
A LIGHT-WEIGHT EVENT-DRIVEN PROTOCOL FOR SENSOR CLUSTERING IN
WIRELESS CAMERA NETWORKS

Henry Medeiros, Johnny Park and Avinash Kak

School of Electrical and Computer Engineering
Purdue University, West Lafayette, Indiana 47907-2035

{hmedeiro, jpark, kak}@purdue.edu

ABSTRACT

We propose a light-weight event-driven protocol for wireless camera
networks to allow for formation and propagation of clusters of cam-
eras for the purpose of collaborative processing during object track-
ing. Cluster formation is triggered by the detection of objects with
specific features. Our protocol allows for simultaneous formation
and propagation of multiple clusters. Cameras being directional de-
vices, more than one cluster may track a single object since groups of
cameras outside each others communication range may see the same
object. Entry into a cluster and cluster membership maintenance re-
quire a sensor node to confirm the presence of features of the object
being tracked. Each cluster elects its own leader among the cameras
that observe the same target. When a cluster leader loses track of an
object, it assigns the leadership role to another cluster member. To
avoid high communication overhead among cluster members, single-
hop clusters are formed, i.e., every member of a cluster is within the
communication range of the cluster head. We have implemented a
simple version of this protocol on a test-bed and provide an experi-
mental evaluation.

Index Terms— sensor clustering, object tracking, collaborative
processing

1. INTRODUCTION

Previous work on sensor clustering has focused primarily on extend-
ing the lifetime of a network by partitioning it into clusters to enable
data aggregation at a local level [1], [2]. When sensor networks are
used for event-driven applications (as opposed to environment moni-
toring applications), not all sensors provide useful information at the
same time. The goal in event-driven clustering is to select a subset
of sensors that maximize some information function that depends
on the position of the event source and on the characteristics of the
sensors. This function must be maximized while the cost related to
exchanging information among cluster members is minimized [3].

Most of the current event-driven clustering algorithms assume
that the distances between the sensors and the event-generating tar-
gets are somehow related to the information function mentioned
above. In wireless camera networks, however, the distance-based
criteria for sensor node clustering are not sufficient since, depend-
ing on their pointing directions, physically proximal cameras may
view segments of space that are disjointed and even far from one an-
other. What that means is that even when only a single object is being
tracked, a clustering algorithm must allow for the formation of mul-
tiple disjointed clusters of cameras for tracking the same object. One
of the primary contributions of our protocol is that it does allow for
the formation and propagation of multiple clusters. When needed,

the protocol also allows for clusters to coalesce into larger clusters
and for large clusters to fragment into smaller clusters. Coalescence
of clusters is made possible by the permitted overhearing of intra-
cluster communications as different clusters come into each other’s
communication range. Overhearing obviously implies inter-cluster
communication. It is important to note that inter-cluster communi-
cation can play a role in intra-cluster computation of a parameter
of the environment even when cluster merging is not an issue. For
example, a cluster composed of overhead cameras may request in-
formation about the z coordinate of the target from a neighboring
cluster composed of wall-mounted cameras.

Object tracking is the specific focus of the camera clustering pro-
tocol we present in this paper. Cluster formation is triggered by the
detection of object features that are keyed to specific objects. Our
protocol allows for simultaneous formation and propagation of mul-
tiple clusters and interaction between them. Each cluster uses sim-
ple selection rules to elect its own leader. When a cluster leader loses
track of an object, it assigns the leadership role to one of its members
that is in the best position to maintain a "lock" on the target object.

In order to test its practical feasibility, we implemented a simple
version of the protocol on a testbed consisting of 12 ceiling-mounted
Cyclops [4] cameras attached to micaZ motes. This camera network
was used to track a simple object scurrying around on the floor.

This paper is organized as follows. The next section presents
some of the related work on event-based cluster formation for collab-
orative processing. In section 3 we present an overview of our work
on cluster-based object tracking using wireless camera networks. In
section 4 we present the proposed clustering protocol. In section 5
we present our testbed implementation. Section 6 then presents the
experiments carried out using the testbed. Finally, in section 7, we
conclude and discuss possible future extension of our work.

