemNow we show that even if The second example shows that even when valida-

servers is malicious and holds arbitrarillarge tion of at least one vote is necessary, it is not neces
amounts of currency in the system, it cannot cause a Y,

singleincorrect commit at either servessor s, as sarily the case that all votes have to be validated.

long as servers, ands, operate under the assump-Example2: Assume servers-s, have currency 0.2,
tion that there are malicious servers in the system.0.4, 0.2, and 0.2, respectively. Votessaare:

Assumes holds an arbitrary amount (say< 1) of Vi={<sy, >, <8, 11>, <S5, 11>, <5, 1>}
currency. Once again, assume the rest of the curdn terms of the new commit criteria:
rency is distributed equally between sensi@nds, |vot§s(1)| =0.8,
(the analysis for the other cases are analogous and is valid(t,)| = 0.2 (local vote),
omitted for brevity). lunvalid¢,)|= 0.6, and
Consider the scenario when both sengand |top¢,)| = 0.4.
s, are trying to commit different transactionsand § can not_ commity because:
t,, respectively. Assume servsrtells servers, that valid|+|unvalid|-|top| = 0.4, whereas
it votes for transaction: this would be enough un- |votesty)|+|topé,)| = 0.6.
der the base commit criteria for sergeto commit. Validatingss's vote would have no immediate util-
But under the new commit criteria, sergeconsid- ity. However, ifs)’s vote were validated instead,

ers its local votes as validated, but the quantity the commit could take place.

lunvalid(t,)| - Jtop(t;)] is zero since there is only one As can be seen from the secure commit criteria in
other vote and it is unvalidated. The commit criterialTable 1, validating a vote can only have an immedi-
is not satisfied and server must delay committing ate effect on a commit decision if it affects [tof(

its transaction till it receives a receipt for serggy Validating s,’'s vote had such an effect; validating
vote from serves,. Transactions can, therefore, bes;'s did not.

committed if and only if serves votes consistently 5. Performance evaluation

and correctly.

In the following examples, assume the securd his section describes the performance of the Deno
commit criteria is used with the assumption thafprototype. We performed the experiments on a 16
there is at most one malicious server in the systemode Linux cluster with each node running a copy
The first example shows that even under contentioaf the Deno server. Each node is contains two 400
(i.e. when there are more than one transaction vyinglHz Pentium Il processors and 256 MBytes of
for the same election), the commit criteria does noRAM. However, none of the results presented below
consume all of a machine’s resources. We intention-
® Note that we stated that we wanted to provide labsonon- ally set our communication rates low in order to re-
probabilistic, guarantees. Our scheme relies erirttegrity of flect the constraints of our expected environment.

the digital signature: any digital signature schdmas a prob- .
ability of failure at least inversely proportiontile size of the Instead, our performance evaluation concentrates on

key-space from which the encrypting and decryptiags are €lative performance by comparing the convergence
chosen (exploited via a brute-force attack). Thusre pre- rates of representative protocols.

cisely, our scheme is provides guarantees onlgti@ng as

underlying digital signature scheme.

Parameter Description Setting

Synch Period Mean synchronization period (uniform) 0-5 (secs)

Transaction Rate Mean transaction generation usiiéofm) 0 — 25 (trans/synch period)
Num Servers Number of Deno servers 3-15

Trans Size Number of items updated by a transag¢tioifiorm) 0-5

Commutativity Ratio The probability that a transastis acceptable on a given db state 0-1

Table 2: Primary experimental parameters and settings

The machines were connected via a dedicate@ne, Write-All” (ROWA) [16] protocol modeling
100Mbps Ethernet network and the Deno serverthe best other transactional epidemic protocol in the
communicated using UDP. In order to concentratéiterature. This protocol can only commit transac-
on the convergence speed of the protocols, we uséidns after ensuring that all other servers are ready to
a small database consisting of 100 data objects abmmit. Therefore, a transaction has to be propa-
size 20K each. Each Deno server periodically initigated to all the servers before it can be committed.
ates a synchronization session (with a given syr-urthermore, when a server receives conflicting
chronization period of 5.0 secs) by sendingudl transactions, it has to abort all of those transactions
request to another randomly selected Deno server.in order to ensure global consistency. A similar epi-

Each server generated transactions according ttemic ROWA protocol was proposed by Agrawsl
a global transaction rate (specified relative to a symal. [17].
chronization period). Each transaction accessed ‘F.’"%‘.jl.l Performance Metrics

modified up to five data items. Currency is uni-)])]
formly distributed across servers except as noted.n€ primary performance metric we consideavs

