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Abstract—A camera is able to capture only a part of a high
dynamic range scene information. The same scene can be fully
perceived by the human visual system. This is true especially
for real scenes where the difference in light intensity between the
dark areas and bright areas is high. The imaging technique which
can overcome this problem is called HDR (High Dynamic Range).
It produces images from a set of multiple LDR images (Low
Dynamic Range), captured with different exposure times. This
technique appears as one of the most appropriate and a cheap
solution to enhance the dynamic range of captured environments.
We developed an FPGA-based smart camera that produces a
HDR live video colour stream from three successive acquisitions.
Our hardware platform is build around a standard LDR CMOS
sensor and a Virtex 6 FPGA board. The hardware architecture
embeds a multiple exposure control, a memory management unit,
the HDR creating, and the tone mapping. Our video camera
enables a real-time video at 60 frames per second for a full
sensor resolution of 1,280 x 1,024 pixels.

I. INTRODUCTION

Conventional cameras have a limited dynamic range, much
less than the human vision system. In many imaging systems,
saturated zones in the dark and illuminated areas of the cap-
tured image still a problem. These limitations are due to large
variations of real scene radiances, with over and under-exposed
areas appeared in the single image. The sequential capture of
several images with different exposure times can deal with the
lack of information in extreme lightning conditions. This way
is called the HDRi (High Dynamic Range imaging) system.

A. HDR imaging system
Creating an HDR image is done in three steps:

e  Recover the response curve of the system,
e  Blend pixels into radiance values,

e  Perform Tone Mapping to display the resulting HDR
images onto a standard monitor.

In an ideal configuration, create an HDR image is done by
simply reducing low dynamic images in the same configuration
by dividing each image by their exposure time (normalization),
then by summing the pixels of the images. However, due to the
presence of complex electronic circuits, most of the cameras
have a non-linear processing about the transformation of the
incident light. This non-linear transformation is transposed
by the inverse of the response curve of the camera, noted
g. This feature must be known before the estimation of the
real radiance values, because it determines the relationship
between the light striking the sensor and the corresponding

pixel values. For most devices, the function f is specific to
each system (lens + opening + sensor), and must be estimated
as best accurate as possible to reconstruct the HDR image.
Since 1995, several algorithms [1], [2], [3], [4] have emerged,
to evaluate as precisely as possible the function g.

The estimation of the real radiance values can be followed
by a dynamic range mapping, in order to visualize the result
on an LDR display. This method is called the tone mapping
and it is used to render the HDR data to match dynamic of
conventional hardware display. For example, it can convert
32-bit wide pixels to 8-bit wide pixels ([0,255]). There are
two types of tone mapping operators (TMO): spatially uniform
TMO (.e. global TMO) and spatially non-uniform TMO (i.e.
local TMO). In our case, several algorithms seem to be
implementable in real time due to fast computation capabilities,
whether global or local. Following is a list of software methods
(from the fastest to the slowest algorithm) whose efficiency and
simplicity of the calculations are shown in the literature:

e Drago et al. [5] (Adaptive Logarithmic Mapping For
Displaying High Contrast Scenes)

e Duan et al. [6] (Tone-mapping high dynamic range
images by histogram novel Adjustment)

e Reinhard et al. [7] (Photographic Tone Reproduction
for Digital Images (global algorithm))

e Durand et al. [8] (Fast Bilateral Filtering for the
Display of High-Dynamic-Range Images)

e Fattal et al. [9] (Gradient Domain High Dynamic
Range Compression)

e  Tumblin et al. [10] (Time-dependent visual adaptation
for fast realistic image display)

In this paper, we propose a HDR smart camera based
on a parallel architecture dedicated to real-time HDR video
content. What is new in this paper is shown through four steps.
First, we capture images from the sensor with alternating three
exposure times, selected by our Multiple Exposure Control
(MEC). Then, we manage reading and writing operations in
memory in order to have several video streams in parallel,
corresponding to the different exposure times. Under a highly
parallel context, we blend the three video streams together
with a modified version of a HDR technique. Finally, an
hardware implementation of a global tone mapping technique
is performed. We will begin by describing existing works
about HDR video technique in Section II. Then, in Section
III, we will describe our system in detail. Finally, some
experiments and results will follow this discussion in Section
IV. Concluding remarks are then presented.



