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Abstract—We present a novel multi-camera multi-target fusion
and tracking algorithm for noisy data. Information fusion is
an important step towards robust multi-camera tracking and
allows us to reduce the effect of projection and parallax errors
as well as of the sensor noise. Input data from each camera view
are projected on a top-view through multi-level homographic
transformations. These projected planes are then collapsed onto
the top-view to generate a detection volume. To increase track
consistency with the generated noisy data we propose to use
a track-before-detect particle filter (TBD-PF) on a 5D state-
space. TBD-PF is a Bayesian method which extends the target
state with the signal intensity and evaluates each image segment
against the motion model. This results in filtering components
belonging to noise only and enables tracking without the need of
hard thresholding the signal. We demonstrate and evaluate the
proposed approach on real multi-camera data from a basketball
match.

I. INTRODUCTION

Tracking is an important processing step for many single
and multi-camera applications such as sports video analysis,
traffic monitoring, behavior identification and event detection.
The target tracking task is usually performed in two steps,
first the detection of objects of interest (targets) and then their
temporal linkage from frame to frame. Target detection can be
performed on image changes [1] or learned target models [2].
The major drawback of detection-based tracking algorithms is
that they rely on hard thresholding the input data and therefore
are only applicable on inputs with high signal-to-noise ratios
(SNR).

In many single and multi-sensor applications the SNR of
the input or pre-processed signal is relatively low. Examples
of such signals are the far-field of infrared (IR) images,
bearing frequency distributions (sonar) and range-Doppler
maps (radar). Examples of sensors whose signals are fused
include cameras [3], [4], microphones [5] and radars [6]. The
fusion involves triangulation of noisy information that can
result in much larger number of solutions than desired. To
address this type of data, simultaneous detection and tracking
can be performed via track-before-detect (TBD). In TBD the
entire sensor image is considered as a measurement. This
measurement is a highly non-linear function of the target state
and can be solved either by discretization of the state [7] or
by employing non-linear state estimation techniques such as
particle filtering [8], which are computationally less expensive.

This work was supported in part by the EU, under the FP7 project APIDIS
(ICT-216023).

A. Target tracking: related work

We briefly review here the related state of the art on
track-after-detect and track-before-detect. Track-after-detect
can be based on adaptive multi-feature tracking [9] using
color and orientation information under a particle filtering
(PF) framework. Similarly, color and edge features are used
in [10] to track single targets, such as faces and hands,
using a trust-region method. Multi-target tracking algorithms
include Mixture Particle filters (MPF) [11], where individual
interacting PFs perform distributed resampling to avoid track
loss due to sample depletion. Similarly, Boosted Particle
filtering (BPF) [12] uses proposal distributions with a mixture
model that contains contributions from a detector and the target
dynamic model. In [13], the target state is augmented with
an existence variable to model the number of targets in the
Bayesian estimation. This leads to a hybrid estimation problem
solved using a jump Markov model [14], as one component of
the state vector is discrete valued, while the rest are continuous
valued.

The above-mentioned tracking algorithms cannot be ap-
plied for targets with low observability. In such cases, a
track-before-detect (TBD) algorithm can be used. A recursive
Bayesian single target TBD is proposed in [15] using particle
filtering. This method assumes a point target and extends the
target state with the signal intensity based on the assumption
that the return intensity from the target is unknown. Similar
to multi-target PF, multi-target TBD-PF approaches are also
based on extending the target state with an existence variable
and solved with a jump Markov model [16]. An approach
based on dynamic programming is used in [17] to track
airplanes through TBD. In this context, traditional change-
based detection cannot be applied because targets are very
small and the presence of clouds makes them dimmer. In [5]
multiple microphones were used to track multiple speakers
using TBD on steered beam forming results. In this approach
a conditional probability density is used that characterizes
uncertainty in both target state and target number, given the
measurements. The polar Hough transform is used in the
fusion between multiple radar signals [6]. As the coordinate
measurement errors (range, azimuth) degrade the accumulation
of a signal in each cell of the Hough space (i.e., reduce the
output SNR and the output signal peak, while increasing the
output side lobes peak), TBD is applied for target tracking.

