
Fault-Secure Scheduling of Arbitrary Task Graphs to Multiprocessor Systems

Koji Hashimoto
Hitachi Research Laboratory

Hitachi, Ltd.
Hitachi-city, Ibaraki 319-1292, Japan

khasimo@gm.hrl.hitachi.co.jp

Tatsuhiro Tsuchiya Tohru Kikuno
Department of Informatics and Mathematical Science

Osaka University
Toyonaka-city, Osaka 560-8531, Japan
ft-tutiya, kikunog@ics.es.osaka-u.ac.jp

Abstract

In this paper, we propose new scheduling algorithms to
achieve fault security in multiprocessor systems. We consid-
er scheduling of parallel programs represented by directed
acyclic graphs with arbitrary computation and communi-
cation costs. A schedule is said to be 1-fault-secure if the
system either produces correct output for a parallel program
or it detects the presence of any single fault in the system.
Although several 1-fault-secure scheduling algorithms have
been proposed so far, they can all only be applied to a class
of tree-structured task graphs with a uniform computation
cost. In contrast, the proposed algorithms can generate a
1-fault-secure schedule for any given task graph with arbi-
trary computation costs. Applying the new algorithms to
two kinds of practical task graphs (Gaussian elimination
and LU-decomposition), we conduct simulations. Experi-
mental results show that the proposed algorithms achieves
1-fault security at the cost of small increase in schedule
length.

1. Introduction

In recent years, much research has been conducted on
methods for high reliability multiprocessor scheduling un-
der various system models (e.g., [8, 13]). This paper fo-
cuses on fault-secure multiprocessor scheduling. The goal
of fault-secure scheduling is to detect errors in computation
of parallel programs carried out on multiprocessor systems.
The basic approach to achieving fault security is to duplicate
every task of a program and compare outputs of copies to
ensure that either the output of the program is correct or at
least one of the comparisons reports the existence of errors.

The concept of fault security was originally introduced
in logic circuit design [7]. A circuit is fault-secure if for
any single fault within the circuit, the circuit either pro-
duces correct output or produces a non-codeword. Banerjee
and Abraham [1] first applied this concept to multiproces-

sor scheduling. Gu et al. [3] have investigated the formal
characterization of fault-secure multiprocessor schedules by
introducing the concept of k-fault-secure scheduling. In a
k-fault-secure schedule, the output of a system is guaran-
teed to be either correct or tagged as incorrect for up to
k processor faults. In their model, a parallel program is
composed of a set of tasks and represented by a directed
acyclic graph, and the number of processors is unlimited.
Some scheduling algorithms have been proposed to achieve
1-fault security in [3]. More recently, Wu et al. [14] pro-
posed an optimal fault-secure scheduling algorithm. Given
the number of processors, the algorithm generates a 1-fault-
secure schedule with the minimum schedule length.

However, the algorithms proposed in [3] and [14] assume
that communication costs are negligible and all tasks have
a uniform unit execution time. Moreover, these algorithms
can only be applied to a class of tree-structured task graphs.

In this paper, we propose a new scheduling algorith-
m for achieving 1-fault security in multiprocessor systems
with a distributed memory architecture, in which processors
communicate with each other solely by message-passing.
For comparison purposes, we also present a straightfor-
ward algorithm. We consider parallel programs represented
by directed acyclic graphs with arbitrary computation and
communication costs. Multiprocessor scheduling for most
precedence-constrained task graphs is an NP-complete prob-
lem in its general form [2]. The algorithms we propose in
this paper are heuristic; that is, schedules they produce are
not necessarily optimal.

It is well known that inter-processor communication has
serious effects on the performance of parallel processing.
Task duplication [9] is an effective technique for improving
the performance by reducing overheads of the communica-
tion. This technique eliminates communication delays by
duplicating tasks among PEs. The technique thus improves
the start times of tasks that need to wait for their preceding
tasks, and also improves the finish time of the given program
consequently.

In our approach to achieving 1-fault security, every task

0-7695-0707-7/00 $10.00!�!"###!$%%%!

in the given task graph is replicated, and equality tests are
carried out between the copies. The proposed algorithm-
s schedule copies of tasks based on the task duplication
technique to achieve better performance while maintaining
1-fault-secure properties.

2. Preliminaries

2.1. System and Task Model

We consider a multiprocessor system that consists of n
identical processing elements (PEs) and that runs one appli-
cation program at a time. All PEs are fully connected with
each other via a reliable network. A PE can execute tasks
and communicate with another PE at the same time. This
is typical with dedicated I/O processors and direct memory
access.

