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Abstract 

Streaming multimedia content with UDP has become 
increasingly popular over distributed systems such as the 
Internet. However, because UDP does not possess any 
congestion-control mechanism and most best-efort trafic is 
served by the congestion-controlled TCe UDP flows steal 
bandwidth from TCP to the point that TCPJEows can starve 
for network resources. Furthermore, such applications 
may cause the Internet infrastructure to eventually suffer 
from congestion collapse because UDP trafic does not self- 
regulate itsel$ To address this problem, next-generation 
Internet routers will implement active queue-management 
schemes to punish malicious trafic, e.g., non-adaptive UDP 
flows, and to the improve the performance of congestion- 
controlled tra$c, e.g., TCP JEows. The arrival of such 
routers will cripple the performance of today's UDP-based 
multimedia applications. 

So, in this paper, we introduce the notion of inter-packet 
spacing with control feedback to enable these UDP-based 
applications to perform well in the next-generation Inter- 

'This work was supported by the US. Dept. of Energy through Los 
Alamos National Laboratory contract W-7405-ENG-36, by the U.S. Dept. 
of Energy LDRD-ER Grant 2000023, and the Los Alamos Computer Sci- 
ence Institute. Any opinions, findings, and conclusions, or recomrnenda- 
tions expressed in this material are those of the author(s) and do not neces- 
sarily reflect the views of the U.S. Dept. of Energy, Los Alamos National 
Laboratory, or the Los Alamos Computer Science Institute. 

net while being adaptive and self-regulating. When com- 
pared with traditional UDP-based multimedia streaming, 
we illustrate that our counterintuitive, interpacket-spacing 
scheme with control feedback can reduce packet loss by 
90% without adversely affecting delivered throughput. 

Keywords: network protocol, multimedia, packet spacing, 
rate-adjusting congestion control. 

1 Introduction 

The ability of the Internet to support multimedia ap- 
plications such as Realplayer [17, 181 and Microsoft 
NetShow [ 131 will become increasingly difficult because 
these applications' unresponsiveness to network congestion 
places unfair demands on the network, particularly in light 
of an exponentially increasing volume of traffic. These ap- 
plications generally blast UDP packets across a network 
at the expense of applications using TCP. Active queue- 
management schemes [3, 10, 5 ,  6, 161 for routers are be- 
ing proposed to punish these non-adaptive applications by 
dropping the packets from their flows to ensure that well- 
behaved TCP applications do not starve for network re- 
sources. Consequently, the performance of multimedia ap- 
plications will be crippled, thus providing the impetus for 
our work - an interpacket-spacing scheme with control 
feedback, layered on top of UDP, that can be used by multi- 
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z media applications to achieve good performance in the pres- 
ence of active queue management. 

1.1 Insight 

Based on our recent work in network traffic characteri- 
zation [24, 7, 81, we observed significant packet loss even 
when the offered load was less than half of the available 
network bandwidth. An analysis of our ns [ 13 simulations 
revealed that this behavior was due to simultaneous bursts 
of traffic coming from client applications and overflowing 
the buffer space in the bottleneck router. Metaphorically, 
this could be viewed as what happens at a major highway 
interchange during rush hour where everyone wants to go 
home simultaneously at 5:OO p m . ,  thus “overflowing” the 
highway interchange. To avoid such a situation, some peo- 
ple self-regulate themselves by heading home at a different 
time, i.e., spacing themselves out from other people. 