Most TBD algorithms are demonstrated on simulated
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data [6], [15], [16], [18]. Two exceptions are [5], [17]: [5]
is a multi-target multi-sensor tracking algorithm applied on
audio sensors and [17] is applied to IR sequences from a
single sensor only. To the best of our knowledge, the work
we propose in this paper is the first adaptation of the TBD
concepts to multi-camera tracking.

B. Contribution

We present a multi-camera multi-target track-before-detect
particle filter that uses mean-shift clustering and we demon-
strate it on real data. The information from multiple cameras
is first fused to obtain a detection volume using a multi-layer
homography [4]. To track multiple objects in the detection
volume, unlike traditional tracking algorithms that incorporate
the measurement at the likelihood level, TBD uses the signal
intensity in the state representation. Moreover, as different
targets can have different signal intensities on the detection
volume, we account for this variation in the weight update
strategy. Finally, unlike traditional methods that use K-means
or Mixture of Gaussian (MoG) clustering on the detections,
the proposed approach does not require manual initialization
of the targets nor the prior knowledge of the number of clusters
as we use mean-shift on the particles, after the update step.

The rest of the paper is organized as follows. Section II
describes the proposed algorithm. Experimental results are
presented in Section III. Finally, conclusions are drawn in
Section IV.

II. MULTI-TARGET TRACK-BEFORE-DETECT PARTICLE
FILTERING

In this section, we first introduce the single target track-
before-detect formulation based on particle filtering. Next
we discuss the framework for multi-sensor data fusion and
the proposed multi-target track-before-detect particle filtering
(MT-TBD-PF). Finally, we describe the mean-shift clustering
and identity propagation approach within MT-TBD-PF.

A. Single target track-before-detect

Let xj, be the target state vector at time k, using a discrete
time model with a fixed sampling period 7', the state can be
defined as

Xk = (xkaj:k7ykvyktalk)T7 (1)
where (x,yr) are the position components, (Zy,yi) are

the velocity components and [ is the target signal strength
(intensity) at time k. The state evolution can be modeled as

2

where f is the state-transition function and vy, is the process
noise. For a linear stochastic process, the state evolution can
be expressed as

X = f(Xk—1,Vk),

xp = Fxp_1 + v, 3
where I is the state transition matrix defined as
B 0O2x2 0O2x1 17
F=|0ax2 B 01|,B= [0 1] 4
0 0 1

The process noise v, is generally modeled as Gaussian random
variable with covariance (), defined as

D 0O2x2 0O2x1 a3 a2
Q = O2><2 D 02><1 aD = |:1131T2 3 T:| ) (5)
0 0 T 2 «

where ¢ is the variance of the acceleration noise.

Let z; be the measurement, at each time k, encoded
in a W x H resolution image. At each pixel position the
measurement intensity zx(i,7) is either due to the presence
of the target or due to measurement noise w, that is

hi(i, 9 ] if t t i t
Zk(i,j)Z{ k(4 7) (%) + wi(i,j) if target is presen

w (%, §) if target is not present ’

(6)
where hy(i,7)(.) is the contribution of the target intensity
in the pixel position (4,7). In case of a point target, the
distribution of the target intensity over the surrounding pixels
will be only due to the sensor point spread function and can

be approximated as

AL AT,

hk(iv ])(xk) ~

(1D, — 2)? + (A, — p)?
242

2w A2

@)
where A models the amount of blurring introduced by the
sensor and A, X A, is the resolution of the segment centering
at (1Ag, JA,).