All objects are replicated at all servers. The mairff@ge commit delagywhich denotes the time be-
parameters and settings used in the experiments ¥4e€en the initiation of a transaction and average the
summarized in Table 2. of the times at which it is committed by individual

The results presented in the following plots areS€rVers in the system. As a measure of scalability,
the average of at least five independent runs of ex¥(€ report the change in commit delay as the number
cuting 1000 transactions in the system. The contr@f nodes in the system change. As a measure of
butions of the first 50 transactions are excluded t60PUStness, we measure commit delay as the cur-
account to eliminate system warm-up effects. Th&ency distribution in the system becomes non-
bandwidth requirements for transactional and conuniform. In each case, we consider the efficacy of
sistency data were negligible compared to that re?ur algorithm by varying the number of malicious
quired for propagating updated values, so we do n&€Vvers and where applicable, compare our results to
consider this question further. the Write-all scheme.

For context, we also show the performance of & 1.2 Commit delays vs.malicious nodes

second schemewrite-all, which is a “Read- rjq re 7 shows the average commit delays for the
Deno protocol versus the number of tolerated mali-

14 cious servers. Thg-axis is the average number of
transactions generated per server, per second, for
16-node runs. Thg-axis shows the commit delay,
normalized to the anti-entropy period. For compari-
son, we also include the average commit delay for
the write-all scheme [16]. Note that commit delay
actually goes down for the default case (no mali-
cious servers). This is because additional transac-
tions in the system, in essence, gather votes for a
given election in parallel.

The result shows the following key points: the
extra checks added to verify against duplicate votes
increase the average commit time by about 50% for

12

iy
o

ACD (periods)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

transaction rate
——k=0 —HB—k=1 —A—k=2 —w—k=4 —¥—write-all

Figure 7: ACD vs. transaction rate

0.6 —o—k=0 ——k=1
60 — —A—k=2 k=4
5 0.5 —Xk—write-all
% 50 -
Z 04 @
g g 40 1
n i 1 | =
E 0.3 ——k=0 é 30 -
S —a—k=1] |
§ 02 3 20|
< —A—k=2 <
0.1 10
0 +o——0——6—6—6—6—06—6—6—% 0
01 02 03 04 05 06 07 08 09 1 4 6 8 10 12 14 16
transaction rate # nodes
Figure 8: Upper bound on percent of commits Figure 9: Scalability

that need at least one validated vote.)) o)
This upper bound is loose, (within 10% in our test

low transaction rates, and by a factor of 2 for higlcases). Note that even under relatively heavy trans-

transaction rates. action rates, only about 50% of the committed
However, even the secure Deno protocols pertransactions required validated votes.

form significantly better than the Write-All scheme. .

Further, the number of rounds required to validate5',1'3 Scalability))

votes is relatively independent of the number of mafigure 9 shows the change in commit delays as the

licious servers and the transaction generation ratgUmber of nodes in the system is varied from 4 to

A detailed look at our raw data revealed that the vast®: The transaction generation rate was fixed at 0.5.
majority of transactions that require at least oné&Or this moderate transaction rate, adding the secu-

validated vote ended up validating all of the votedity increased the average commit delay by less than

due to the exponential increase in the amount of if €€ rounds of communication. As is evident from
formation passed in each round of the epidemic ughe plot, the Write-all Scheme does not scale nearly
date. Thus, once we incur the overhead of validatingS Well- By contrast, the support for malicious serv-
a single vote to guard against a single maliciou§" does not hurt scalability at all. In fact, if there is
server, the additional cost of guarding against angny trend at all in the relationship between the runs
number of malicious servers is low. This explainé""th malicious servers and those without, it is that
why the commit delay does not significantly in_f[hey are converging. Our future work will certainly
crease as the number of malicious insiders is irfnclude verifying this trend for more servers.

creased from one to four. In fact, when we repeateg2 | mproving on public-key signatures

this experiment with transaction rate equal to 0'8|'he specific requirements for securing a vote and a

vote receipt are as follows:

and with the protocol guarding against the maxi
mum number of malicious servers (15 in the 1 There must be enough information in each vote
to authenticate the sender,

node case), we found the average commit delay to
be about 16 rounds, within 1 round of the commit, 1o Juthentication scheme must be non-
delay for guarding against a single malicious node. repudiable, and