If we view vehicles as packets and the highway inter- 
change as a router, then to avoid buffer overflow and en- 
hance throughput, packets should not be blasted onto the 
network one after another. Instead, packets should be 
spaced out over time. To test this hypothesis, we ran live 
wide-area network (WAN) tests between Los Alamos Na- 
tional Laboratory (LANL), University of Illinois at Urbana- 
Champaign (UIUC), and Ohio State University (OSU). 
These tests consisted of sending UDP packets between 
LANL and either UIUC or OSU at different packet-spacing 
intervals. Figures 1 and 2 show the throughput and packet 
loss, respectively, of a representative test between LANL 
and UIUC [4]. When the packet spacing is zero, e.g., to- 
day’s UDP-based multimedia-streaming applications, the 
throughput is 62 Mb/s but with a packet loss of almost 90%! 
With as little as 100 ps of spacing between packets, the 
throughput remains the same, but the packet loss drops all 
the way down to 35%. And when the packet spacing is 50 
ps, the throughput is actually higher than when the packets 
are not spaced as in UDP-based multimedia streaming. 

All curves from our other live WAN tests have the same 
general shape. That is, the throughput initially increases 
when the amount of packet spacing increases and then de- 
creases exponentially as the amount of spacing increases 
further. The packet-loss percentage immediately decreases 
in an exponential manner as packet spacing increases. 

1.2 Related Work 

In 1997, Mahdavi and Floyd [12] informally proposed 
the notion of equation-based congestion control for unicast 
applications. While the “additive increase, multiplicative 
decrease” (AIMD) algorithm found in TCP backs off by 
cutting its sending rate in half in response to a single con- 
gestion indication, equation-based congestion control uses 
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Figure 2. Packet-Loss Percentage 

a control equation that more gradually and smoothly adapts 
its maximum rate because some real-time applications find 
that halving the sending rate is unnecessarily severe and can 
noticeably reduce the user-perceived quality [23]. Although 
the above work has given rise to a significant amount of 
research on equation-based and other types of congestion- 
control mechanisms [22, 20, 23, 15, 21, 91, we still do 
not have any deployable congestion-control mechanisms for 
best-effort streaming multimedia. 

Previous work in packet spacing includes [ 11,2]. In [ 111, 
Jain argues that rate-control protocols for congestion con- 
trol may not work without the cooperation of intermediate 
routers because packets may get clumped together at the 
intermediate routers anyway. This would result in larger 
bursts at the intermediate routers even though the goal may 
have been to reduce the burstiness of the traffic. While this 
may have been true a decade ago, we believe that the boom 



of the world-wide web and other multimedia applications 
creates enough interleaving traffic to maintain packet spac- 
ing between end hosts. We will substantiate this belief in 
Section 3.2.4. 

Aggarwal et al. [2] study the effect of uniform packet 
spacing (or “pacing”) over a round-trip time in TCP. While 
pacing results in better fairness, throughput, and lower drop 
rates in some cases, the throughput is worse than regular 
TCP most of the time because a paced-TCP is susceptible 
to synchronized losses and delays congestion notification. 
In contrast, we focus on the effects of packet spacing over 
UDP with control feedback rather than on TCP itself. 

In general, our packet-spacing protocol differs from the 
above work in several ways. First, rather than focus- 
ing primarily on being compatible or fair with TCP, our 
rate-adjusting protocol addresses fairness while simulta- 
neously delivering UDP-like bandwidth. Second, we ac- 
complish the above feat by introducing the counterintuitive 
notion of packet spacing. Third, rather than relying on 
equation-based congestion control to more smoothly adapt 
the sending rate, we allow the sending rate to adapt as 
needed (based on available network resources). We then 
rely on transcoding, e.g., mapping a multimedia stream onto 
rapidly-varying available bandwidth [ 191, to smooth out any 
potentially rapid change in available bandwidth. 

2 Approach 

Packet spacing refers to the delay introduced between 
two consecutive packets, as shown in Figure 3. Here, t ,  is 
the amount of spacing between packets, and t ,  is the trans- 
mission time for each packet. By introducing such a de- 
lay, bursts of packets can be spaced out, resulting in fewer 
packet drops at intermediate routers and potentially higher 
throughput at the end host, as shown back in Figure 1. Thus, 
packet spacing can potentially be used as a mechanism to 
assist in congestion avoidance and control. 