Given the set of measurements Z = {zp|m = 1,--- ,k}
up to time k, the objective is to recursively quantify some
degree of belief in the state x; taking different values, i.e.,
to estimate the posterior pdf p(xx|Z). Using the Bayesian
recursion, the posterior pdf p(xx|Zx) can be computed in two
steps: prediction and update. In the prediction step, the prior
density of the state at time k is obtained using Champman-
Kolmogorov equation:

P(Xk|Zi—1) :/p(xk|xk71)p(xk71|Zk71)dxk717 ®)

where p(xp|xp—_1) is the transition density defined by the
target model (Eq. 2) and p(xj_1|Z;—1) is the posterior at time
k — 1. The update step is carried out using the measurement
at time k by applying Bayes’ rule:

4 Zy.—
p(Xk|Zk)_ p(Zk;|Xk, k 1)p(xk| k 1)

_ o
J p(zk|Xks Ze—1)p(Xk| Z1—1 ) dxe ®

where p(zj|x;) is the likelihood function.

The above algorithm is implemented using Sampling Impor-
tance Resampling (SIR) particle filter where a posterior density
is represented by a set of particles each with associated weight
{wi,xp )

In the prediction step, we draw two sets of particles to
estimate the predicted density. Lj;_; particles are generated
from the proposal density gy (xi|Xx—1,Zr) based on target
dynamic model (Eq. 3) and another set of .J; particles from
another distribution p(xj|Zy) based on current measurement
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Fig. 1. Sample single target track-before-detect results with varying SNR
values: (left) Sample frames from input data illustrating that target is difficult
to detect by visual inspection at low SNR, (right) tracking results; (a) SNR
= 18.3422db, (c) SNR = 8.6969 db and (e) SNR = 6.2613db. (Blue dots:
estimated positions; green dashes: ground truth).

to accommodate new-born targets.
qr(Xg|Xg—1, Zr) surviving particles
n=1--- 7Lk:71

Xy, =
klk—1 (x| Zk) new-born particles

n=~Lg1+1- L1+ Jg

(10)

In the update step, the likelihood p(zx(7,7)|x}), for the

combined set of Ly_; + Jy particles, for each pixel (4, 7) is

computed as

1D
Since the pixels are assumed to be conditionally independent,
the likelihood of the whole image is computed by taking the
product over the pixels, thus the updated particle weights are
computed as

H’L:C7 (x"

klk—1

]’Lk(Z,j)(hk(Z,]) - 2Zk(lv.7))
2A2

p(axi, §)|XE) = exp (—

) Hi:cj(xg‘k_l) p(zi(i, 1) |x5)

ZLkJer n
n=1  Yklk—1

Whlk—1 = , (12)

where C;(.) and C;(.) indicates that only the pixels affected
by the target are used in the likelihood computation.

(@

Fig. 2. Camera views and projection result (a) Configuration of cameras in

basket ball court (excluding two top-mounted cameras with fish eye lenses).
? (b) Camera 1; (c) camera 2; (d) camera 4; (e) camera 6; (f) camera 7; (g)

Sample projection of detection mask from multiple cameras to a top-view.

To avoid the degeneracy problem, the combined set of
Ly_1 + Ji, particles are resampled to reduce the number to
Lj, only by selecting particle for which wp > A, where
Ao 1s the minimum allowed particle weight. If Wi > A,,Vn
then Ly = Lg_1 + Jx — Ji+1 where Jy11 = Npp and
Npnin is the minimum number of new-born particles at each
time k. Figure 1 shows an example of our single target
track-before-detect particle filter using three different SNR
values of synthetic data. Although with SNR= 8.6969db and
SNR= 6.2613db the target cannot be observed visually due to
the noise, it was correctly tracked (Fig. 1(b,c)). When SNR=
6.2613db, the algorithm had some difficulties in identifying
the target location, however once enough particles were drawn
around the target it was tracked consistently. Note here we use
only 1 particle per pixel as compared to other approaches [19]
where 25% more particles were used.
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Fig. 3. Example of particle weights and positions. (a) Without the proposed
update strategy (one target has very small weights and another one is missing);
(b) with the proposed update strategy. As the weights for weak targets are
very low without the proposed update, this results in track loses.