A parallel program is represented by a weighted directed
acyclic graph (DAG) G = (V;E;w; c), where V is the set
of nodes and E is the set of edges. Each node represents
a task v, and is assigned a computation cost w(v), which
indicates the task execution time. Each edge < v; v0 >2
E from v to v0 corresponds to the precedence constraint
that task v0 cannot start its execution before receiving all
necessary data from task v. Given an edge < v; v0 >, v
is called an immediate predecessor of v0, while v0 is called
an immediate successor of v. If there exists a path from
v0 to v, v0 is called a predecessor of v. A task that has no
immediate successors is called an output task. Each edge
is assigned a communication cost c(v; v0), which indicates
the time required for transferring necessary data between
different PEs. If the data transfer is done within the same
PE, the communication cost is zero. In the following, we
call such a weighted DAG a task graph. Various applications
are known to be represented by weighted DAGs (e.g., [12]).
Figure 1 shows examples of task graphs. In the figure, the
number adjacent to each node represents the execution time
of the task represented by the node, and the number on each
edge is the communication cost for data transfer.

We introduce some definitions and terminology as in
[6]. For a path in a task graph, its length is defined as the
summation of task execution times along the path excluding
communication delays. The level of a task is defined as the
length of the longest path from the node representing the
task to a node that has no successor nodes. In Figure 1(a),
for example, the levels of v6 and v7 are 9 and 2, respectively.
Finally, the height of a task is defined as

height(v) =

(
0; U = ;;
1 + max

u2U

height(u); U 6= ;;

where U is a set of immediate successors of v. In Figure
1(a), for example, the heights of v6 and v7 are 3 and 0,
respectively.

v1

v2 v3 v4 v5

v6

v7 v8 v9

v10

v12v11

8

88
8

8

12
12

12

12
12

12 12

12 12

1

2

3

4

6

1

2 2 2

3 3 3

(a) Gaussian elimination

v1

v2 v3 v4 v5

v6

v7 v8 v9

v10

v12v11

1

2

3

4

5

22

3 3 3

v13

v14

4 4 4 4

8
8

8

8

8

8

8

8

8

8

888
8

8

8
8 8 8

(b) LU-decomposition

Figure 1. Task graphs.

2.2. Scheduling

In general, multiprocessor scheduling refers to the pro-
cess in which tasks in a given task graph are assigned to PEs
and the time slots in which the tasks are executed are deter-
mined. When more than one copy of each task is allowed
to be scheduled, it is also necessary to specify from which
copies to which copies data are transferred.

To distinguish between a task v 2 V and its scheduled
copies, we call the latter the instances of v. We represent
by D(s) = (�1; �2; � � � ; �r) the fact that the instance s of
v receives necessary data from �1; �2; � � � ; �r which are
instances of the immediate predecessors of v. By definition,
r is equal to the number of the immediate predecessors. We
always write �i’s in ascending order of the indices of the
corresponding tasks.

Fault-secure scheduling, as discussed here, refers to pro-
ducing a schedule with which even if any single fault occurs,
the system can either produce the correct result for a giv-
en program or detect the fault. We call such a schedule a
1-fault-secure schedule [3]. The goal of our research is to
minimize the schedule length while achieving 1-fault secu-
rity.

In our approach to achieving the 1-fault security proper-
ty, every task v 2 V is replicated to produce at least two
copies of its output and equality tests are carried out be-
tween different copies of some tasks. To do so, we need to
allocate tests to PEs, in addition to the normal tasks of V .
A test reports either “equal” or “not equal” according to the
equality of the outputs of the copies compared. A fault is
detected when some test reports “not equal”. We assume
that the outcome of a test carried out on a fault-free PE is
always correct.

We use the notation �(�1; �2; � � � ; �m) to indicate a test
that compares the outputs of instances �1; �2; � � � ; �m of
the same task. Each test requires time for execution, and
receiving data for comparison also incurs a communication
delay. However the computation and communication costs

2

0-7695-0707-7/00 $10.00!�!"###!$%%%!

of tests do not have any effect on the correctness of the
proposed algorithms. Thus we do not introduce notations to
represent these costs in this paper.

2.3. Fault Model and 1-Fault-Secure Schedule

We assume that a fault in a PE can result in errors in
the outputs of an arbitrary set of instances of tasks and tests
allocated to the PE. We call such a set a fault pattern if it is
not empty, that is, a fault pattern is a non-empty subset of
instances of tasks and tests that consists of all the instances
whose outputs can be made erroneous directly by a fault in
the system.

