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In this paper, we present an infrastructure for providing secure transactional support for mobile 
databases. Our infrastructure protects against external threats — malicious actions by nodes not 
authorized to access the data.  The major contribution of this paper, however, is to classify and 
present algorithms to protect against internal security threats.  Internal threats are malicious ac-
tions by authenticated nodes that misrepresent protocol specific information.  We quantify the cost 
of our security mechanisms in context of Deno: a system that supports object replication in a 
transactional framework for mobile and weakly-connected environments.   

Our results show that protecting against internal threats comes at a cost, but the marginal cost for 
protecting against larger cliques of malicious insiders is low.  However, even with all the security 
mechanisms in place, our system commits updates over 50% faster than systems that depend on 
the Read-once Write-all commit protocol. Lastly, we present results from a probabilistic version of 
our algorithm that has several orders of magnitude lower computation cost than the traditional 
public-key based schemes. 

 

1. Introduction 

We present an infrastructure for providing secure 
transactional support for mobile databases. In par-
ticular, we concentrate on providing solutions to 
internal security threats, and quantifying their costs.  

This work is done in the context of Deno, a sys-
tem that supports object replication in a transac-
tional framework for mobile and weakly-connected 
environments. Deno’s system model is illustrated in 
Figure 1. One or more clients connect to each peer 
server, which communicate through pair-wise in-
formation exchanges. The servers are not necessar-
ily ever fully connected. The server labeled “(CA)” 
is a certificate authority, which will be explained in 
Section 3. 

Deno’s underlying protocols are based on an 
asynchronous protocol called bounded weighted 
voting [1, 2]. Asynchronous solutions [3-7] for 
managing replicated data have a number of advan-
tages over traditional synchronous replication proto-
cols in large-scale, mobile, and weakly-connected 
environments. They can operate with less than full 
connectivity, easily adapt to frequent changes in 

group membership, and make few demands on the 
underlying network topology. However, this func-
tionality comes at a price. Asynchronous solutions 
are generally either slow and require reconciliations, 
or have lower availability because they rely on pri-
mary-copy schemes [8].  

Deno’s protocol retains the advantages of cur-
rent asynchronous protocols, but generally performs 
better, has fewer connectivity requirements, and 
provides higher availability. No server ever needs to 
have complete knowledge of group membership, 
and a given server only needs to be in intermittent 
contact with at least one other server to take full part 
in the voting and commitment process. As such, the 
protocol is highly suited for environments with 
weak or intermittent connectivity. 

Despite the good performance, however, no 
such system could be widely deployed in mobile 
environments without ensuring that the infrastruc-
ture is secure. We distinguish between internal and 
external security threats. The prime external threat 
is of an unauthenticated server attempting to read or 
modify data. We prevent this through public-key 
cryptography mechanisms. A request for data or 



 

protocol information must be accompanied by a 
signed hash of the request. The destination verifies 
the hash via the server’s certificate, which is signed 
by a trusted Certificate Authority (CA) and is ap-
pended to the request. Data privacy can be provided 
by conventional symmetric encryption algorithms, 
such as Triple-DES or IDEA. 

Dealing with internal threats to security is much 
more problematic. Internals threats arise from duly 
authenticated servers that attempt to cheat. As a triv-
ial example, a user of a distributed meeting room 
scheduler might attempt to falsify votes of other 
servers in order to ensure that he or she gets a prime 
reservation. More serious scenarios could arise in 
collaborative intranet and Internet applications, such 
as scheduling and workflow applications. Finally, 
this work has obvious applications in military sce-
narios. Consider communication among tanks or 
mobile command posts. There is a clear need for 
secure, highly-available, replicated, consistent data, 
which is not easily met using traditional protocols. 

The base, non-secure Deno system has been 
fully implemented. Deno’s source consists of 
~10,000 lines of multi-threaded C++ code. We have 
also fully implemented the write-all protocol dis-
cussed below, as well as the changes to the basic 
protocol needed to tolerate malicious servers. How-
ever, we are still building the public-key infrastruc-
ture that will be used to address external threats. 

The rest of the paper is structured as follows. 
Section 2 briefly describes the design and perform-
ance of Deno’s asynchronous protocol. Section 3 
describes a public-key based infrastructure that ad-
dresses external threats by providing secure authen-
tication and encryption without compromising 
Deno’s ability to make progress with low or non-
existent connectivity. Section 4 describes our ap-
proach to handling internal threats, which is the 
main contribution of this paper, and Section 5 
evaluates the effect of our security measures on 

commit performance. Finally, Section 6 describes 
related work and Section 7 concludes. 

2. Background: Deno  

Deno is a replicated-object system that relies on a 
decentralized, asynchronous replica management 
protocol to addresses concerns of performance and 
reliability. Under Deno, no server ever needs to 
have complete knowledge of group membership, 
and a given server only needs to be in intermittent 
contact with at least one other server to take full part 
in the voting and commitment process. As such, the 
protocol is highly suited for environments with 
weak connectivity.  

The protocol’s strengths result from a novel 
combination of weighted voting and epidemic in-
formation flow, a process where information flows 
pairwise through a system like a disease passing 
from one host to the next [9].  The protocol is com-
pletely decentralized. There is no primary server 
that “owns” an item or serializes the updates to that 
item (as in Bayou [10]). Any server can create new 
object replicas, and servers need only be able to 
communicate with a minimum of one other server at 
a time in order to make progress. Instead of syn-
chronously assembling quorums, which has been 
extensively addressed by previous work (e.g., [11-
13]), votes are cast and disseminated among system 
servers asynchronously through pair-wise, epi-
demic-style propagation. Any server can either 
commit or abort any transaction unilaterally, and all 
servers eventually reach the same decisions. 