B. Multi-sensor, multi-target track-before-detect

Information fusion is applied to enable multi-sensor track-
ing. We project the detection mask from each camera on
the top-view through multi-level homographic transformations
similar to [3]. These projected planes are then collapsed to
generate a detection volume (Fig. 2). In case of multiple
targets, the measurement at each pixel (4,7) can have a
contribution from all the targets and Eq. 6 can be modified
as

S0 hi ) (oc) + wi(i, 5)
wk‘(’L?-])

if Ni, #0
otherwise ’

13)
where NNy is the number of targets at time k. The approxima-
tion shown in Eq. (7) is based on point target assumption and
is nothing but a truncated 2-D Gaussian density with circular
symmetry. Similar approximation can be used in the case of
multiple targets in the projected domain by tuning the values
for A;, A, and A, respectively. This enables the filtering out
of noise that is due to parallax error.

The particle filter may perform poorly when the posterior
is multi-modal as the result of multiple-targets [11]. To solve
this problem, instead of using the existence variable and the
jump Markov model [13], [16], we employ clustering of the
particles. The prediction step remains the same as in the case
of single targets as defined in Eq. 10. If all targets follow
the same motion model, this prediction step is correct as
each particle contains the velocity components (2, 4y ) of the
target it represents. Tracking targets with a different dynamic
model can be performed by incorporating Interacting Multiple
Models (IMM) [20]. As different targets may have different
intensity levels and in TBD the weight update is a function of
the target intensity, this results in lower weight assignment to
weaker targets. To address this issue we consider each target
individually in the update step and Eq. 12 can be re-written
for multiple targets TBD as
Hi:Ci(x"’t H‘:C’-(x""t )p(Zk(l,]HXZ)

k|k— 1
Lk+Jk n
Z 1wk\k 1 2 “klk—1

th

Zk(Z7]) =

n,t
Wilk—1 =

, (14)

where x is the nt" particle at time k belonging to ¢

k\lc 1
target. Here the component ) "~ HJ’“ Wjk—1 is used to further
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X

Fig. 4. Tracking results on 500 frames of simulated data for 12 targets.

normalize the weights between 0 to 1 instead of number of
targets Ny, as there are some particles generated using another
proposal density p(xx|Zy). Figure 3 shows a comparison
between evolution of particle weights with and without the
proposed update strategy. It can be seen that without the
proposed update strategy (Fig. 3(a)), one of the targets is
completely missed while another one has very low weight
and is lost in the next frame. Following the update step, the
particles are clustered using mean-shift.

C. Farticle clustering

We perform particle clustering using mean-shift for the as-
sociation of the identity to each particle. Mean-shift clustering
climbs the gradient of a probability distribution to find the
nearest dominant mode or peak ( [21]). Mean-shift is preferred
here as it is a nonparametric clustering technique that does not
require prior knowledge of the number of clusters, and does
not constrain the shape of the clusters.

Given Ly + J, particles {x}',n = 1,---, Ly + Ji} on a
2-dimensional space R? using (xy, yx) only, the multivariate
kernel density estimate obtained with kernel K(x) and band-

width h is
1 s x — X}
= K(=—=%). (@5
f(xx) WA ; ( A ) (15)

The bandwidth h is set as h = 2¢; i.e. based on the target
covariance () (see Eq. 5). The mean-shift algorithm tends to
maximize the density whose modes are located at the zeros of
the gradient <7 f(xy) = 0.

After clustering, a cluster merging process is performed to
fuse similar clusters. The fusion is based on the proximity
Yo,p < Ay and B, , < A4, where A, and A4 are the mean and
covariance thresholds, v, , is the Euclidean distance between
clusters o and p, and (3, , is the covariance of the merged
cluster. Finally, an identity is assigned to each particle based
on their cluster membership. If all the particles in a cluster are
new-born, then a new identity is issued; otherwise all cluster
members are assigned the identity with the highest population
within that cluster.

D. Resampling

To avoid the degeneracy problem [8], we resample the
particles. Resampling is performed according to the particle
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Fig. 5.
Tracking results obtained with the proposed approach.

weights. Here again the single target resampling strategy based
on the cumulative distribution function cpdf of particle weights
will not work as it is insensitive to the particle location.
Particles with lower weights (such as those associated to new-
born targets) will not be able to have enough representation
in the mixture distribution. This will create a hindrance in
initializing new tracks in the presence of existing targets. To
this extent, the resampling is performed individually for each
cluster of particles utilizing weights associated to its members.