2. RELATED WORK

Among the works that take into consideration external events in the
cluster formation process, Chen et al. [5] have proposed an al-
gorithm for distributed target tracking using acoustic information.
Their system is composed of sparsely placed high-capability nodes
and densely spaced low-end sensors. The high-capability nodes act
as cluster heads and the low-end sensors as cluster members. Cluster
heads close to the detected event become active with higher proba-
bility than cluster heads that are farther from the event. Similarly,
the probability that a cluster member sends data to the cluster head
is proportional to its distance to the event.

Fang et al. [6] have proposed a distributed aggregate management
(DAM) algorithm in which nodes that detect energy peaks become
cluster heads, and a tree of cluster members is formed by its neigh-

1-4244-1354-0/07/$25.00 c©2007 IEEE

Michelle
Typewritten Text

Michelle
Typewritten Text
First ACM/IEEE International Conference on
Distributed Smart Cameras, ICDSC '07.
Vienna, Austria, 25-28 Sept. 2007

(a)
(b)

Fig. 1. (a) Multiple clusters tracking the same object in a wireless
camera network. (b) Two single-hop clusters in a network of cam-
eras that can communicate in multiple hops. Blue (dark) circles rep-
resent cluster heads, green (light) circles represent cluster members.
The lines connecting the nodes correspond to communication links
among them.

bors that detect lower energy levels. When many targets lie within
the same cluster, Fang et al. use their energy-based activity monitor-
ing (EBAM) algorithm to count the number of targets. By assuming
a motion prediction model, they present a target-counting algorithm
in which, as targets approach each other, their corresponding clus-
ter heads exchange information and the clusters merge into a single
cluster.

In a previous contribution that is closely related to ours, Zhang
and Cao propose the dynamic convoy tree-based collaboration
(DCTC) [3] in which nodes that can detect an object create a tree
rooted at a node near the detected object. As the object moves, nodes
are added to and pruned from the tree and the root moves to nodes
closer to the object.

Blum et al. [7] have proposed a middleware architecture to allow
for distributed applications to communicate with groups of sensors
assigned to track multiple events in the environment. Their archi-
tecture is divided into two modules, the entity management module
(EMM) and the entity connection module (ECM). The EMM is re-
sponsible for creating unique groups of sensors to track each event,
to keep persistent identities to these groups, and to store information
about the state of the event. The ECM provides end-to-end commu-
nication among different groups of sensors.

3. OBJECT TRACKING WITH WIRELESS CAMERA
NETWORKS

Wireless camera networks allow for tracking of multiple objects
based on their unique visual features. To be able to track the tar-
gets robustly and precisely, resource-constrained wireless cameras
may need to collaborate to process information acquired from the
targets.

Clustering is a common technique for data aggregation and col-
laborative processing in wireless sensor networks. In object track-
ing applications, clusters are usually created to keep track of a spe-
cific target. Once a cluster is created to track an object, connections
among cluster members can be established to allow for collaborative
processing.

Clustering in wireless camera networks gives rise to issues not
present in networks of omnidirectional sensors. In a camera network,
different sensors tracking the same object are not necessarily close

(a) (b)

Fig. 2. Fragmentation of a single cluster. As the cluster head in (a)
leaves the cluster, it is fragmented into two clusters as illustrated in
(b).

to one another, thus clusters may be created in different regions of
the network to track the same object. An example is illustrated in
figure 1 (a) where, in spite of the fact that the cameras in cluster A
cannot communicate with the cameras in cluster B, both clusters of
cameras can track the object. Therefore, multiple clusters must be
allowed to track the same target.

Even if all the cameras that can detect a common object can com-
municate with one another in multiple hops, the communication
overhead involved in tracking the object using a large cluster may
be unacceptable as collaborative processing requires, in general, in-
tensive message exchange among the cluster members. Therefore,
rather than requiring a single large multi-hop cluster to track an ob-
ject, it is often desirable to have multiple single-hop clusters that
may interact as needed.

Dynamic cluster formation requires all cluster members to inter-
act to select a cluster head. There are many algorithms available
[8],[9] that could be used for electing a leader from amongst all the
cameras that are able to see the same object. But these algorithms
will not work for us since we must allow for the formation of mul-
tiple clusters (for reasons previously explained) and for the election
of a separate leader for each cluster. As illustrated in figure 1 (b),
whereas all the cameras that can see the same object may constitute
a connected graph if you allow for multiple-hop communications,
our protocol would require that two single-hop clusters be formed in
this case.