The use of voting allows the system to have 
higher availability than primary-copy protocols. The 
use of weighted voting allows implementations to 
improve performance by adapting currency distribu-
tions to site availabilities, update activity, or other 
relevant characteristics [14]. Each server has a spe-
cific amount of currency, and the total currency in 
the system is fixed at a known value. The advantage 
of a static total is that servers can determine when a 
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Figure 1: Basic Deno system model 



 

plurality or majority of the votes have been accumu-
lated without complete knowledge of group mem-
bership. This last attribute is key in dynamic, wide-
area environments because it allows the protocol to 
operate in a completely decentralized fashion, 
eliminating performance bottlenecks and single 
points of failure. 

The use of epidemic protocols divorces protocol 
requirements from communication requirements. 
First, an epidemic algorithm only requires protocol 
information to move throughout the system eventu-
ally. The lack of hard deadlines and connectivity 
requirements is ideally suited to mobile environ-
ments, where individual nodes are routinely discon-
nected. Second, epidemic protocols remove reliance 
on network topology. Synchronization partners in 
epidemic protocols are usually chosen randomly, 
eliminating any potential single point of failure. 

The protocol is defined for both single-object 
updates and serialized multi-item transactions [15]. 
The voting protocol ensures mutual exclusion 
among conflicting transactions, guaranteeing that no 
two concurrent conflicting transactions can both 
commit. However, all transactions execute locally 
and no local or global deadlocks are possible. 

2.1 Deno prototype 
This section briefly describes the basic architecture 
of Deno object replication system. The overriding 
goal of the Deno project is to investigate replica 
consistency protocols for dis- and weakly-connected 
environments. We are therefore not motivated to 
build large and complicated interfaces to the object 
system. By the same token, we feel that lightweight 
interfaces are the appropriate choice for many appli-
cations, and that more complex services can be effi-
ciently built on top of Deno services if needed. The 
basic Deno API supports operations for creating 
objects, creating and deleting object replicas, and 
performing reads and writes on the shared objects in 
a transactional framework.  

2.2 Architecture 
Figure 2 illustrates the basic Deno server architec-
ture, consisting of the following components: 
• The Server Manager is in charge of coordinating 

the activities of the various components. It han-
dles client requests by implementing the basic 
Deno API. 

• The Consistency Controller implements the de-
centralized voting protocols used by Deno. In 

particular, it maintains a vote pool that summa-
rizes the votes known to the server.  

• The Synch Controller is responsible for imple-
menting efficient synchronization sessions with 
other Deno servers by maintaining version vec-
tors that compactly summarize the events of in-
terests from other servers. This component im-
plements different synchronization policies that 
specify when and with whom to synchronize. In 
the current implementation, it implements a na-
ïve policy that chooses synchronization partners 
randomly at regular intervals. 

• The Trans Manager is mainly responsible for 
the local execution of transactions. It maintains 
a transaction pool that contains all active (i.e., 
non-obsolete) transactions known to the server.  

• The Storage Manager provides access to the 
object store that stores the current committed 
versions of all replicated objects at the server. 
The object store is currently a simple in-
memory database. 

The prototype makes relatively few demands on the 
operating system and is therefore highly portable. 
The current prototype runs on top of Linux and 
WindowsNT/CE platforms. All communication is 
layered atop UDP/IP. 

2.3 Protocol overview 
At its simplest, Deno can be thought of as a set of 
servers that are cooperating in order to determine a 
sequential ordering of committed updates. Asyn-
chronous voting is used to determine which updates 
actually commit. Asynchronous information pulls 
between randomly selected pairs of servers move 
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newly created update records, together with votes 
for such, among the servers. There are a number of 
potential performance problems with this model. 
We will discuss these briefly at the end of the sec-
tion. 

We assume a model in which the shared state 
consists of a set of objects that are replicated across 
multiple servers. Objects do not need to be repli-
cated at all servers, and servers may replicate multi-
ple objects. For simplicity of presentation, however, 
we limit our discussion to single objects that are 
cached at all servers. Our discussion is easily ex-
tended to include the more general case.  

Deno supports strict serializability between arbi-
trary multi-item transactions and queries. However, 
the single-object/transactional axis is orthogonal to 
the main thrust of this paper, so we restrict our dis-
cussion to single-object updates for pedagogical 
reasons. 

Individual objects are modified by updates, 
which are issued by servers. An update consists of 
either a code fragment or a run-length encoding of 
binary changes. Updates can be transmitted to other 
servers and are assumed to execute atomically at 
remote sites. Given a consistent initial state, applica-
tion of the same updates in the same order on multi-
ple replicas of the same object result in the same 
final object state.  

Updates do not commit globally in one atomic 
phase because we assume an epidemic style of up-
dates and poor connectivity. Instead, each server 
commits updates based on local information. How-
ever, we show below that any update that commits 
at any server eventually commits everywhere, and in 
the same order with respect to other committed up-
dates. 

2.4 Elections 
A clean way of thinking about update commitment 
is as a series of elections. A server is analogous to a 
voter, creating an update is analogous to a voter de-
ciding to run for office, and a committed update is 
analogous to a candidate winning the election. Vot-
ers (and hence candidates) have indexes 0 through 
n-1, where n is the total number of voters. We use vi 
to refer to the voter with index i, and ci to refer to 
the candidate with index i. Candidates win elections 
by cornering a plurality of the votes. Each election 
begins with an underlying agreement of the winners 
of all previous elections. Once an election is over, a 
new election commences. Any given election may 
have multiple candidates (logically concurrent tenta-
tive updates), and candidates from different elec-
tions might be alive in the system at the same time. 
In the latter case, however, uncommitted candidates 
for any but the most recent election have already 
lost, but this information has not yet made it to all 
voters.  