In order to quantify the overhead of the internal " The mess’ages must contain a strong message
security we computed the fraction of transactions integrity check.
that require at least one validated vote to commit. = . _ _ o
Intuitively, we expect this fraction to increase with > ublic-key digital signatures provide all the primi-
the transaction generation rate and with the numbdV€S required to implement these three require-
of malicious nodes to guard against. In Figure 8 w&'ents. Individually signing a large number of votes
plot the fraction of transactions in the system that atNd receipts using a conventional digital signature
commit time had gathered at least one validated vogfN€me such as RSA can be computationally pro-
against increasing transaction rate. This metric i8i0itive. Instéad, any set of votes and receipts can be
easier to measure and is a good upper bound on thigned together as a single message.
number of transactions thegquire validated votes.

In order to quantify the overhead of our pro-are willing to tolerate one malicious server, and a
posed additions to Deno, we experimented with therobability of 1/1000 that messages can be forged.
execution times for signing a 16 byte hash code ushe number of primary keys, required is 25, and
ing 512 bit keys using theSAref library from RSA the resulting system would required 78 microsec-
Security Iné. On a 440 MHz UltraSparc-lli proces- onds to generate all the MACs (once again on the
sor running Solaris 2.6, in single user, highest prior440 MHz UltraSparc machine using the same com-
ity mode, producing the signature takes on averaggiler). Thus, in this case, the MAC-based scheme is
about 328 milliseconds (code compiled using thel200timesas fast as a public-key signature system.
Sun WorkshopPro version 5.0 compiler). Thus, eveiVe should note that in this case, each message
if a large number of votes are signed in aggregateyould have to carry approximately 450 bytes of ex-
public-key digital signature schemes can have #&a signature information not present in public-key
relatively high computational overhead, especially ifsignatures. The number of keys required to reduce
regular RSA signatures are used on the typical smathe probability of forgery down to 1 in 10, 000 is 33.
hand-held devices on which Deno may be used. Ifihe results for withstanding more malicious servers
the next section, we show how to use a secure muk similar: for four malicious servers and the prob-
ticast technique described by Canetti et. al. in [18hbility of forgery equal to 1 in 10, 1000, 108 MACs
to replace the digital signature authentication withwould need to be generated. This computation takes
message authentication cod®4ACSs). 340 microseconds (964 times faster than public-key
52 1 Probabilistic \Version signatures) and would add about 2000 bytes of extra

key-information to each message.
A MAC takes a secret key and a message (or a mes-

sage hash) and generates an unforgeable value. TheRelated work

basic idea behind the probabilistic scheme is thghe work related to this paper falls into two distinct
following. Each sender is given a set lofsend categories: weakly-connected transactional systems
keys”. The sender authenticates a message by firghd security for groups and elections. Many existing
creating a hash of the message using a secure ha@ynchronous “update-anywhere” protocols use the
algorithm, e.g., MD5. .The sender then credtes epidemic model [7, 9, 10, 17, 19, 20]. Many epi-
keyedMACs of the original hash by using itsend demic systems take an optimistic approach and use
keys. (A keyed-MAC is computed by computing areconciliation-based protocols (e.g., Ficus [20], Lo-
hash of the message appended with a key). Ths Notes [7]) that are only viable in non-
server transmits the original message andlall {ygnsactional single-item domains.
keyed-MACs. Bayou [10] takes a more pessimistic approach
Each receives, has a subset of the send keys:ang ensures that all committed updates are serialized
R.. The receiver verifies the message by computing, the same order at all servers usirienary-copy
MACs of the hash for each key iy and comparing scheme. As mentioned before, Agrawealal [17]
the results with the MACs that were appended to thgroposed a pessimistic “Read-One, Write-All”
message. A message can only be forged if the forggROwWA) [16] approach that was the first epidemic
clique knows all of the keys iR,; the probability of protocol to ensure strong consistency and serializa-
this occurring is one of the base parameters in thsjlity. This protocol allows a transaction to commit
protocol and can be set to any value. . only after all servers “certify” the transaction. Our
Given| keys andw malicious nodes, using the protocols differ from these protocols primarily in
analysis given in [18], it can be shown that the valugsing a novel combination of weighted-voting and

of g, the probability of failure is: epidemic information flow [9] to improve availabil-
o 1 1 DWd ity and performance. Bayou protects against exter-
ﬁ__w+1§l__w+1a ﬁ nal threats using authentication and access control

certificates.
In our case, the Deno SEIVErs are both senders The security protocols described here are related
are receivers. A!I votes and receipts are Messagegs yagjtional security in group communication pro-
that have to be signed. Consider the case When Wg. s prior work in securing group communication

protocols can also be divided into schemes that can
withstand external threats only and schemes that are