After clusters are created to track specific targets, these clusters
must be allowed to propagate through the network as the targets
move. Cluster propagation refers to the process of accepting new
members into the cluster as they identify the same object, removing
members that can no longer see the object, and assigning new clus-
ter heads as the current cluster head leaves the cluster. Since cluster
propagation is based on object features, it is possible for the clusters
tracking different objects to propagate independently, or even over-
lap if necessary. In other words, cameras that can detect multiple
targets may belong simultaneously to multiple clusters. Including a
new member into a cluster and removing an existing member from
a cluster are rather simple operations. However, when a cluster head
leaves the cluster, mechanisms must be provided to account for the
possibility that the cluster be fragmented into two or more clusters,
as illustrated by figure 2.

Since multiple clusters are allowed to track the same target, if
these clusters overlap they must be able to coalesce into a single
cluster. In addition, as these clusters approach each other, they may
interact to exchange information about the state of the target to im-
prove their estimates about the target position. Therefore, it is nec-
essary to provide mechanisms to allow inter-cluster interactions in
wireless camera networks.

To summarize these points, figure 3 illustrates the state transition

Fig. 3. State transition diagram of an object tracking system based
on our protocol

diagram of an object tracking system using a wireless camera net-
work. The network initially monitors the environment. As an object
is detected, one or more clusters are formed to track this object. To
keep track of the object, these clusters must propagate through the
network as the object moves and, if necessary, fragment themselves
into smaller clusters. Finally, if two or more clusters tracking the
same object meet each other, they may interact to share information
or coalesce into larger clusters.

4. CLUSTERING PROTOCOL

We believe that the best way to present the protocol would be to show
the state transition diagram at each node. Such a diagram would de-
fine all of the states of a node as it transitions from initial object
detection to participation in a cluster, to possibly its role as a leader,
and, finally, to relinquishing its membership in the cluster. Unfor-
tunately, such a diagram would be much too large for the presenta-
tion here. So instead we have opted to present this diagram in three
pieces. The individual pieces we will present in this section corre-
spond to the cluster formation and head election, cluster propaga-
tion, and inter-cluster communications. The state transition diagram
for cluster propagation includes the transitions needed for cluster co-
alescence and fragmentation. As the reader will note, our state tran-
sitions allow for wireless camera networks to dynamically create one
or more clusters to track objects based on visual features. Note that
our protocol is light-weight in the sense that it creates single-level
clusters, i.e. clusters composed only of cameras that can communi-
cate in a single hop, rather than multiple-level clusters, which incur
large communication overhead and latency during collaborative pro-
cessing and require complex cluster management strategies. Cam-
eras that can communicate in multiple hops may share information
as needed by inter-cluster interactions.

4.1. Message Format

Figure 4 (a) shows the format of the messages used in the clustering
protocol. Source and destination fields have obvious meanings. The
destination field also allows a broadcast address so that messages
may be transmitted to all the neighbors in the communication range
of a node. The command field corresponds to the commands used in
the protocol. Connection number is a unique number defined by the
cluster head to identify a connection to exchange information about
an object. After clusters are formed, cluster members can use the

(a)
(b)

Fig. 4. (a) Protocol message format. (b) Orphan cameras after the
first stage of the leader election algorithm.

pair (cluster head identifier, connection number) to exchange
information with the cluster head about a specific object. The op-
tions field contains command-specific information, such as the clus-
ter leader election criteria. The features list length field specifies the
length of the object features list, which may vary depending on the
application. Finally, the object features list field contains the list of
visual object features used during clustering to uniquely identify an
object.

4.2. Cluster Head Election

To select cluster heads for single-hop clusters, we employ a two-
phase cluster head election algorithm. In the first phase, nodes com-
pete to find a node that minimizes (or maximizes) some criterion,
such as the distance from the camera center to the object center in
the image plane. By the end of this phase, at most one camera in
a single-hop neighborhood elects itself leader and its neighbors join
its cluster. During the second phase, cameras that were left with-
out a leader (because their leader candidate joined another cluster)
identify the next best leader candidate.