Because of the style of information flow, there 
is no centralized vote-counting. Instead, each voter 
independently collects votes from other voters and 
deduces outcomes. This creates situations in which 
the “current” election of distinct servers is temporar-
ily out of sync. Voter vi’s current election is the 
election for which vi is collecting votes. In order to 
implement this protocol, each voter maintains three 
pieces of state:  
1. vi.completed – the number of elections com-

pleted locally, and 
2. vi.[j] – is either the index of the candidate voted 

for by vj in vi’s current election, or ⊥ , which 
means that vi has not yet seen a vote from vj. 

 

Definition 1: Define uncommitted(vi) as: ∑
=

n

j
i jcurrv

1

][. , s.t. vi[j] is equal to ⊥ . 

Definition 2: Define votes(vi, k) as ∑
=

n

j
i jcurrv

1

][. , s.t. vi[j] is equal to k. 

Definition 3: A candidate cj wins vi’s current election when: 

1. votes(vi, j) > 0.5, or      // cj gathers majority of votes         
2. ∀  k ≠ j, votes(vi, k) + uncommitted(vi) < votes(vi, j)   or     // cj gathers plurality of votes    

       ((votes(vi, k) + uncommitted(vi)) = votes(vi, j)   and  (j < k))    // tie-break case 

 

Figure 3: Definitions 



 

The size of the array is bounded by the total 
number of voters.  

3. vi.curr [j] – The amount of currency voted by vj 
in vi’s current election or ⊥ , which means that vi 
has not yet seen a vote from vj. Currency alloca-
tion may change with each election.  

The total amount of currency in any election is 1.0. 
Definitions 1-3 essentially say that a candidate 

is committed if it has a plurality of the vote at a 
given server. Ties are broken with a simple determi-
nistic comparison between the indexes of the servers 
that created thee competing updates. The winner of 
the j th vote at vi is denoted vi.commit(j). When an 
election is won at vi, all votes vi[j]  are reset to ⊥ . 

It follows naturally from the above definitions 
that candidates can win without all the votes being 
known. Similarly, updates can be committed by a 
server without complete knowledge of which serv-
ers have seen the update, or even complete knowl-
edge of which servers cache the object. 

More details are provided in [1] and [15]. 

2.5 Example 
Consider Figure 4. The system has four servers, all 
with currency of .25. Server sA creates a new update, 
t1, implicitly votes for it, and sends a message de-
scribing t1 and its vote to sB via an anti-entropy ses-
sion. sB votes for t1, and then later transfers notice of 
t1 and both votes to sc. After adding its own vote, sc 

can commit t1 because it has gathered a plurality. 
Later anti-entropy sessions move the votes back to 
sB and sA, which also reach the same commit deci-
sion.  

Meanwhile, sD has created a conflicting transac-
tion t4. Eventually, sD learns of t1 and aborts t4. It is 
irrelevant that t4 is actually created after t1 has been 
committed elsewhere in the system.  

Note that this example differs slightly from the 
real system in that anti-entropy targets are actually 
chosen randomly, and that a tie-breaking procedure 
would allow sB to commit before talking to sC.  

3. External threats 

We define an external security threat as one that is 
posed by a principal that has not been authenticated 
into the system. We first discuss authentication, and 
then integrity and privacy. A principal is authenti-
cated into the system by identifying itself to a cer-
tificate authority (CA), which responds with an ac-
cess certificate that specifies the principal’s rights in 
the system. Certificates may provide either read or 
read/write permission for a given database, and may 
contain a timestamp that delimits the certificate’s 
lifetime. Since a certificate is signed by the CA, any 
server with the CA’s public key can verify that the 
certificate is valid, and certificates can not be 
forged. Note that we assume a priori that all servers 
trust the CA, and know the CA’s public key. 

Access certificates are checked in three situa-
tions. A server requesting an initial copy of the DB 
must present a read certificate. A server performing 
its periodic pull of information from another server 
must at least provide a read certificate. Finally, 
servers will not vote for a new transaction unless it 
is accompanied by a valid read/write certificate 
from the transaction’s creator.  

A CA represents a single point of failure in a 
system that is otherwise completely decentralized. 
However, this bottleneck only affects one-time au-
thentication into the system. The CA is afterwards 
not needed to arbitrate even between servers that 
come into contact for the first time. For example, 
consider three salesmen who meet for the first time 
on a train and wish to collaborate on a pre-existing 
document, setting up a local ad hoc network in order 
to communicate among themselves. The salesmen 
do not have to have contact with a CA in order to 
start collaborating. On the other hand, if only one of 
the salesmen initially has a copy of the data, the 

A B C D
25% 25% 25% 25%

com
m

it

com
m

it

v(C)=t1

v(B,C)=t1

com
m

it

com
m

it

v(C)=t1

v(B,C)=t1

com
m

it / abort

v(A,B,C)=t1

create(t4)

com
m

it / abort

v(A,B,C)=t1

create(t4)

com
m

it

v(A)=t1

v(A,B)=t1

create(t1)

com
m

it

v(A)=t1

v(A,B)=t1

create(t1)

 
Figure 4: Update commitment 



 

others cannot make copies unless they already have 
certificates, or are currently connected to the CA.  

We solve this problem by allowing the CA to is-
sue ticket-granting tickets (TGT), analogously to 
Kerberos. A TGT gives the bearer a limited ability 
to make and grant new certificates for resources and 
properties. In our architecture, use of a TGT re-
quires direct confirmation from the user. Note the 
TGT’s can be used to generalize the system to in-
clude a hierarchy of CA’s. This not only provides 
load-balancing for access to the CA’s, but increases 
the chances that a CA is available when needed. 