If a task receives erroneous outputs of other tasks, then
the task itself may or may not become erroneous. We assume
that an error in an instance of task causes a (possibly empty)
subset of instances that receive data from that instance to be
erroneous [4].

As in [3, 4], we introduce the notion of interpretation,
which represents a possible error scenario.

Definition 1 (Interpretation) Given a schedule S, an in-
terpretation I for S is a set

P
= fc; e; n, �1, �2; � � �g of

labels, with distinguished labels “c”, “e”, “n”, together with
an assignment of a label to each instance of S such that:

1. each instance of a task is assigned a label fromP
�fe; ng, and

2. each instance of a test is labeled either “e” or “n”.

In the definition, “c” means “correct”, whereas�i represents
an erroneous value of an output. Therefore, an instance of
a task labeled “c’ produces a correct output value, while an
instance assigned a label �i outputs an erroneous value. The
labels “e” and “n” represent the two possible outcomes of a
test, “equal” and “not equal” respectively. In the following,
we use LabelI(s) as the label assigned by an interpretation
I to an instance s of S.

The next definition gives the rule of producing scenarios
for a given fault pattern.

Definition 2 (Consistency of Interpretation)
Given a schedule S and a fault pattern P 0, an interpreta-
tion I of S is consistent with P 0 if and only if the following
conditions are satisfied.

(A) for an instance s of a task, if LabelI(s) 6= “c”, then
either s 2 P 0 or there is at least one instance � in D(s)
such that LabelI(�) 6= “c”.

(B) for an instance t of a test �(�1; �2; � � � ; �m), if
LabelI(t) = “e”, then either t 2 P 0 or LabelI(�1) =
LabelI(�2) = � � � = LabelI(�m).

(C) for an instance t of a test �(�1; �2; � � � ; �m), if
LabelI(t) = “n”, then either t 2 P 0 or LabelI(�i) 6=
LabelI(�j) for some �i and �j (i 6= j; 1 � i; j � m).

(D) for two instances, s and s0, of a task, with D(s) =
(�1; �2; � � � ; �r) and D(s0) = (�0

1; �
0

2; � � � ; �
0

r), if
s; s0 =2 P 0 and LabelI(�q) = LabelI(�

0

q) for all q
(1 � q � r), then LabelI(s) = LabelI(s

0).

(E) for two instances, s and s0, of a task, with D(s) =
(�1; �2; � � � ; �r) and D(s0) = (�0

1; �
0

2; � � � ; �
0

r), if
s; s0 =2 P 0 and there exists at least one �q (1 �
q � r) such that LabelI(�q) 6= LabelI(�

0

q), then
LabelI(s) 6= LabelI(s

0).

Condition (A) implies that in any valid scenario for a fault
pattern P 0, the output of s can be erroneous only if either s
is computed on the faulty PE or one of the instances of the
immediate predecessors of v is erroneous. Conditions (B)
and (C) indicate that the outcome of a test carried out on a
non-faulty PE is determined by the labels of instances par-
ticipating in the test, while a valid scenario may assign “e”
or “n” arbitrarily to tests carried out on the faulty PE. Con-
dition (D) states that different instances of a task computed
on non-faulty PEs with identical input values must have the
same output value. Condition (E) is the assumption that
instances of a task computed on non-faulty PEs with differ-
ent input values from each other must have different output
values.

Based on the concept of interpretation, we define a 1-
fault-secure schedule as follows.

Definition 3 (1-Fault-Secure schedule) A schedule S is
1-fault-secure if and only if for every fault pattern P 0

and for every interpretation I that is consistent with P 0,
LabelI(s) = “c” for every instance s of every output task,
or there exists at least one instance t of a test such that
LabelI(t) = “n”.

3. 1-Fault-Secure Scheduling Algorithms

In this section, we present two scheduling algorithms
STR and TDFS to achieve the 1-fault security property.
Both algorithms tag each instance with “0” or “1”, which
we call the version number.

3.1. Straightforward Algorithm

A simple way of achieving 1-fault security is to sim-
ply duplicate a non-fault-secure schedule. We refer to this
algorithm asSTR. AlgorithmSTR produces the non-fault-
secure schedule by applying DSH , which is a (non-fault-
secure) scheduling algorithm proposed by Kruatrachue [9].
Figure 2 shows an example of applying STR. In the figure,

3

0-7695-0707-7/00 $10.00!�!"###!$%%%!