As illustrated by the state transition diagram on the left side of
figure 5, in the first phase of the cluster head election algorithm,
each camera that detects an object sends a message requesting the
creation of a cluster and includes itself in a list of cluster head can-
didates sorted by the cluster selection criteria. The cluster creation
message includes, in the options field, the value of the cluster selec-
tion criteria from the sender. After a camera sends a cluster creation
message, it waits for a predefined timeout period for cluster creation
messages from other cameras. Whenever a camera receives a cluster
creation message from another camera, it updates the list of cluster
head candidates. To make sure that cameras that detect the object
at later moments do not lose information about the available clus-
ter head candidates, all the cameras that can hear the create cluster
messages update their candidates lists. After the end of the timeout
period, if the camera finds itself in the first position of the candidates
list, it sends a message informing its neighbors that it is ready to be-
come the cluster head. If the camera does not decide to become a
cluster head, it proceeds to the second phase of the algorithm.

The first phase of the algorithm guarantees that a single camera
chooses to become a cluster head within its communication range.
However, it might be the case that cameras that can communicate to
the cluster head in multiple hops are left without a leader. Figure
4 (b) shows an example of this situation. Cameras 1 and 2 decide

Fig. 5. Cluster head election state transition diagram.

that camera 3 is the best cluster head candidate. However, camera
3 chooses to become a member of the cluster headed by camera 4.
Hence, cameras 1 and 2 are left orphans after the first stage of the
leader election and must proceed to the second phase of the algo-
rithm to choose their cluster heads.

During the second phase of the cluster head election, cameras that
did not receive a cluster ready message after a time interval remove
the first element of the cluster head candidates list. If the camera then
finds itself in the first position of the candidates list, it sends a cluster
ready message and becomes a cluster head. Otherwise, the camera
waits for a timeout period for a cluster ready message from the next
candidate in the list. This process is illustrated in the right side of
the state transition diagram of figure 5. Eventually, the camera will
either become a cluster head or join a cluster from a neighboring
camera. To avoid that multiple cameras decide to become cluster
heads simultaneously, it is important that the cluster head election
criteria impose a strict ordering to the candidates (if it does not, ties
must be broken during the first phase).

The second phase of our leader election algorithm bears some
similarities with Garcia-Molina’s bully election algorithm [10]. As
a consequence, the algorithm is not robust to communication fail-
ures in the network. However, the consequences of communication
failures are relatively mild in the sense that, as the algorithm termi-
nates, every cluster will have exactly one cluster head, even if more
than one cluster is formed where a single cluster should. This prop-
erty holds because each camera eventually chooses a cluster head,
even if it is itself, and after receiving a cluster ready message from
a cluster head, a camera no longer accepts cluster ready messages.
Therefore, we believe that the simplicity of the algorithm overcomes
its lack of robustness.

In the final step of the algorithm, to establish a bidirectional con-
nection among the cluster head and its members, each member sends
a message to report the cluster head that it joined the cluster. This
step is not strictly necessary if the cluster head does not need to know
about the cluster members. However, in general, for collaborative
processing, the cluster head needs to know its cluster members so
that it can assign them tasks and coordinate the distributed process-
ing.

Fig. 6. State transition diagram for cluster propagation.

4.3. Cluster Propagation

Inclusion of new members into active clusters takes place as fol-
lows. When a camera detects a new target, it proceeds normally
as in the cluster formation step by sending to its neighbors a create
cluster message and waiting for the election process to take place.
However, if there is an active cluster tracking the same object in the
neighborhood of this camera, the cluster head replies with a message
requesting the camera to join its cluster. The camera that initiated the
formation of a new cluster then halts the election process and replies
with a join cluster message.

If there are multiple cluster heads near a camera that has detected
a target, the camera could, at the cost of a unit of time delay, choose
the cluster head which is closest to the target and become its member.
However, we believe that during cluster propagation an extra waiting
period would degrade the tracking performance. Hence, we allow a
new camera (that has just seen the target) to simply join the cluster
whose cluster head first responds to the camera.

Removal of cluster members is trivial, when the target leaves the
field of view of a cluster member, all it has to do is send a message
informing the cluster head that it is leaving the cluster. The cluster
head then updates its list of cluster members. If the cluster member
can track multiple targets, it terminates only the connection related
to the lost target.