We allow certificates to be revoked via the issue 
of a certificate revocation list (CRL) from the pri-
mary CA. This presents problems because Deno 
servers have no notion of simultaneity, unlike secure 
multicast trees and other analogous systems. In 
other words, given that a CRL has been issued, 
when are revoked certificates guaranteed to be de-
nied? We solve this problem by casting the issue of 
a CRL as just another update transaction. The CRL 
update competes with other transactions to win an 
election. Once the CRL update has been committed, 
we can guarantee that no subsequent update will be 
committed with the aid of a vote authenticated by a 
revoked certificate. A secondary advantage of cast-
ing the CRL issue as an update is that it guarantees 
quick dissemination. Otherwise, knowledge of the 
CRL might disseminate quite slowly because the 
CA is not consulted during the normal course of 
events. 

3.1 Integrity and privacy 
Figure 5 shows Deno’s approach to providing both 
integrity and privacy guarantees for communicated 
data. Note that this method is very similar to the 

method used in PGP. Integrity is provided by ap-
pending a message authentication code (MAC) to 
each message, in this case the MD5 hash of the 
message signed by encrypting with the source’s pri-
vate key. Privacy is provided by encrypting the 
message and the MAC with a randomly generated, 
one-time session key. The session key is then en-
crypted with the destination’s public key, and the 
concatenation of the encrypted session key, MAC, 
and message are sent to the destination. 

The use of peer-to-peer one-time session keys1 
allows us to avoid the key changing problem in-
curred by secure multicast trees. Secure multicast 
trees generally use a single session key for the entire 
group. Any change in group membership requires 
the session key to be changed. The key must be 
changed when s1 is added to the group because we 
do not want s1 to be able to read messages that were 
sent prior to its joining (we assume that s1 might 
have recorded prior encrypted messages even 
though it could not read them). Similarly, the key 
should be changed when s1 leaves the group because 
we do not want s1 to be able to read messages that 
are sent after it leaves the group. A similar need 
could exist in a Deno replication group, but is 
avoided by the use of peer-to-peer session keys. 

4. Internal threats 

In this section, we consider internal threats — 
threats that result from authenticated but malicious 
servers.  Such malicious insiders misrepresent pro-
tocol-specific information, and can cause potentially 
corrupt objects to propagate throughout the network. 

                                                           
1 Note that these peer-to-peer keys need not be one time; instead 
they may be cached and re-used later.  
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Under certain circumstances, even a single mali-
cious insider with arbitrarily small amount of cur-
rency can cause different transactions to be commit-
ted at different nodes.  We begin with a discussion 
of the set of malicious actions a node can undertake. 

4.1 Malicious actions 
Before we classify the actions a malicious intruder 
can take, we should note that malicious nodes can 
always commit arbitrary transactions to their local 
databases without even advertising the transaction to 
other nodes. Malicious servers can also remain 
within the protocol framework and issue updates 
that obscure or undo the effects of other updates. 
This type of behavior must be handled in an applica-
tion-specific manner and is beyond the scope of this 
work. The goal of this section is to classify and 
mitigate the damage malicious nodes can inflict on 
other nodes. Malicious servers can only corrupt the 
view of other nodes by incorrectly reporting votes 
from other servers, or incorrectly reporting its own 
votes. 

Under certain circumstances, a denial-of-service 
attack can be accomplished by even one malicious 
server refusing to vote its currency. This is handled 
by the normal currency revocation mechanism that 
is used to recover from failed servers [14]. 

4.1.1 Currency misrepresentation 
The problem here is of a server misrepresenting the 
amount of currency it has available to vote in an 
election. This is possible because the system uses 
peer-to-peer currency exchanges to migrate cur-
rency allocations towards a target distribution2. A 
peer-to-peer exchange is used by two servers to re-
allocate their currency between them. This is a local 
operation, and cannot be directly verified by other 
servers. 

We make this operation secure by requiring 
each currency exchange to be formalized as an up-
date. A “gift” from si to sj is only considered com-
plete when an “exchange update” has been commit-
ted. Note that such updates are commutative with 
respect to all other updates and are therefore com-
mitted more quickly than ordinary updates. 

                                                           
2 It is not generally possible for the initial allocation to result in 
a uniform distribution unless complete information about the set 
of servers is known a priori [14]. Even if this were true, it is 
often desirable to change the distribution to respond to dynami-
cally changing conditions. 

4.1.2 Vote misrepresentation 
There are two types of vote misrepresentation: In 
the first case, a malicious server sm misrepresents or 
forges some other server si’s vote to a third server sj.  
This can happen when si and sj are connected 
through sm, si reports its vote to sm and sm forges this 
vote and reports a different vote for si to sj. This 
type of malicious behavior can easily be prevented 
by requiring each server to sign its votes using a 
suitable digital signature technique. The worst a ma-
licious server can do then is to never report si’s vote 
to sj. Since Deno does not impose any specific con-
nectivity requirements, this behavior will only delay 
committing of transactions and will not affect cor-
rectness. 

The second vote misrepresentation is more dif-
ficult to guard against and can quite easily be used 
to violate all correctness guarantees. In this case, a 
server (possibly signs) and illegally votes its own 
currency more than once for multiple transactions. 
Consider the example shown in Figure 6. Assume 
that server si is malicious. If si tells sj that it votes 
for x, and sk that it votes for y, then both destinations 
reach the conclusion that their candidates have more 
than 50% of the vote and can be committed. Further, 
secure signed votes do not help in this case since si 
can properly sign its own vote for any transaction. 
In the rest of this section, we investigate approaches 
to detecting such malicious nodes, and develop an 
algorithm that guarantees correctness at all non-
malicious nodes.  

v(si) = x

si

v(sk) = y
|sk| = .5 -ε/2

v(sj) = x
|sj| = .5 -ε/2

|si| = ε

v(si) = y

sj sk

 
Figure 6: By telling sj and sk different votes, 
si can cause them to commit conflicting up-
dates. |s| is the currency held by s. 