(a) task graph

0
p1 p2 p3 p4Time

5

20

(b) construction
 of S0

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

1(v9) 2(v9)

0
p1 p2 p3 p4Time

5

20

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

0
p1 p2 p3 p4Time

5

20

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

0 0

0 0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

1 1

1

1

1

1

1

1

1

1

0 0

0

0

0

0

0

0

0

0

1 1

1

1

1

1

1

1

1

1

10

15

10

15

10

15

(c) copying from
 S0 to S1

(d) schedule
 obtained

v1

v2

v4

v6

v3

v8

v5

1

2

3

2

2

3

3

v7

v9

22

2

2

2

2

2

2

2

4

2

3

Figure 2. Illustrative example of Algorithm
STR.

vi denotes an instance of v tagged with “i”, and �(v) denotes
a test in which all instances of v participate. S0 and S1 are
non-fault-secure schedules generated by DSH.

In a schedule generated by STR, every instance tagged
with “0” exchanges necessary data only with other instances
withinS0, while every instance tagged with “1” does so with
other instances within S1. In other words, each instance
tagged with “0” never receive any data from instances tagged
with “1”, and vice versa. Clearly, therefore, the system
needs to compare only the results of the output tasks. The
method of scheduling tests is explained in the following
subsection because it is common to Algorithm TDFS.

The time complexity of DSH is known to be O(jV j4)
[9], where jV j denotes the number of tasks in the task graph.
As explained in Section 3.3, the complexity of scheduling
one test is (O(jV j2). Therefore, the complexity of STR is
O(jV j4).

3.2. Task Duplication Based Algorithm

In this section, we propose a new 1-fault-secure schedul-
ing algorithm, which we refer to as TDFS. Algorithm
TDFS schedules each task based on task duplication [9],
which can improve performance. TDFS also tags every
instance with either “0” or “1”, and allocates tests by us-
ing this information. Unlike STR, however, TDFS allows
tasks with different version numbers to be allocated to the
same PE. In addition to output tasks, therefore, it may be
necessary to test other tasks. TDFS examines whether a
test is needed or not when each instance is scheduled. Test-
s are scheduled after all the instances of tasks have been
scheduled. The outline of TDFS is described below.

Algorithm TDFS

Input: G, a task graph; P , a set of PEs fp1; p2; � � � ; png (n � 2)

Output: S, a 1-fault-secure schedule
Begin
S := empty; TQ := empty
/*TQ is a set of tasks that need to be tested.*/
Partitioning:

Partition the set of tasks in G into task groups G1, � � �, Gm

according to height.
/*Task groups are arranged in descending order of height.*/

Apply Basic algorithm BA to each task group:
For i = 1 to m do
S := BA(Gi; TQ; S)

End For
Put all output tasks into TQ

Schedule tests for tasks in TQ:
S := TST (TQ;S)

End

3.2.1 Partitioning

In TDFS, a given set of tasks is first partitioned into subsets
according to their heights in such a way that all tasks with
the same height will belong to one subset. We call each
subset a task group. For example, consider the task graph in
Figure 1(a). The set of all tasks is partitioned into five task
groups as follows.

G1 : v1 G2 : v3 G3 : v3; v6

G4 : v5; v8 G5 : v9; v10 G6 : v2; v7; v11; v12

3.2.2 Basic Algorithm

Once the program has been partitioned into task groups, the
Basic algorithm described in this section is applied to each
task group. This algorithm consists of two steps.

In Step 1, all tasks in the given task group are scheduled
and tagged with “0”. The tasks are scheduled one by one
according to their priorities (the task with the highest prior-
ity is scheduled first). Priorities are assigned in descending
order of level. Tasks at the same level are prioritized ac-
cording to the number of immediate successors (the task
with the greatest number of immediate successors is given
the highest priority).

Now suppose that v 2 Gi is the task to be scheduled.
Note that all tasks in G1, G2, � � �, Gi�1 have already been
scheduled, i.e., a partial scheduleS0 already exists. In Step 1,
v is scheduled to one of the n PEs by adding its instance, say
s. All instances scheduled in Step 1, including s, are tagged
with “0”, The PE on which s will be placed is determined
by repeating the following process for every PE.