Figure 6 shows the state transition diagram for cluster propaga-
tion. The diagram shows the transitions for inclusion and removal of
cluster members as well as cluster fragmentation and coalescence,
which we explain below.

4.3.1. Cluster Fragmentation

When the cluster head leaves the cluster, we must make sure that,
if the cluster is fragmented, each fragment will be assigned a new
cluster head. Cluster head reassignment works as follows. We as-
sume that the cluster head has access to the latest information about
the position of the target with respect to each cluster member and,
consequently, is able to keep an updated list of the best cluster head

(a) (b)

Fig. 7. (a) Border nodes. (b) Messages transmitted to establish inter-
cluster connections.

candidates. We also assume that cluster members know their neigh-
bors. When the cluster head decides to leave the cluster, it sends
a message to its neighbors containing a sorted list of the best clus-
ter head candidates. Each cluster member removes from that list
all the nodes that are not within its neighborhood. Leader election
then takes place as in the second phase of the regular cluster leader
election mechanism.

4.3.2. Cluster Coalescence

When two clusters come within each other’s communication range,
there can be two possible scenarios: 1) we may either have a non-
coalescing inter-cluster interaction, or 2) the clusters may coalesce
to form a larger cluster. We will address the non-coalescing inter-
cluster interactions in the next section. As far as two clusters coa-
lescing into one is concerned, our cluster head reassignment proce-
dure allows for seamless cluster coalescence. Consider two clusters,
A and B, that are propagating toward each another. As the reader will
recall, cluster propagation entails establishing a new cluster head as
the previous head loses sight of the object. Now consider the situ-
ation when a camera is designated to become the new cluster head
of cluster A and that this camera is in the communication range of
the cluster head of B. Under this circumstance, the camera that was
meant to be A’s new leader is forced to join cluster B. The mem-
bers of cluster A that overhear their prospective cluster head joining
cluster B also join B. If there are members of cluster A that are not
within the communication range of the cluster head of cluster B, they
do not join cluster B. Instead, they proceed to select another cluster
head for what remains of cluster A following the second phase of the
regular cluster leader election mechanism.

4.4. Non-coalescing Inter-cluster Interaction

There are two possible cases in which clusters may need to interact
without coalescing. In the first case, two clusters propagate towards
each other until their communication ranges overlap. The second
case corresponds to the creation of a new cluster within the commu-
nication range of an active cluster (see figure 1 (b) for an example).
In any case, information can be shared among clusters through bor-
der nodes. Border nodes correspond to nodes that can communicate
to other nodes in two or more clusters, as illustrated in figure 7 (a).

As we explained in previous sections, clusters propagate as new
cameras that detect an object being tracked by an active nearby clus-
ter are forced to join that cluster. When two clusters approach each
other, these messages can be overheard by members of the neigh-
boring cluster. As illustrated by the state-space diagram in figure 7

Fig. 8. Inter-cluster communication state transition diagram.

(b), when a member of an active cluster overhears a message (dashed
line) of a camera which is tracking the same object joining a differ-
ent cluster, it sends a message to its cluster head informing that it
became a border node. It also informs the camera whose message
was overheard that it should become a border node. This camera, by
its turn, also informs its cluster head that it became a border node.

However, it is not sufficient for a border node to know that it is in
the communication range of some member of another cluster. As we
illustrated in figure 7 (a), border nodes may communicate with mul-
tiple border nodes. Therefore, it is necessary for each border node
to keep track of how many connections it has to other clusters. This
can be achieved by simply incrementing a counter each time a new
connection among border nodes is established and decrementing it
when a connection is terminated. Figure 8 shows the state transition
diagram for inter-cluster communication.

When a cluster head is informed that one of its members became
a border node, it can, in effect, request information from the neigh-
boring clusters as needed.

4.5. Cluster Maintenance

Additional robustness vis-a-vis communication failures is achieved
by a periodic refresh of the cluster status. Since our protocol is de-
signed for clusters to perform collaborative processing, we assume
that cluster members and cluster heads exchange messages periodi-
cally. Therefore, we can use a soft-state based approach [11] to keep
track of cluster membership. What that implies is that if the cluster
head does not hear from a member within a certain designated time
interval, that membership is considered terminated (by the same to-
ken, if a cluster member stops receiving messages from its cluster
head, it assumes the cluster no longer exists and starts the creation
of its own cluster). If a specific application requires unidirectional
communication, i.e. communication only from head to members or
only from members to head, refresh messages can be sent by the re-
ceiver side periodically to achieve the same soft-state based updating
of cluster membership.