III. EXPERIMENTAL RESULTS

We have evaluated the algorithm on synthetic and real
datasets. The synthetic data consisted of 12 simulated targets
moving with moderate speed with some maneuvering. The real
data' consist of a basketball match scenario captured using
five partially overlapping cameras (Fig. 2(a-f)) and two top-
mounted with fish eye lenses. Each video is of resolution
800 x 850 recorded at 25Hz. There are total 12 targets
in the video (10 players and 2 referee). The players have
similar appearances and are difficult to distinguish from the
background color.

Figure 4 shows tracking results on 500 frames of synthetic
data. Typical acceleration and noise in target intensity were
set to be ¢g; = 0.001 and ¢ = 0.1 respectively, whereas, the
amount of blurring introduced by the sensor was 0.2. These
values allow tracking of targets under low SNR values. In this
data several targets start very close together and cross each
other after some interval. To obtain individual non-merged
tracks without false detections the values chosen for minimum
target weight was )\, = le — 5 whereas the thresholds for
mean distance and variance for cluster merging was A\, = 1
and A4 = 2. The bandwidth chosen for mean-shift was h = 5

Ihttp://www.apidis.org/Dataset/, Last accessed: 14 April 2009

Sample fusion and multi-target tracking results on top view for frames 500, 590 and 765. (First row) Projection on the top-view. (Second row)

() (b)

Fig. 6. Example tracks of high maneuvering targets. (a) 5 maneuvers (b) 3
maneuvers.

which is appropriate to cluster particles generated around the
target which is effected by a blurring with A = 0.37 while
using (Az,A,) = (1,1). The tracking was done using 4000
particles per target.

The visualization of results from the proposed approach
on real data is in Fig. 5. The projection of the detection
mask on top-view using multi-layer homography is shown in
Fig. 5(a-c). Several issues regarding the data can be observed
from these results. First all the targets are not represented by
the same level and spread of intensity values. Some targets
have very low visibility without significant amount of spread
among neighboring pixels, whereas, others have high intensity
values which vary over time. The parallax error can also be
easily observed due to which targets have different amount
of noisy spread of intensity values in different regions. The
shift in intensity values primarily due to increase in cameras
overlap is also clearly visible in these projections. These issues
makes the less visible targets challenging to track. The tracking
results obtained through the proposed multi-target particle fil-
tering track-before-detect (MT-PF-TBD) technique are shown
in Fig. 5(d-f). The tracks are shown on a schematic of a basket
ball court for clarity. Most of these targets maneuver highly as
these are players who rapidly change their paths based on the
location of the ball and flow of the game (see Fig 6). Although
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we used a constant velocity model, the proposed tracker can
still handle maneuvering targets as we model acceleration with
a higher value than in the synthetic experiments. Furthermore,
the distribution p(xy|Z)) generates a number of newborn
particles proportional to the measurement and also helps
coping with maneuvering targets. The high value of ¢; also
allows the tracker to quickly concentrate around new-born
targets which usually do not start with initial zero velocity.
However, this also increases the spread of particles around
the target and results in target merging. This merging was
minimized by using the kernel bandwidth h = 5 for mean-shift
as in the case of synthetic targets. The remaining parameters
were the same as for the synthetic data. These parameters are
valid for the sub-sampled version of the data having resolution
of 388x225. The generated tracks appears smooth due to using
3000 particles per target. Using fewer particles can result in
jerky tracks.

IV. CONCLUSIONS

A multi-target tracking algorithm has been presented that
estimate the location of low visibility targets under noise and is
applied in a multi-sensor scenario. The algorithm considers the
entire signal as a measurement and extends the target state with
signal intensity. The multi-target track-before-detect particle
filtering is performed by clustering particles using mean-shift.
Then a cluster-based weight update and resampling strategies
are proposed to avoid loss of tracks. As future work, to better
disambiguate merging targets, we will apply the clustering in
a 4D space that also incorporates target velocity components.
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