 

4.1.3 Approaches for handling internal threats 
We present a new algorithm that (a) guarantees cor-
rectness and (b) allows progress under contention 
even when not all votes have been reported. We first 
develop a version that is parametric in the number 
of malicious servers in the system. In Section 5.2, 
we describe an extremely efficient probabilistic 
counterpart that also accepts the probability of a 
vote being forged as a parameter. 

4.1.4 Algorithm description 
Our approach hinges on the following key observa-
tion:  

Up to k malicious servers can be kept from 
corrupting an election if the k largest un-
validated votes are not used in any commit 
decision. 

Consider the following example: if there is a 
single malicious server, then any single vote may be 
a duplicate. For a given transaction, a server accu-
mulates a set of validated votes and a set of unvali-
dated votes. The server can commit the transaction 
if the transaction can obtain plurality without count-
ing the largest unvalidated vote for that transaction. 
More precisely, the transaction must have a plurality 
even if its largest unvalidated vote is cast for any 
other transaction. This follows since (i) validated 
votes cannot be duplicates and (ii) of the unvali-
dated votes, at worst the largest unvalidated vote 
may be a duplicate. Therefore, this worst case dupli-
cate vote cannot be counted towards the commit 
decision at this node but instead must be thought of 
as a duplicate and given to the best known compet-
ing transaction. 

Formally, let votes(ti) denote the set of votes for 
transaction i. In general, votes(ti) consists of vali-
dated votes and unvalidated votes. We denote the 
set of validated votes for ti by valid(ti) and the set of 
unvalidated votes by unvalid(ti), respectively. Note 
that we consider votes by the local server to be vali-
dated votes. We denote the currency of any vote v in 
votes(ti) by |v|. Similarly, we denote the total cur-
rency for a set S of votes by |S|, e.g., |votes(ti)| de-
notes the total currency of all votes for transaction 
ti.. Let top(ti) be the element with the largest cur-
rency in unvalid(ti).  

If we consider all votes in the base Deno system to 
be validated, then the base commit criteria for trans-
action ti can be stated as in the top row of Table 1, 
where unknown is defined as 1 - ∑∀ k≠i,j  |votes(tk)|. 

In order to provide resilience against a single 
malicious server, this base commit criteria is gener-
alized as in the second row of Table 2. Thus, the 
number of votes required to commit a transaction ti 
must be larger than votes for any other transaction tj 
even if the largest (unvalidated) vote for ti is voted 
for any other transaction tj. This technique general-
izes to an arbitrary number of malicious servers. If 
the server knows of no other transactions tj, but it 
has not yet seen votes from all other nodes, then it 
simply assumes all unknown votes are cast for some 
other transaction (analogous to the quantity un-
known in the base commit criteria). For k malicious 
servers, top(ti) simply needs to be re-defined as the 
set of votes with k largest currency shares in un-
valid(ti). Note that this criteria is equivalent to the 
base commit criteria if we set k equal to zero, which 
case top(ti) is the null set. 

In order to validate a vote for transaction tx from 
a server sj, a server si must ensure that all other serv-
ers in the system have seen the same vote. Thus, for 
each election, server si must collect receipts of the 
vote cast by sj to all other servers. A receipt of 
server sj’s vote for election n from server sk is a 
statement of the form “Server sj votes for transac-
tion tx in election n”, securely signed by server sk 
using an appropriate digital signature. Server si con-
siders a particular vote valid if and only if it has re-
ceived receipts for that vote from all other servers in 
the system or if the vote is cast by server si itself. In 
order to validate a vote, a server si does not need to 
establish a peer-to-peer connection with all other 
servers in the system — instead, receipts for votes 
from any server can be forwarded by any other 
server in the system. Since the receipts are protected 
by strong cryptographic primitives, even malicious 
servers will not be able to alter the contents of the 
receipt. Malicious servers may corrupt or discard 
receipts: corrupt receipts will be detected by the 
server validating the receipt, while discarded re-
ceipts will be treated as any lost message. In the 
worst case, malicious servers may able to affect the 

                  |votes(ti)| > |votes(tj)| + unknown, j i∀ ≠  insecure system 

|valid(ti)|+|unvalid(ti)| - |top(ti)| > |votes(tj)| + |top(ti)| + unknown, j i∀ ≠  secure system 

Table 1: Commit criteria 



 

liveness properties of the algorithm, but once again, 
we have been able to restore the safety guarantees3.  

4.1.5 Examples and discussion  
In this section, we illustrate, via a set of examples, 
some of the more subtle properties of the secure plu-
rality algorithm. We begin with a simple example of 
applying the secure protocol to the three server case 
shown in Figure 6. We had shown earlier that if 
server si is malicious, in the base protocol, under 
appropriate circumstances, it could cause the com-
mitted views of servers sx and sy to diverge arbitrar-
ily far even if it held arbitrarily small amount of 
currency in the system.  Now we show that even if 
server si is malicious and holds arbitrarily large 
amounts of currency in the system, it cannot cause a 
single incorrect commit at either servers sx or sy, as 
long as servers sx and sy operate under the assump-
tion that there are malicious servers in the system. 
Assume si holds an arbitrary amount (say a < 1) of 
currency.  Once again, assume the rest of the cur-
rency is distributed equally between servers sx and sy 

(the analysis for the other cases are analogous and is 
omitted for brevity). 