4 Seehttp://www.rsa.com

able to withstand some internal threats. Ensem- Internal attacks are much more interesting. An
ble[21] is the third-generation of group communica4internal attack refers to one in which an entity has
tion protocols from Cornell University and is a fol- been authenticated into the system, and then tries to
low-up to the Horus [22] system. Ensemble is desubvert the protocol by misrepresenting others’
signed to be secure against external threats [23] amdtes or lying about its own. The former case can
uses similar public-key mechanisms as Deno. Emlso be handled by public-key signatures. The latter
semble assumes internal threats do not exist, amése, however, can only be addressed by modifying
defines protocols to handle security properties fothe transaction commit criteria to take the “trust”
multiple partitions of the group. Due to its reliancelevel of votes into account.
on an underlying atomic multicast protocol, Ensem- Our results that show that this modification of
ble has to provide mechanisms for multicast grouphe commit criteria, while potentially expensive, still
re-keying. Due to the epidemic nature of Deno’sesults in much more efficient transaction commits
communication structure, we can completely ignorghat the best competing approach from the literature.
such key management [24] and rekeying [25] issue@ur results also suggest that, far from hurting sys-
that are inherent to secure multicasting in wide-areeem scalability, the effect of the security modifica-
networks. tions on system performance actually diminishes
The Rampart system [26] is also layered atopvith increasing system size.
the atomic reliable multicast primitive. However, Finally, we show that a technique originally
unlike Horus or Ensemble, Rampart is secur@roposed for the secure multicast domain can be
against external and internal threats. In [26], a pradsed to replace use of digital signatures with mes-
tocol for reliable and atomic multicast is presentedsage hashes throughout our infrastructure. This re-
that is resilient of Byzantine attacks by at most on@lacement reduces the overhead of digital signatures
third of all the nodes the system. This protocol rein our system by at least a factor of 1000.
quires much stronger connectivity and reliable muIB_ Refer ences
ticast primitives than is required by Deno. How-
ever, since Rampart is able to withstand all manndi] P. J. Keleher, “Decentralized Replicated-Object
of Byzantine behavior, the liveness of the system is Protocols,” inThe 18" Annual Symposium on Prin-
not affected by malicious nodes try to mount a de- i'&'}%s of Distributed Computing (PODC ‘99ylay
requests. AS mentioned before, the Beno counta) P: Keleher and U. Cetntere, Consisency M
T :) . S agement in Deno,The Journal on Special Topics in
measure in this S|tuat|.on is to treat the non- \iopile Networking and Applications (MONET)
responsive servers as failed than to revoke currengy] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat

as explained in servers [14]. “Providing High Availability Using Lazy Replica-
Our work is different from existing secure vot- tion,” ACM Transactions on Computing Systems

ing protocols in two major ways. By design, many vol. 10, pp. 360-391, November 1992.

existing secure voting protocols provide voter pri-[4] Y. Breitbart and H. F. Korth, “Replication ar@bn-

vacy and rely on a small number of central facilities ~ Sistency: Being Lazy Helps Sometimes,"Hroc. of

for counting votes [27, 28]. In Deno, voter privacy ~ the Symposium on Principles of Database Systems

is not an issue and the weakly connected nature Tucson, Arizona, May 1997.

the underlying network makes reliance on centra I T. Anderson, V. Breitbart, H. F. Korth, and A.
o Wool, “Replication, Consistency, and Practicality:
authorities untenable.

Are These Mutually Exclusive?,” iRroceedings of

7. Conclusions ACM SIGMOD International Conference on Man-
agement of Datal998.

We have presented a complete infrastructure fge] Y. Breitbart, R. Komondoor, R. Rastogi, S. Sesh

protecting a highly-available, decentralized replica- dri, and A. Silbershatz, “Update Propagation Proto-

tion system against attacks, both external and inter- cols for Replicated Databases,”RBnoc. of the ACM

nal. External attacks refer to those by entities that ~ SIGMOD Int. Conf. on Management of Dakthila-

have not been authenticated into the system. This_ delphia, PA, 1999.

class of attack is prevented using traditional publicl’l L- Kawell, S. Beckhardt, T. Halvorsen, R. Oziyd
key techniques. L. Greif, “Replicated Document Management in a

Group Communication System,” iRroc. of the

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Conf. on Computer Supported Cooperative Work
1988.