Based on Figure 1, the ideal operating region of our 
packet-spacing mechanism ranges from 50 ps to 500 ps. 
No packet spacing or packet spacing of less than 50 ps re- 
sults in very high packet loss with less delivered bandwidth 
than when the packet spacing is 50 ps. 

Depending on the application, the ideal packet-spacing 
range may be as small as 100 ps to 200 ps in order to get 
UDP-like bandwidth but with significantly less packet loss, 
e.g., at 200 ps, bandwidth is 50 Mb/s while packet loss is 
only lo%, or as large as 400 ps to 500 ps to obtain TCP-like 
reliability but with higher throughputs. To exploit this coun- 
terintuitive finding, we develop our packet-spacing protocol 
(PSP) to adjust the amount of packet spacing based on feed- 
back from the network.’ 

I We note that at the present time, the feedback is only used for adjusting 
the packet spacing and that no retransmissions are done at this time. 

Figure 3. Packet Spacing 

2.1 Packet-Spacing Protocol (PSP) 

In PSP, the sender transmits packets at the highest possi- 
ble rate, i.e., no inter-packet spacing, and the receiver sends 
acknowledgments every round-trip time (RTT) for the pack- 
ets it received. (This RTT is the base propagation-delay 
time, not the dynamic RTT. To keep the protocol simple, 
we did not experiment with dynamic RTTs.) 

We calculated the base RTT by performing ping during 
connection set-up.’ After the connection is established, the 
sender conveys the calculated RTT to the receiver by includ- 
ing it within the header of each packet. Note that this is not 
required after the first acknowledgment is received, but we 
have left this provision so that dynamic RTTs can be used 
in the future. Each acknowledgment contains the number of 
packets that were received in the prev’ious RTT. 

When the sender receives such acknowledgments, it 
compares the number of packets sent, psent ,  in the previous 
RTT to the number of packets received, prcvd. Based on 
the values of psent and prcwd, the sender adapts its packet 
spacing p s  as shown in Figure 4. 

if psent > prcwd (i.e., packets were lost) then 
/* sender must reduce its transmission rate */ 
ifps = 0 then 

else 
p s  t 50 ps 

p s  t rnin(ps * 2, RTT) 
else /* sender tries to increase its sending rate */ 

p s  t p s  - 2 

Figure 4. Packet-Spacing Protocol 

Because our WAN experiments and simulations showed 
that the ideal packet spacing occurred between 0 ps 
and 2000 ps, we chose an initial packet spacing of 50 ps 
because (1) anything smaller generated significantly higher 
packet loss with no benefit with respect to throughput 
and (2) finding the ideal packet spacing within this range 
quickly would take no more than seven RTTs. Larger spac- 

2A more sophisticated mechanism could be developed to get a better es- 
timate of the RTT. However, for the purposes of our experiments, we only 
needed a value that was reasonable enough to provide timely feedback. 



i ings can be reached in only a few more RTTs because the 
packet spacing increases exponentially. 

The p s  t rnin(ps * 2,RTT) clause ensures that the 
maximum packet spacing is one RTT. This ensures that at 
least one packet is sent every RTT. 

2.2 Damped Packet-Spacing Protocol 

Due to the opposing packet-spacing decisions in PSP, our 
initial tests of PSP resulted in large oscillations around the 
ideal sending rate. To prevent this, we added the following 
heuristic to damp the oscillations: I f a  loss occurred due 
to a deliberate decrease in the packet spacing (and conse- 
quently, increase in rate), then the sender reverts to the pre- 
vious packet-spacing value. Using this heuristic, the sender 
makes significantly smaller oscillations around the ideal op- 
erating point. Figure 5 shows a comparison between PSP 
and damped PSP. In this figure, each experiment was run 
for 100 s,  and the sending rate for each was plotted. With 
damping, the overall throughput increased by 10%. 
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Figure 5. Oscillation Damping 

3 Experiments 

For our WAN simulations, we used ns-2, which is a net- 
work simulator developed by the VINT group [ I]. We will 
refer to senders and receivers as agents, which follows nat- 
urally from the terminology employed by ns-2. Our simple 
packet-spacing agents (PSAs) implement packet spacing 
without feedback while our adaptive packet-spacing agents 
implement the damped PSP rather than the plain PSP. 