Inter-cluster communication can also be maintained in a similar
manner. If a border node does not hear from nodes outside its own
cluster for a predefined timeout period, it assumes it is no longer a
border node. If communication is unidirectional, border nodes can
overhear the explicit refresh messages sent by the neighboring clus-
ter’s border nodes.

(a)

(b)

Fig. 9. (a) Ceiling mounted wireless cameras for the testbed. (b)
Graphical user interface implemented to display the clusters and
their attributes.

5. TESTBED IMPLEMENTATION

The protocol was tested on a wireless network of 12 Cyclops cam-
eras attached to micaZ motes mounted on the ceiling of our labora-
tory. The cameras are spaced about 40 inches from each other so
that the field of view of each camera partially overlaps with those of
its neighbors. The field of view of all the cameras covers a region of
about 16 by 12 feet. Figure 9 (a) shows a picture of the testbed. The
cameras were calibrated by the calculation of planar homographies
between the floor of the laboratory and the camera planes. As the
object to be tracked moves on the floor, each camera that sees the
target is able to compute the coordinates of the centroid of its image
with respect to the world coordinate frame.

Since the focus of this work is on clustering protocols, we use
only simple objects in our tracking experiments. For such objects,
detection is carried out by thresholding the color histogram. There-
fore, our list of object features consists simply of flags to indicate
whether an object matches a given histogram (more robust algo-
rithms such as [12] could be used to achieve similar tracking per-
formance while allowing cameras to dynamically assign identifiers
to the objects being tracked). The histogram based segmentation al-
gorithm yields a binary image of the target which is processed with a
standard recursive labeling algorithm to compute the coordinates of
the centroid of the target with respect to the image frame. The mote
then receives the pixel coordinates from the attached Cyclops cam-
era via the serial interface and, based on the calibration parameters
for the camera, computes the coordinates as well as the covariance
matrix of the target location in the world reference plane. The mote
also executes the clustering protocol and handles the associated com-
munications.

During collaborative processing, cluster members share informa-
tion about the state of the target. As the clusters propagate, this
information is carried by the clusters so that it may be used by new
cameras to improve the estimated state of the target. To implement
this behavior, the cameras within a cluster share an object identifier
that is defined simply by the numerical ID of the first camera that
detects the target. This information is carried along by the clusters

as they propagate during object tracking. Whenever this information
is lost, for instance if cluster propagation fails and a new cluster is
created to track the object, the network loses previous information
about the target and a new object identifier is created by the next
camera that detects the object. Note that our approach to maintain-
ing cluster state can be extended to include additional parameters
regarding the state of the object and its motion.

To visualize the dynamic behavior of the network, we imple-
mented a graphical user interface that displays the clusters during
all their phases. Figure 9 (b) shows the display panel of this GUI.
The blue circle represents a cluster head and green circles connected
to the cluster head by solid lines represent cluster members. Gray
circles represent cameras that do not belong to any cluster. Yellow
solid lines represent the connections among cluster members and
their respective cluster head. The yellow dashed line represents a
connection that should have been established but was not due to a
communication failure. The red ellipses represent the 95% uncer-
tainty region of the target position with respect to each camera that
can detect the target. The expected value of the target position is
displayed at the left bottom of the screen. The numbers inside the
ellipses correspond to the object identifiers. The large rectangles,
brown ones on the right and the bottom, black at the top, and light
gray on the left, correspond to pieces of furniture present in the room
that are represented in the GUI to facilitate in the visualization of the
movement of the target.

6. EXPERIMENTS

We used our testbed to evaluate the performance of the proposed
clustering protocol. Our initial experiments were carried out using a
single target object and focus on the correctness of cluster creation
and propagation in a real application.

To simulate an unsychronized network, we introduced at each
camera a random delay period before starting monitoring the en-
vironment. This delay follows a uniform distribution between zero
and the camera sampling time which, in our current implementation,
is approximately one second.