M. Stonebraker, “Concurrency control and consis [21] M. Hayden,

tency of multiple copies of data in distributed IN-

Peer-to-Peer Filing,"Software—Practice and Ex-
perience vol. 28, pp. 155-180, February 1998.
“The Ensemble System,” Cornell
Univerisity TR-98-1695, 1998.

GRESS,"IEEE Transactions on Software Engineer- [22] R. v. Renesse, K. Birman, and S. Maffeis, “tigra

ing, vol. SE-5, pp. 188-194, May 1979.
A. Demers, D. Greene, C. Hauser, W. Irish, dr-L

fexible Group Communication SystenCommuni-
cations of the ACIM1996.

son, S. Shenker, H. Sturgis, D. Swinehart, and D[23] O. Rodeh, K. P. Berman, M. Hayden, Z. Xiaod an

Terry, “Epidemic algorithms for replicated database
maintenance,” ifProc. of the Symposium on Princi-

ples of Distributed Computind.987.

D. B. Terry, M. M. Theimer, K. Petersen, A. J.

Demers, M. J. Spreitzer, and C. H. Hauser, “Manag-

D. Dolev, “Ensemble Security,” Cornell Univerisity
TR-98-1703, 1998.

[24] H. Harney and C. Muckenhirn, “Group Key Man-

agement Protocol (GKMP) Architecture.,” RFC

2094, 1997.

ing Update Conflicts in a Weakly Connected Repli-[25] C. Wong, M. Gouda, and S. Lam, “Secure Group

cated Storage System,” Rroc. of the ACM Sympo-
sium on Operating Systems Principl&995.

R. H. Thomas, “A Majority Consensus Approach t [26]

Concurrency Control for Multiple Copy Databases,”
ACM Transactions on Database Systewas. 4, pp.
180-209, 1979.

D. K. Gifford, “Weighted Voting for Replicated [27]

Data,” in Proc. of the ACM Symposium on Operat-
ing Systems Principle4979.
S. Jajodia and D. Mutchler, “Dynamic Votinggd-

rithms for Maintaining the Consistency of a Repli- [28]

cated Database, ACM Transactions on Database
Systemsvol. 15, pp. 230-280, 1990.

U. Cetintemel and P. J. Keleher, “Light-Weight
Currency Management Mechanisms in Deno,” in
The 1¢' IEEE Workshop on Research Issues in
Data Engineering (RIDE2000}-ebruary 2000.

U. Cetintemel, P. Keleher, and M. Franklin,uts
port for Speculative Update Propagation and Mobil-
ity in Deno,” UMIACS UMIACS-TR-99-70, Oct.
29, 1999 1999.

P. A. Bernstein, V. Hadzilacos, and N. Goodman
Concurrency Control and Recovery in Database
SystemsReading, Massachusetts: Addison-Wesley,
1987.

D. Agrawal, A. E. Abbadi, and R. Steinke, “Epi
demic Algorithms in Replicated Databases, Piro-
ceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems May 1997.

R. Canetti, J. Garay, G. ltkis, D. Micciancibl.
Naor, and B. Pinkas, “Multicast Security: A Taxon-
omy and Efficient Constructions,” ifroceedings of
INFOCOM ‘99 1999.

M. Rabinovich, N. H. Gehani, and A. Kononov,
“Scalable Update Propagation in Epidemic Repli-
cated Databases,” imternational Conference on
Extending Database Technology (EDBT996.

T. W. Page, R. G. Guy, J. S. Heidemann, DnBat

P. Reiher, A. Goel, G. H. Kuenning, and G. J.
Popek, “Perspectives on Optimistically Replicated

Communications using Key Graphs,” ACM SIG-
COMM, 1998.

M. K. Reiter, “Secure Agreement Protocols: liRe
able and Atomic Group Multicast in Rampart,” in
2"Y ACM Conference on Computer and Communica-
tions Security1994.

A. Fujioka, T. Okamoto, and K. Ohta, “A praul
secret voting scheme for large-scale elections,” in
Advances in Cryptology --- AUSCRYPT'92, Lecture
Notes in Computer Scienck992.

L. Cranor and R. Cryton, “Sensus: A security-
conscious electronic polling scheme for the Inter-
net,” in Hawaii International Conference on System
Sciences1997.