Method Hardware Capture HDR Fusion Frames used for HDR | Tone Mapping Resolution FPS
Akyiiz et al. [11] GPU no yes 9 yes - 65
Mann et al. [12] FPGA yes yes 3 yes 1,280 x 720 120
Urena et al. [13] GPU/FPGA no no - yes 640 x 480 30/60
Guthier et al. [14] CPU+GPU yes no - no 640 x 480 25

Ching-Te et al. [15] ARM SOC no no 3 yes 1,024 x 768 60
Bachoo et al. [16] CPU+GPU no yes 3 - 1,600 x 1,200 20

TABLE 1.

II. RELATED WORK

We detail here the existing hardware architecures. We limit
ourselves to recent systems which can operate in real time,
whether they are focused exclusively on capture, HDR creating
or tone mapping. Table I summarizes these methods.

In 2012, Akyuz et al. [17] developed a complete system
on a GPU platform. The tasks are performed in parallel with
a pipelined structure. Generating HDR and the tone mapping
are done without knowing the response curve of the camera.
They use the algorithm originally proposed by Debevec et al.
[2] to estimate the radiance values. Regarding to the operation
of the tone mapping, it is the Reinhard et al. [7] algorithm
which has been chosen and implemented. Some results are
identical compared to other methods implemented on CPU.
They reach a framerate of 65 fps for producing HDR images,
and 103 frames per second for performing the tone mapping.
However, they do not have time to load textures on the GPU.
The majority of time is spent in sending pixels to the GPU.
Radiance computations and weighting have little impact on the
speed calculation, and the framerate of the final system.

The most popular complete vision system is based on the
Mann architecture [12]. In 2012, a welding helmet composed
of two computer-controlled video cameras has been presented.
The data received by these cameras are recorded line by line
in an external memory SDRAM. Several FIFOs store pixels
and read them simultaneously line by line. The number of
FIFOs depends on the number of images used in the HDR
reconstruction. A LUT containing precomputed values is used
to combine multiple exposures. This LUT is inspired of the
work by Ali et al. [18], the estimation of radiances is done
with a CCRF ("Comparametric Camera Response Function”).
With this method, they are able to obtain a video with a fixed
latency, and a controlled calculation (real-time) on a Xilinx
Spartan-6 LX45 FPGA.

Urefia et al. [13] published in 2012 two tone mapping archi-
tectures, described both on GPU and FPGA. The implementa-
tions were done on a battery portable operating circuit. A new
generation of tone mapping is presented in this article, rather
than considering existing operators, because they require many
computation time and memory. The tone mapping operator
includes both local and global calculation. Typically, for the
overall look, it highlights areas containing low contrasts, but
can also protect areas where the contrast is well. Locally, it
reduces the areas that are too bright in order to improve the
image details. The overall improvement is based on the bright-
ness histogram adaptation of each channel in the HSV colour
space. On the other hand, the local enhancement is based on the
retina-like technique. To summarize, the Gaussian filters, the
weighting and the human visual system consideration are the
main advantages of the operator. The FPGA implementation
produced a video with a high frame rate, consuming little

SUMMARY OF THE MAIN EMBEDDED REAL-TIME ARCHITECTURES DEDICATED TO HDR.

electric power, while the GPU implementation provides greater
sensibility in the calculation of HDR pixels, but uses a lot
of resources. The two systems can be reduced to a mobile
application running on batteries.

In 2012 Guthier et al. [19] introduced an algorithm with
a good HDR quality, that can be implemented with the same
number of capture LDR. The choice of exposures is performed
optimally selecting the better shutter speeds that will add
the more useful information to contribute to the final HDR
image. Their context can be real-time, by minimizing the
number of catches. Basically, the exposure times are chosen
so that the brightness value at a position ¢, j, where at least
one LDR image captured has a well exposed pixel. First,
a good approximation of the value radiance E is calculated
taking into account the response function of the camera and a
contributing function. A weighting function, also contributes
to the value of the final radiance. The histogram of radiances
is used to calculate a sequence of shutter speeds choosing it
corresponding to and the peaks of the contribution function. A
useful relationship is made between the histogram of radiance
vector and the contribution that indicate potentially changes
in the scene. A stability criterion is also introduced to the
sequence which allows each frame to be adjusted until a stable
shutter sequence is found. Finally, with this algorithm, they
save capturing time and are able to reduce the number of LDR
exposures without loss of quality at the end of the computation.