Consider the scenario when both servers sx and 
sy are trying to commit different transactions t1 and 
t2, respectively. Assume server si tells server sx that 
it votes for transaction t1: this would be enough un-
der the base commit criteria for server sx to commit. 
But under the new commit criteria, server sx consid-
ers its local votes as validated, but the quantity 
|unvalid(t1)| - |top(t1)| is zero since there is only one 
other vote and it is unvalidated. The commit criteria 
is not satisfied and server sx must delay committing 
its transaction till it receives a receipt for server si’s 
vote from server sy. Transactions can, therefore, be 
committed if and only if server si votes consistently 
and correctly. 

In the following examples, assume the secure 
commit criteria is used with the assumption that 
there is at most one malicious server in the system. 
The first example shows that even under contention 
(i.e. when there are more than one transaction vying 
for the same election), the commit criteria does not 
                                                           
3 Note that we stated that we wanted to provide absolute, non-
probabilistic, guarantees.  Our scheme relies on the integrity of 
the digital signature:  any digital signature scheme has a prob-
ability of failure at least inversely proportional the size of the 
key-space from which the encrypting and decrypting keys are 
chosen (exploited via a brute-force attack).  Thus, more pre-
cisely,  our scheme is provides guarantees only as strong as 
underlying digital signature scheme. 

necessarily require any votes to be validated before 
a transaction is committed. 
Example 1:  Assume five servers (s1, s2,…, s5)  in 

the system, each holding equal (0.2) currency, and 
the following votes: 

V1={<s1, t1>, <s2, t1>, <s3, t1>, <s4, t1>,<s5,t2} 
In terms of the new commit criteria: 

|votes(t1)| = 0.8,  
|valid(t1)| = 0.2 (local vote),  
|unvalid(t1)| = 0.6, and  
|top(t1)| = 0.2.   

In this case, s1 can commit transaction t1 without 
validating a single vote! 

The second example shows that even when valida-
tion of at least one vote is necessary, it is not neces-
sarily the case that all votes have to be validated. 

Example 2:  Assume servers s1-s4 have currency 0.2, 
0.4, 0.2, and 0.2, respectively. Votes at s1 are: 

V1={<s1, t1>, <s2, t1>, <s3, t1>, <s4, t2>} 
In terms of the new commit criteria: 

|votes(t1)| = 0.8,  
|valid(t1)| = 0.2 (local vote),  
|unvalid(t1)|= 0.6, and  
|top(t1)| = 0.4.   

s1 can not commit t1 because: 
|valid|+|unvalid|-|top| = 0.4, whereas  
|votes(t2)|+|top(t1)| = 0.6.  

Validating s3’s vote would have no immediate util-
ity. However, if s2’s vote were validated instead, 
the commit could take place. 

As can be seen from the secure commit criteria in 
Table 1, validating a vote can only have an immedi-
ate effect on a commit decision if it affects |top(t1)|. 
Validating s2’s vote had such an effect; validating 
s3’s did not. 

5. Performance evaluation 

This section describes the performance of the Deno 
prototype. We performed the experiments on a 16 
node Linux cluster with each node running a copy 
of the Deno server. Each node is contains two 400 
MHz Pentium II processors and 256 MBytes of 
RAM. However, none of the results presented below 
consume all of a machine’s resources. We intention-
ally set our communication rates low in order to re-
flect the constraints of our expected environment. 
Instead, our performance evaluation concentrates on 
relative performance by comparing the convergence 
rates of representative protocols.  



 

The machines were connected via a dedicated 
100Mbps Ethernet network and the Deno servers 
communicated using UDP. In order to concentrate 
on the convergence speed of the protocols, we used 
a small database consisting of 100 data objects of 
size 20K each. Each Deno server periodically initi-
ates a synchronization session (with a given syn-
chronization period of 5.0 secs) by sending a pull 
request to another randomly selected Deno server.  

Each server generated transactions according to 
a global transaction rate (specified relative to a syn-
chronization period). Each transaction accessed and 
modified up to five data items. Currency is uni-
formly distributed across servers except as noted. 
All objects are replicated at all servers. The main 
parameters and settings used in the experiments are 
summarized in Table 2.  

The results presented in the following plots are 
the average of at least five independent runs of exe-
cuting 1000 transactions in the system. The contri-
butions of the first 50 transactions are excluded to 
account to eliminate system warm-up effects. The 
bandwidth requirements for transactional and con-
sistency data were negligible compared to that re-
quired for propagating updated values, so we do not 
consider this question further. 

For context, we also show the performance of a 
second scheme, write-all, which is a “Read-

One, Write-All” (ROWA) [16] protocol modeling 
the best other transactional epidemic protocol in the 
literature. This protocol can only commit transac-
tions after ensuring that all other servers are ready to 
commit. Therefore, a transaction has to be propa-
gated to all the servers before it can be committed. 
Furthermore, when a server receives conflicting 
transactions, it has to abort all of those transactions 
in order to ensure global consistency. A similar epi-
demic ROWA protocol was proposed by Agrawal et 
al. [17]. 

5.1.1 Performance Metrics 
The primary performance metric we consider is av-
erage commit delay, which denotes the time be-
tween the initiation of a transaction and average the 
of the times at which it is committed by individual 
servers in the system.  As a measure of scalability, 
we report the change in commit delay as the number 
of  nodes in the system change. As a measure of 
robustness, we measure commit delay as the cur-
rency distribution in the system becomes non-
uniform.  In each case, we consider the efficacy of 
our algorithm by varying the number of malicious 
servers and where applicable, compare our results to 
the Write-all scheme. 