3.1 Architecture 

Figure 6 shows the network topology that we used in our 
experiments. The IC nodes on the left (nl,n2, . . . , n k )  sim- 

ulate senders on an Ethernet that are transmitting via a com- 
mon gateway router (e.g., LAN/WAN gateway or n,iddle) 
to a WAN backbone running at 155 Mb/s or OC-3. All the 
receivers are aggregated into the node n , ink .  The gateway 
router has a buffer size of 10 packets, lOO-Mb/s Ethernet 
links with 2-ms delays to the senders, and a 155-Mb/s link 
with 40-ms delay to the receivers. This delay is typical of 
the delay found in a transcontinental WAN connection. 
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Figure 6. Topology for WAN Simulations 

3.2 PSA Simulations 

Here we study the behavior of (1) a single PSA with no 
other traffic, (2) competing PSAs, and (3) PSAs competing 
with TCP agents. Like Mo et al. [I41 who compare TCP 
Reno and TCP Vegas using infinite file transfers, we use in- 
finite file transfers for the TCP connections as well. (For 
the figures in this section, each data point in the simulation 
graphs represents the result of a 500-s simulation for a par- 
ticular packet-spacing interval.) 

3.2.1 Single PSA 

Figure 7 shows the throughput for a single PSA for packet 
spacings between 0 ps and 5000 ps. (Note that there is 
no other traffic on the network besides that of the single 
PSA.) As expected, the sender and receiver throughputs are 
the same. This is because there is no other traffic on the 
channel, and therefore, no packet loss. 

3.2.2 Competing PSAs 

In this set of experiments, we ran simulations with 2, 4, 
8, and 16 PSAs competing against each other, respectively. 



- Figures 8 and 9 show the results for the last case. The re- 
sulting behavior is similar to what we observed in the actual 
WAN experiments (i.e., Figures 1 and 2). (Note that all the 
16 competing PSAs showed a similar behavior.) 

In Figures 8 and 9, the region of interest occurs be- 
tween 0 ps and 1000 ps. With a packet spacing of 0 ps, the 
sender throughput is 100 Mb/s while the receiver-realized 
throughput is only a measly 10 Mb/s with a packet loss of 
90%! As packet spacing increases, the packet-loss percent- 
age drops sharply, and the throughput at the receiver actu- 
ally increases to its maximum point at 1000 ps of inter- 
packet spacing. This phenomena is similar to what we 
found with our live WAN tests in Figures 1 and 2. 

3.2.3 

In these experiments, we ran simulations with 1 ,2 ,4 ,  8, and 
16 sendedreceiver TCP pairs and an equal number of PSA 
pairs, respectively. Figures 10 and 11 show the behavior of 
one particular PSA competing with 15 other PSAs and 16 
TCP connections. All other simulations resulted in simi- 
lar behavior. Again, we see that the behavior is strikingly 
similar to that seen in the actual WAN experiments. The op- 
timal performance of the PSAs with respect to throughput 
and packet loss occurs at 1000 ps to 1050 ps, i.e., through- 
put is 11 Mb/s while packet loss is 0%. 

Figures 12 and 13 show the throughput and packet- 
loss behavior of one particular TCP connection competing 
with 15 other TCPs and 16 PSAs, respectively. In these 
figures, we cannot help but notice that the TCP through- 
put does not increase beyond 2.7 Mb/s (even when the PSA 
throughput is low)! The reason for this behavior has noth- 
ing to do with the TCP-friendliness of our damped PSP and 
has everything to do with TCP's default advertised receiver 
window of 20 packets. This receiver's window size is the 
default in many operating systems and artificially limits the 
amount of outstanding data that a sender can have in the 
network. Further, the figures also show that with very small 
packet spacings, the PSAs operate like UDP connections (as 
expected), thus starving TCP connections of any bandwidth. 