Ching-Te et al. [15] suggests a methodology to develop
a tone mapping processor optimized using an ARM SOC
platform (System On Chip). Their processor evaluates both
photographic compression method by Reinhard et al. [7],
and the gradient compression method by Fattal et al. [9],
for different applications. The new processor can compress
1,024 x 768 HDR images at 60 fps. The core needs 8, 1mm?
of physical area with 0.13m TSMC technology.

Bachoo [16] developed a dedicated technical application
of exposure fusion (initiated by Mertens et al. [20]), to merge
a real-time 1600 x 1200 video at 20 fps using three black
and white videos. They are able to control the speed of image
generation, to have a constant frame rate, relative to the defined
processing block size. They perform an alternative Goshtasby
algorithm [21]. The implementation is done on CPU and GPU.
The algorithm is divided into two parts so that the power of
the CPU processing and GPU (”Graphics Processing Unit”) is
used wisely. The CPU perform massively sequential operations
such as calculating entropy blocks. The GPU is used to merge
the blocks together, operation which can be parallelized to
increase execution speed of the fusing process. The speed can
be increased if the video resolution is reduced or if the size of
processing blocks increases. As this, a compromise between
calculation speed and quality can be chosen. Nothing is said
about the choice of exposure time and no method is proposed



to estimate exposures. It is recorded that the use of additional
exposures may produce a bottleneck in the fusing process.

III. A DEDICATED HDR SMART CAMERA

The dedicated hardware system is built around a CMOS
sensor board and an evaluation board from Xilinx (see Figure
1(a)). The parallel architecture presented in this paper operates
in several stages. At the first stage, an FPGA input interface
receives sequentially three pixel streams (produced by the e2v
sensor), and stores them to a SDRAM memory as colour
frames. A Multiple Exposure Control (MEC) based on the
histogram computation also operates in parallel to select the
proper exposure times. It changes the sensor configuration
each time an image is captured. At the same time, a memory
management core reads the previous frames stored into the
SDRAM, and delivers it as a three live parallel video outputs.
At the third stage, the different pixel streams are combined
using the Debevec et al. algorithm [2], knowing the response
curve of the imaging system and the exposure times. This
stage produces a complete radiance map of the captured scene.
Finally, the High Dynamic Range frame is tone mapped by
the Reinhard et al. algorithm [7] and can be displayed on
a standard LCD monitor. This full process is continuously
updated in order to perform a real time HDR live video at
60 fps with a 1280 x 1024-pixel resolution. Our real-time
constraint is that the availability of a new HDR data from
the LDR captures must not exceed a fixed latency of 1ms,
guaranteeing that the HDR process is imperceptible to the
viewer.

A. Multiple Exposure Control

Our camera must be automatically adapted to the illumina-
tion level, just as the human eye do. So, a best set of exposures
have to be captured. But, when we perform HDR stitching,
traditional auto exposure algorithms fail. We present a similar
approach of a previous state of the art algorithm, adapted to
our real-time hardware requirements. Our sensor is able to send
us the complete image histogram. Using the histogram of each
image will allow to have a real-time preview of the total range
of brightness that will be recorded. Gelfand et al. [22] use the
FCam programmable API to capture two images, alternating
short and long exposure. They require that fewer than 10%
of the pixels in the images are bright for the short exposure,
and require that fewer than 10% of pixels have values less
than 16 for the long exposure. When the two exposures are
stable, the metering is complete and they perform pseudo-HDR
computation. They do not take into account future changes
in light conditions in the captured scene, which could corrupt
their dynamic range value. We use a similar approach to select
three proper exposures Atp, Aty and Aty related to our
scene.

Histogram comes through 64 categories, coded with 16-bit
depth representation. Depending on which image is receiving
(low (I1) or high exposure (If7)) we apply these functions:
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where 1, and Q@ are respectively the proportion of pixels
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Fig. 1. Overview of our HDR smart camera

which compose an image). g is the quantity of pixel in each
histogram category h. Calculation is made with the first four
and the last four category histograms of images I and I,. As
output pixels are coded with 10-bit (coded between 0 to 1023),
four categories correspond to a range of 64 pixel values. Then,
we calculate two parameters for the two extreme exposure
times like this:

Qg = |Qr/a— QL H,reql 2

where Qp/p req is the required quantity of pixel for the
part of histogram concerned. 0Q0r,/; determines how far is
the quantity of pixel with the desired quantity. Once we have
these parameters, we can perform a series of decisions:

Atpmmasr < MEC(Atpmy) (3
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Fig. 2. Memory Management Core initialization. The sensor send sequentially low (/1) and middle (/ps) exposure times. Writing operations into memory of

each rows A indexed by A of the first two frames.
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where thr,, (minus) an thr, (plus) are the threshold values
in order to have 2 levels of precision on how we will adjust the
exposure values. x is an extra exposure time corresponding to
the integration time of one sensor row. Aty /s pr 41 are the
exposure times which will be programmed into the sensor for
the next frames I, /s, 77- The middle exposure time is a combi-
nation of Aty and Aty. As we work with highly parallelizable
architecture, we can do estimations of the dynamic range of
the scene during HDR processing. If needed, we correct the
exposure times if lighting conditions have changed.

Atg 1 = { (5)

B. MMU

The use of external off-chip memories is judicious for our
application that processes large amount of data and high data
rates. For our case, video processing requires two frames of
data to be stored (the third frame is given by the sensor). In
practice, this storage is implemented using DDR3 SDRAM
chip which is a part of our hardware development platform.
It requires fast and efficient direct memory access logic to
achieve high dynamic range video in real-time.

The sensor is able to send full-resolution images at 60
frames/s. Initialization of our specific HDR Memory Manage-
ment Core is shown in Fig. 2. I, and I, are first stored in
DDR3 memory. The first frame (I1) is stored row by row
W A\I;, where X indexes row number (1 <= \ <= 1024).
For example WA;I; means “writing of the first row Al
of Ir into memory”. Each row write operation is followed
by inter-row delay, due to horizontal sensor synchronization.
For the second frame I, the image is also stored row by
row (W AxIps). This initialization step is required before the
generation of the first HDR frame. We can’t avoid waiting
for these two first exposures. After this step, the Memory
Management Core can start (see Fig. 3).

During the capture of the last frame (/f), rows of the
two previous frames stored are synchronously read from the
memory during inter-frame (RA)I;, RA)Iy;) and buffered
into Block RAMs (BRAMs) while each new captured row

(WAxIg) is stored in memory. It’s important to notice that
the design is a pure-hardware system which is processor-free
and must be able to absorb a continuous pixel flow of about 80
MegaPixels per second from the sensor (called "Memory In”
in Fig. 2 and in Fig. 3) while reading two other pixel flows
corresponding to the two stored images (respectively called
“Memory Out 17 and "Memory Out 2” in Fig. 3).

The HDR content is computed with the methods described
in Sections III-C and II-D. The HDR process needs a con-
tinuous stream of pixels of three images and then can only
be performed while receiving the third frame Iy. Then, the
process can iterate throughout the capture of the fourth frame
(low exposure I7) and the readout of the second and third
frame (I}, and I};). Finally, our memory management system
is able to deliver two parallel pixel streams that have been
acquired and stored into the memory and a third pixel stream
directly from the sensor. With this technique, each HDR pixel
only requires three memory accesses (one write and two read
operations during one row interval), saving many memory
access operations. The main advantages of such a technique
are (1) to store only two images in memory, and (2) to avoid
the waiting for the three images to compute an HDR image. A
latency corresponding to 136 clock rising-edges (i.e. 1.2us for
a 114M H z system clock) is required by the system to create
HDR tone mapped data (grey part of HDR output in Fig. 3)
from the three captured lines. And then, it delivers an HDR
video stream at 60 fps directly updated at each time the sensor
sends an image.

C. HDR creating

The evaluation of the inverse of the response curve of the
system g only requires the evaluation of a finite number of
values (typically 1,024 values for a 10-bit precision sensor),
as depicted in the paper of Debevec et al. [2]. These values can
be preliminary evaluated from a sequence of several images,
then stored in the camera, and reused further to convert pixel
values. For our case, the curve g has been calculated, in a first
step, using the Matlab code provided with the Debevec paper.
In a second step, this curve has been stored in LUTs on the
hardware platform. For recovering the HDR luminance value
E;; of a particular pixel, all the available exposures of this
pixel are combined using the following equation:
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Memory Management Core. Performing three parallel streaming videos with low (Ir,), middle (Is) and high (Iz7) exposure times. The delayed HDR

row output is shown after HDR and tone mapping computations (related to Section III-C and III-D.
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where p indexes the image number, ¢ and j indexes pixel

position and w’(2) is a weighting function giving higher weight
to values closer to the middle of the function:
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where Z,,;, and Z,,,, values depend on the sensor output
dynamic (typically 1,024 values for a 10-bit precision sensor).
Considering Zl,ij’ Zg’ij and Zg’ij as ZL,ija ZM,ij and ZH,ij
in a 3-frame HDR system, the overall scheme is visible in the
pipeline architecture depicted in Fig. 4
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Fig. 4. HDR creating using three different pixel streams.