5.1.2 Commit delays vs .malicious nodes 
Figure 7 shows the average commit delays for the 
Deno protocol versus the number of tolerated mali-
cious servers. The x-axis is the average number of 
transactions generated per server, per second, for 
16-node runs. The y-axis shows the commit delay, 
normalized to the anti-entropy period. For compari-
son, we also include the average commit delay for 
the write-all scheme [16]. Note that commit delay 
actually goes down for the default case (no mali-
cious servers). This is because additional transac-
tions in the system, in essence, gather votes for a 
given election in parallel. 

The result shows the following key points: the 
extra checks added to verify against duplicate votes 
increase the average commit time by about 50% for 

Parameter Description Setting 
Synch Period Mean synchronization period (uniform) 0 – 5  (secs) 
Transaction Rate Mean transaction generation rate (uniform) 0 – 25 (trans/synch period) 
Num Servers Number of Deno servers 3 – 15 
Trans Size Number of items updated by a transaction (uniform) 0 - 5  
Commutativity Ratio The probability that a transaction is acceptable on a given db state 0 – 1 

Table 2: Primary experimental parameters and settings 
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Figure 7: ACD vs. transaction rate 



 

low transaction rates, and by a factor of 2 for high 
transaction rates.  

However, even the secure Deno protocols per-
form significantly better than the Write-All scheme.  
Further, the number of rounds required to validate 
votes is relatively independent of the number of ma-
licious servers and the transaction generation rate.  
A detailed look at our raw data revealed that the vast 
majority of transactions that require at least one 
validated vote ended up validating all of the votes 
due to the exponential increase in the amount of in-
formation passed in each round of the epidemic up-
date. Thus, once we incur the overhead of validating 
a single vote to guard against a single malicious 
server, the additional cost of guarding against any 
number of malicious servers is low. This explains 
why the commit delay does not significantly in-
crease as the number of malicious insiders is in-
creased from one to four.  In fact, when we repeated 
this experiment with transaction rate equal to 0.8 
and with the protocol guarding against the maxi-
mum number of malicious servers (15 in the 16 
node case), we found the average commit delay to 
be about 16 rounds, within 1 round of the commit 
delay for guarding against a single malicious node. 

In order to quantify the overhead of the internal 
security we computed the fraction of transactions 
that require at least one validated vote to commit.   
Intuitively, we expect this fraction to increase with 
the transaction generation rate and with the number 
of malicious nodes to guard against.  In Figure 8 we 
plot the fraction of transactions in the system that at 
commit time had gathered at least one validated vote 
against increasing transaction rate. This metric is 
easier to measure and is a good upper bound on the 
number of transactions that require validated votes. 

This upper bound is loose, (within 10% in our test 
cases).  Note that even under relatively heavy trans-
action rates, only about 50% of the committed 
transactions required validated votes. 

5.1.3 Scalability 
Figure 9 shows the change in commit delays as the 
number of nodes in the system is varied from 4 to 
16.  The transaction generation rate was fixed at 0.5.  
For this moderate transaction rate, adding the secu-
rity increased the average commit delay by less than 
three rounds of communication. As is evident from 
the plot, the Write-all Scheme does not scale nearly 
as well. By contrast, the support for malicious serv-
ers does not hurt scalability at all. In fact, if there is 
any trend at all in the relationship between the runs 
with malicious servers and those without, it is that 
they are converging. Our future work will certainly 
include verifying this trend for more servers. 

5.2 Improving on public-key signatures  
The specific requirements for securing a vote and a 
vote receipt are as follows: 
1. There must be enough information in each vote 

to authenticate the sender, 
2. The authentication scheme must be non-

repudiable, and 
3. The messages must contain a strong message 

integrity check. 

Public-key digital signatures provide all the primi-
tives required to implement these three require-
ments. Individually signing a large number of votes 
and receipts using a conventional digital signature 
scheme such as RSA can be computationally pro-
hibitive. Instead, any set of votes and receipts can be 
signed together as a single message.   
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Figure 8: Upper bound on percent of commits 
that need at least one validated vote. 
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In order to quantify the overhead of our pro-
posed additions to Deno, we experimented with the 
execution times for signing a 16 byte hash code us-
ing 512 bit keys using the RSAref library from RSA 
Security Inc4. On a 440 MHz UltraSparc-IIi proces-
sor running Solaris 2.6, in single user, highest prior-
ity mode, producing the signature takes on average 
about 328 milliseconds (code compiled using the 
Sun WorkshopPro version 5.0 compiler). Thus, even 
if a large number of votes are signed in aggregate, 
public-key digital signature schemes can have a 
relatively high computational overhead, especially if 
regular RSA signatures are used on the typical small 
hand-held devices on which Deno may be used. In 
the next section, we show how to use a secure mul-
ticast technique described by Canetti et. al. in [18] 
to replace the digital signature authentication with 
message authentication codes (MACs).  

5.2.1 Probabilistic Version 
A MAC takes a secret key and a message (or a mes-
sage hash) and generates an unforgeable value. The 
basic idea behind the probabilistic scheme is the 
following. Each sender is given a set of l “send 
keys”. The sender authenticates a message by first 
creating a hash of the message using a secure hash 
algorithm, e.g., MD5.  The sender then creates l 
keyed-MACs of the original hash by using its l send 
keys.   (A keyed-MAC is computed by computing a 
hash of the message appended with a key). The 
server transmits the original message and all l 
keyed-MACs.   

Each receiver su has a subset of the send keys: 
Ru. The receiver verifies the message by computing 
MACs of the hash for each key in Ru and comparing 
the results with the MACs that were appended to the 
message. A message can only be forged if the forger 
clique knows all of the keys in Ru; the probability of 
this occurring is one of the base parameters in the 
protocol and can be set to any value. 