Figures 14 and 15 show how TCP behaves with a win- 
dow large enough to keep a bandwidth-delay product's 
worth of information outstanding in the network. These fig- 
ures show that with sufficient spacing by the PSAs, a TCP 
connection can consume its share of available bandwidth. 
For example, Figures 10 and 14 illustrate that with 5000 ps 
of packet spacing, each PSA receiver sees 2.23 Mb/s while 
each TCP receiver gets 6.57 Mb/s. 

PSAs Competing with TCP Agents 

3.2.4 PSA Spacing at the Receiver 

To verify our claim that packet-spaced traffic stays spaced 
out by the time it reaches the receiver (rather than getting 
clumped as claimed by [ 1 l]), we recorded the inter-arrival 
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time of packets at one PSA receiver, using the same exper- 
imental set-up as described in Section 3.2.3. The sending 
PSAs used a spacing of 1500 ps; the resulting inter-packet 
spacings at the receiver averaged 1540.6 ps with a standard 
deviation of 64.75 ps. 
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3.3 Adaptive PSA Simulations 
- 

- Our adaptive PSAs implement the damped PSP, which 
tries to find the ideal packet spacing under varying net- 
work conditions. We first show the behavior of two adap- 
tive PSAs competing against each other and then with two 
additional TCP connections. As in Section 3.2, the TCP 
connections were that of infinite file transfers. 
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3.3.1 Competing Adaptive PSAs 

Figure 16 shows how the sending rate of an adaptive PSA 
varies with time. The adaptive PSA makes small oscilla- 
tions around the ideal sending rate. Figure 17 demonstrates 
that our adaptivePSAs are fair (when both are started simul- 
taneously) as both adaptive PSAs have sending rates that lie 
on the fairness line. 

Figure 18 shows us a portion of the fairness graph where 
one adaptive PSA started 10 seconds later than the other. 
As we can see, both adaptive PSAs change their rates in 
a fair manner and eventually make small oscillations about 
the ideal sending rate. 

- 

- 

- 

3.3.2 Competing Adaptive PSAs with Background 
Traffic 

In this simulation, we ran 10 TCP connections with infinite 
file transfers in the background and two adaptivePSAs com- 
peting in the foreground. Figure 19 shows that the adaptive 
PSAs respond readily to congestion. And again, both adap- 
tive PSAs have very similar sending rates. 

4 Conclusion 

Perhaps the most interesting result in this paper is that a 
receiver’s realizable throughput actually increases (up to a 
point) even when the sender’s transmission rate decreases. 
This result has dramatic implications on many of today’s 
multimedia applications that blast packets onto the network 
as fast as possible, i.e., no packet spacing. By slowing down 
the introduction of packets into the network, congestion is 
alleviated at the intermediate routers; this, in turn, results in 
a net increase in throughput. Thus, this work provides an 
incentive for multimedia provides not to blast UDP packets 
indiscriminately into the network. In addition, it provides 
motivation for the deployment of a packet-spaced protocol 
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that can deliver UDP-like performance yet still be respon- 
sive to competing connections. 

Our damped packet-spacing protocol (PSP), imple- 
mented via an adaptive PSA, sends data near its “optimal” 
sending rate by using a simple feedback mechanism that 
reports packet loss every RTT. This mechanism in turn con- 
trols the amount of packet spacing. Our preliminary results 
demonstrate that by introducing packet spacing to a multi- 
media stream, packet loss can be reduced dramatically with- 
out much loss in throughput. 

Future work includes examining the performance of our 
damped PSP with different types of application traffic. Of 
particular interest are those applications that generate data 
in short bursts with relatively large intervals between bursts. 
Based on the experimental results presented here, we expect 
that the packet loss that would normally be induced by these 
bursts to be greatly reduced. 
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