Computation of luminance values requires the use of 32-
bit arithmetic operators (substractors, multipliers etc.) and
transition from 10-bit to IEEE754 32-bit wide (called “Fixed-
to-Float” in Fig. 4). LUTs are used to store the inverse of the
response curve g and make the transition from exposure time
values Aty /g to neperian logarithm field.

D. Tone Mapping

Once the radiance map is recovered, HDR image pixels
have to be mapped to the display range of a selected material,
typically a LCD monitor. In our case, the displayable range
is 28 values. The global part of Reinhard et al. [7] algorithm
requires one global computation: the log average luminance
found in the image, calculated by:

_ 1
Eij=exp | - > I+ Ejj) )

where E; ; is the scene luminance for pixel (4,5), IV is the
total number of pixels in the image. For our case, due to signal
noise, we cannot have zero pixel value, so we can assume
that 6 = 0. The summation is only over non-zero pixels.
Then, we want to map the middle grey scene luminance to the
middle-grey of the displayable image. For the photographic
tone reproduction operator, an approach is to scale the input
data such that the log average luminance is mapped to the
estimated key of the scene a, where a is a scaling constant
appropriate to the illumination range of the image scene:

oM 1
Dy =255 — L4 e =265 ———— (10)
l+ag: 1+ 5=
3 a-Lvgg

The tone mapping pipeline implemented is shown in Fig.
5. Frame enable permit to calculate the log average luminance
each time a HDR image is receiving by the HDR creating
pipeline.

Frame /
enable

Tone Mapping |
Reinhard

InE

Fig. 5. Tone mapping hardware pipeline.

IV. IMPLEMENTATION

Our work has been implemented on a Virtex-6 platform.
We show the hardware implementation results in Table IV.
Usually, FPGA-based image processing requires many specific
devices such as SRAM memory, multi-port memory, video
direct memory access, dedicated processors, and consequently,
consumes many DSP blocks. This is not the case for our im-
plementation. It consumes relatively low hardware complexity
since the number of occupied slices is 6,692 (about 17% of
the device) and the number of LUTs is 16,880 (i.e. 11% of
the device).

Metric [ Utilization [ Availability
Estimated supply power 6.039 W

Maximum frequency 125.0 MHz

Number of occupied Slices 6,692 17%
LUTs 16,880 11%
Registers 20,192 6%
Number of bonded IOBs 196 32%
36K BRAMs 17 4%

TABLE II. SUMMARY OF HARDWARE IMPLEMENTATION RESULTS ON

THE VIRTEX-6 PLATFORM.

Captures of still images from the different video LDR
stream are shown in Fig. 6. You can see at the same time the
contributions from the different LDRs frames (Fig. 6-a, 6-b,
and 6-c) in the HDR image (Fig. 6-d). As an example, we can
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Fig. 6. Result of the complete system. Our Multiple Exposure Control can select the three proper exposures, and the specific memory management core permits

us to display 3 bracketed images at the same time.

distinguish the word "HDR” inside the lamp (high brightness),
and the word "HDR” inside the tube (low brightness).

V. CONCLUSION

An HDR smart camera, with a complete hardware system
from capture to display, has been designed for rendering HDR
content at a 1.3-megapixel resolution and a high frame rate of
60 fps. Such a smart camera demonstrates that HDR video is
feasible and exceeds other state of the art hardware platforms
both in terms of resolution, speed, image quality and control.
However, some effort has to be done in standardization, com-
pression and sharing HDR data in order to provide an efficient
HDR smart camera able to dynamically manage any variation
in the scene. As an illustration, the multiple exposure technique
can cause problems due to scene motion and generate artefacts
in the resulting HDR video. In our case, our platform is not
very affected with such a problem because extremely rapid
scene motion does not happen in our captured scenes. This
is partly due to the fact that we used a dedicated memory
management core which delivers multiple videos in parallel at
60 frames per second, and that our pixel stream is continuously
updated with the current frame sent by the sensor. However,
in extremely rapid scene motion, real-time implementation of
specific ghost removal algorithms need to be investigated in
order to enhance the HDR video quality.
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