6.1. Head Election Efficiency

To estimate the efficiency of the cluster head election algorithm, we
position the target at a specific location and trigger cluster formation
using a base-station. After a cluster is formed, the cluster head sends
a message to the base-station informing it of that fact. Based on the
position of the target and the homographies of the cameras that par-
ticipate in the election, we compute the distance of the object center
from the camera center in the image plane of each camera and use
that information to rank order the cameras with regard to their suit-
ability as cluster leaders. Note that rank-ordering of the cameras in
each cluster is based on our knowledge of the camera positions vis-
a-vis the position of the target. By head election efficiency, we mean
the frequency with which the head election algorithm produces a
result that agrees with the manually-generated topmost ranked cam-
era. With the target position information, we are also able to know
exactly which cameras should join the cluster. In our testbed, since
the cameras are mounted in a grid layout facing the floor with par-
tially overlapping fields of view, at most four cameras can be part of
any cluster. We performed 50 runs of the experiment positioning the
target in locations where clusters of 2, 3, and 4 members (including
the cluster head) should be formed. Figures 10 (a) to (c) show the
cluster head efficiency as a function of the election algorithm timeout
period. In each case, the topmost curve in figures 10 (a) to (c) shows

(a) (b) (c)

Fig. 11. Average number of members that join a cluster of (a) 2, (b)
3, and (c) 4 elements.

the average percentage of the time the camera elected to be head was
also the topmost ranked camera. The curve below the first in each
figure shows the percentage of the time the camera elected to be the
head was actually the second-ranked camera in the manual ranking
process. Similarly, when more than two cameras are present in the
cluster, the percentage of the time the third and fourth-ranked cam-
eras were elected cluster heads are represented by the bottommost
curves.

There are two main reasons that contribute to the election of an
incorrect leader. The first and most obvious is communication fail-
ure. If the cluster ready message sent by the correct cluster head is
lost, a camera may join a cluster headed by a less suitable leader.
The effects of communication failures are mitigated, however, by
the cluster coalescence process that forces such cameras to join the
cluster headed by the best cluster head (as explained in subsection
4.3.2). The second reason for the election of an incorrect leader is
due to the asynchronous nature of the network. If what would have
been the correct cluster head did not acquire an image of the tar-
get by the time a cluster is formed, it has no option but to join a
previously formed cluster headed by the next best camera. The pro-
tocol itself does not offer any self-correcting measures for fixing this
problem. This is corroborated by the fact that fewer incorrect clus-
ter heads are elected when we increase the cluster formation timeout
period. In our implementation, for a timeout of approximately 60%
of the sampling period of the cameras, the correct cluster head was
selected about 90% of the time. This problem is eliminated when the
timeout period is longer than the sampling period of the cameras. Of
course, the price to pay for that is the reduction in the overall speed
with which clusters would be able to follow a target (implying that
there would be a limitation on the speed of the target if tracking is to
be successful). We believe that the performance of the algorithm can
be significantly improved (without incurring the speed penalty) if we
impose loose synchronization among cameras that can communicate
in a single hop.

6.2. Cluster formation quality

Often, due to communication failures, not all cameras that should
join a cluster actually do so. To quantify partially formed clusters,
we used the same experimental setup used to evaluate the election
process as described in the previous section. In each message re-
porting the formation of a cluster, the cluster head also includes a
list of its current members. Figures 11 (a) to (c) show the average
over 250 runs of the experiment of the number of members (not in-
cluding the cluster head) that joined the clusters for clusters of 2, 3,
and 4 elements, respectively.

As in the previous experiment, the reasons for incomplete clus-
ters are communication failures and the asynchronous nature of the
network. It is important to note that the results displayed in figure 11
correspond to the status of the cluster immediately after the cluster

creation process has concluded. Subsequent cluster modifications
due to cluster coalescence are not considered.

6.3. Tracking Efficiency

To evaluate the performance of the system while tracking an object,
we move the object randomly and simultaneously compute the target
coordinates using the wireless camera network and a firewire camera
at 30 frames per second. The data gathered by the firewire camera
is used as ground truth. Figure 12 shows the trajectory of the object
for three different runs of the experiment. The ground truth is repre-
sented by the solid black line, the dashed lines show the trajectory of
the target as computed by the wireless cameras. The markers placed
on the dashed tracks correspond to the target positions computed by
the wireless cameras. We used different markers to illustrate the mo-
ments when the wireless network loses track of the object and a new
object identifier is created, i.e., when cluster propagation fails and a
new cluster is created to track the object.