Given l keys and w malicious nodes, using the 
analysis given in [18], it can be shown that the value 
of q, the probability of failure is: 

 1 1
1 1

1 1

lw

w w

  − −   + +  
. 

In our case, the Deno servers are both senders 
are receivers.  All votes and receipts are messages 
that have to be signed.  Consider the case when we 

                                                           
4 See http://www.rsa.com 

are willing to tolerate one malicious server, and a 
probability of 1/1000 that messages can be forged. 
The number of primary keys, l, required is 25, and 
the resulting system would required 78 microsec-
onds to generate all the MACs (once again on the 
440 MHz UltraSparc machine using the same com-
piler).  Thus, in this case, the MAC-based scheme is 
4200 times as fast as a public-key signature system.  
We should note that in this case, each message 
would have to carry approximately 450 bytes of ex-
tra signature information not present in public-key 
signatures. The number of keys required to reduce 
the probability of forgery down to 1 in 10, 000 is 33. 
The results for withstanding more malicious servers 
is similar:  for four malicious servers and the prob-
ability of forgery equal to 1 in 10, 1000, 108 MACs 
would need to be generated. This computation takes 
340 microseconds (964 times faster than public-key 
signatures) and would add about 2000 bytes of extra 
key-information to each message.  

6. Related work 

The work related to this paper falls into two distinct 
categories: weakly-connected transactional systems 
and security for groups and elections. Many existing 
asynchronous “update-anywhere” protocols use the 
epidemic model [7, 9, 10, 17, 19, 20]. Many epi-
demic systems take an optimistic approach and use 
reconciliation-based protocols (e.g., Ficus [20], Lo-
tus Notes [7]) that are only viable in non-
transactional single-item domains.  

Bayou [10] takes a more pessimistic approach 
and ensures that all committed updates are serialized 
in the same order at all servers using a primary-copy 
scheme. As mentioned before, Agrawal et al. [17] 
proposed a pessimistic “Read-One, Write-All” 
(ROWA) [16] approach that was the first epidemic 
protocol to ensure strong consistency and serializa-
bility. This protocol allows a transaction to commit 
only after all servers “certify” the transaction. Our 
protocols differ from these protocols primarily in 
using a novel combination of weighted-voting and 
epidemic information flow [9] to improve availabil-
ity and performance. Bayou protects against exter-
nal threats using authentication and access control 
certificates.   

The security protocols described here are related 
to traditional security in group communication pro-
tocols. Prior work in securing group communication 
protocols can also be divided into schemes that can 
withstand external threats only and schemes that are 



 

able to withstand some internal threats. Ensem-
ble[21] is the third-generation of group communica-
tion protocols from Cornell University and is a fol-
low-up to the Horus [22] system.  Ensemble is de-
signed to be secure against external threats [23] and 
uses similar public-key mechanisms as Deno. En-
semble assumes internal threats do not exist, and 
defines protocols to handle security properties for 
multiple partitions of the group.  Due to its reliance 
on an underlying atomic multicast protocol, Ensem-
ble has to provide mechanisms for multicast group 
re-keying. Due to the epidemic nature of Deno’s 
communication structure, we can completely ignore 
such key management [24] and rekeying [25] issues 
that are inherent to secure multicasting in wide-area 
networks. 

The Rampart system [26] is also layered atop 
the atomic reliable multicast primitive. However, 
unlike Horus or Ensemble, Rampart is secure 
against external and internal threats.  In [26], a pro-
tocol for reliable and atomic multicast is presented 
that is resilient of Byzantine attacks by at most one 
third of all the nodes the system.  This protocol re-
quires much stronger connectivity and reliable mul-
ticast primitives than is required by Deno.  How-
ever, since Rampart is able to withstand all manner 
of Byzantine behavior, the liveness of the system is 
not affected by malicious nodes try to mount a de-
nial-of-service attack by not responding to protocol 
requests.  As mentioned before, the Deno counter-
measure in this situation is to treat the non-
responsive servers as failed than to revoke currency 
as explained in servers [14]. 

Our work is different from existing secure vot-
ing protocols in two major ways.  By design, many 
existing secure voting protocols provide voter pri-
vacy and rely on a small number of central facilities 
for counting votes [27, 28]. In Deno, voter privacy 
is not an issue and the weakly connected nature of 
the underlying network makes reliance on central 
authorities untenable. 

7. Conclusions 

We have presented a complete infrastructure for 
protecting a highly-available, decentralized replica-
tion system against attacks, both external and inter-
nal. External attacks refer to those by entities that 
have not been authenticated into the system. This 
class of attack  is prevented using traditional public-
key techniques. 

Internal attacks are much more interesting. An 
internal attack refers to one in which an entity has 
been authenticated into the system, and then tries to 
subvert the protocol by misrepresenting others’ 
votes or lying about its own. The former case can 
also be handled by public-key signatures. The latter 
case, however, can only be addressed by modifying 
the transaction commit criteria to take the “trust” 
level of votes into account.  

Our results that show that this modification of 
the commit criteria, while potentially expensive, still 
results in much more efficient transaction commits 
that the best competing approach from the literature. 
Our results also suggest that, far from hurting sys-
tem scalability, the effect of the security modifica-
tions on system performance actually diminishes 
with increasing system size.  

Finally, we show that a technique originally 
proposed for the secure multicast domain can be 
used to replace use of digital signatures with mes-
sage hashes throughout our infrastructure. This re-
placement reduces the overhead of digital signatures 
in our system by at least a factor of 1000. 
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