7. CONCLUSION

We presented a light-weight event-driven clustering protocol for
wireless cameras. As is well recognized, clustering is critical to
energy-efficient collaborative processing in sensor networks. Any
clustering protocol must address issues of cluster formation, prop-
agation, coalescence, fragmentation, extinction, and interaction
among multiple clusters. Our protocol addresses all of these. We be-
lieve that because cameras are directional devices, multiple cluster
formation and coalescence are important for wireless camera net-
works. Our protocol addresses all the phases in a single coherent
framework.

Our future goals include a more formal analysis of the correct-
ness and performance of the protocol under different conditions, es-
pecially when the network is called upon to track multiple objects
simultaneously. We also intend to evaluate, using simulations, the
performance of the system in larger and denser networks. Besides,
our protocol assumes that all cameras that can see the target join a
cluster. Nonetheless, it is possible to extend the protocol so that, af-
ter a cluster is formed, the cluster head may choose which cameras
it wishes to collaborate with using certain camera selection criteria
based on how well a camera sees a target [13], [14].

8. ACKNOWLEDGMENTS

This work was supported by Olympus Corporation.

9. REFERENCES

[1] S. Bandyopadhyay and E.J. Coyle, “An Energy Efficient Hier-
archical Clustering Algorithm for Wireless Sensor Networks,”
in Proc. IEEE INFOCOM, 2003.

[2] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An Application-Specific Protocol Architecture for Wireless
Microsensor Networks,” IEEE Transactions on Wireless Com-
munications, vol. 1, pp. 660–670, Oct. 2002.

[3] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-Based
Collaboration for Target Tracking in Sensor Networks,” IEEE
Transactions on Wireless Communications, vol. 3, Sept. 2004.

[4] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D.
Estrin, and M. Srivastava, “Cyclops: in situ image sensing and

(a) (b) (c)

Fig. 10. Head election efficiency as a function of the timeout period for clusters of (a) 2, (b) 3, and (c) 4 members.

Fig. 12. Tracking performance for three different runs of the tracking experiment.

interpretation in wireless sensor networks,” in Proceedings of
the 3rd international conference on Embedded networked sen-
sor systems, 2005.

[5] W-P. Chen, J.C. Hou, and L. Sha, “Dynamic Clustering for
Acoustic Target Tracking in Wireless Sensor Networks,” IEEE
Transactions on Mobile Computing, vol. 3, no. 3, 2004.

[6] Q. Fang, F. Zhao, and L. Guibas, “Lightweight Sensing and
Communication Protocols for Target Enumeration and Aggre-
gation,” in ACM Symp. on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2003.

[7] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and
J. Stankovic, “An Entity Maintenance and Connection Service
for Sensor Networks,” Proceedings of the 1st international
conference on Mobile systems, applications and services (Mo-
biSys), May 2003.

[8] N. Lynch, Distributed Algorithms. Morgan Kaufmann, 1997.

[9] Gerard Tel, Introduction to Distributed Algorithms. Cam-
bridge, 1994.

[10] H. Garcia-Molina, “Elections in a Distributed Computing Sys-
tem,” IEEE Transactions on Computers, vol. c-31, Jan. 1982.

[11] J. Kurose and K. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet. Addison Wesley, 3 ed., 2005.

[12] F. Lau, E. Oto, and H. Aghajan, “Color-Based Multiple Agent
Tracking for Wireless Image Sensor Networks,” in Advanced
Concepts for Intelligent Vision Systems (ACIVS), Sept. 2006.

[13] J. Park, P. C. Bhat, and A. C. Kak, “A Look-up Table Based
Approach for Solving the Camera Selection Problem in Large
Camera Networks,” in Workshop on Distributed Smart Cam-
eras, in conjunction with ACM SenSys’06, 2006.

[14] A. O. Ercan, D. B. Yang, and A. El Gamal, “Optimal Place-
ment and Selection of Camera Network Nodes for Target Lo-
calization,” in Proceedings of the International Conference on
Distributed Computing in Sensor Systems, 2006.