First, the earliest start time of s is computed, given that s
is scheduled on the PE. This can be done by calling Proce-
dure TDP [9]. Once the start time of s on that PE has been
obtained, instances from which s receives data are deter-
mined. According to the concept of task duplication, TDP
may duplicate predecessors of v in order to improve the start

4

0-7695-0707-7/00 $10.00!�!"###!$%%%!

time of s. Therefore, for each immediate predecessor ip of
v, there often exists more than one instance of ip that can
send data to s so that s can receive data before the desig-
nated start time. For each ip, the algorithm checks whether
or not an instance of ip exists that is tagged with “0” and
can deliver data to s before the start time. If there is such
an instance, it is chosen; otherwise, another instance of ip
which is tagged with “1” is chosen.

If predecessors of v are duplicated by TDP , instances
which provide data to those predecessor instances are also
determined as described above. Scheduling the new instance
may necessitate testing some other tasks. Based on the
state of data exchanges between instances, the algorithm
determines which tasks, if any, need to be tested. Such tasks
are put into a queue TQ called a test queue. The details of
how these tasks are determined are shown later.

After repeating this process for all PEs, the task is sched-
uled to the PE that can execute it earliest among all the PEs.
If there is more than one such PE, then a PE is chosen such
that the tasks needed to be tested is minimized.

In Step 2, all tasks in the task group are duplicated and
tagged with “1”. The newly duplicated copies are scheduled
in the same order as in Step 1. The PE to each is scheduled
is determined in the same way as in Step 1, except that
(1) an instance is never scheduled to the same PE where
its corresponding task was scheduled in Step 1, and (2)
instances tagged with “1” rather than “0” are chosen first
as instances for receiving data. Consequently, every task is
allocated to at least two different PEs.

The tasks to be tested are determined as follows. Suppose
that an instance s of v is scheduled on a PE p. Let i be
the version number of s (i = 0; 1). Then we test every
predecessor a of v that satisfies one of the following two
conditions.

1. a is an immediate predecessor of v and s receives data
from an instance of a that is tagged with “1� i”, or

2. a is a predecessor of v and an instance of a that is
tagged with “1� i” is already assigned to p.

The pseudo-code of the Basic algorithm is given below.

Basic algorithm BA

Input: Gi, a task group; TQ, a test queue; S0, a partial schedule
Output: S, a partial schedule
Begin

Arrange tasks in Gi according to their priorities
Step 1:

For each task v in Gi do
For each PE p in P do
DTlst[p] := NULL
/*DTlst is a list containing duplicated predecessors of v.*/
TT lst[p] := NULL
/*TT lst is a list containing tasks that need to be tested.*/

ST [p] := TDP (v; p;DT lst[p])
/*ST [p] is the earliest start time of v on p.*/
TT lst[p] := CKT (v; p;DT lst[p]; S0)
/*Put tasks that need to be tested into TT lst[p].*/

End For
pt := the PE whose ST [pt] is the smallest
Schedule v0 with DTlst[pt] to pt at time ST [pt]
Put tasks in TT lst[pt] into TQ.

End For
Step 2:

For each task v in Gi do
pa := the PE to which v has been scheduled in Step 1
For each PE p in P � fpag do
DTlst[p] := NULL; TT lst[p] := NULL
ST [p] := TDP (v; p;DT lst[p])
TT lst[p] := CKT (v; p;DT lst[p]; S0)

End For
pt := the PE where ST [pt] is the smallest
Schedule v1 with DTlst[pt] to pt at time ST [pt]
Put tasks in TT lst[pt] into TQ.

End For
End

Algorithm for checking whether test is needed CKT
Input: va, an assigned task; pa, assigned PE candidate;

DTlst[pa], a list of tasks duplicated; S0, a partial schedule
Output: TT lst[pa], list of tasks needed to be tested;
Begin

For each instance v in DTlst[pa] [fvag do
For each immediate predecessor � of v do

flag := NECESSARY
If � is in DTlst[pa] Then flag := UNNECESSARY
Else

For each instance �i of � in S0 do
If (the arrival time of data from �i to v

� the start time of v on pa) and
(the version number of �i = that of v) Then
flag := UNNECESSARY ; Break

End If
End For

End If
If (flag = NECESSARY) Then put v into TT lst[pa]

End For
For each predecessor x of v do

If (x is on pa) and (the version number of x 6= that of v)
Then put x into TT lst[pa]

End For
End For

End

3.2.3 Scheduling of Tests

After the instances of all tasks have been scheduled, tests
for the tasks in TQ are scheduled. A test for a task v is
assigned to a PE pwhere neither instances of v nor instances
of its predecessors are assigned. If there is more than one

5

0-7695-0707-7/00 $10.00!�!"###!$%%%!

v1

v2

v4

v6

v3

v8

v5

1

2

3

2

2

3

3

v7

v9

22

2

2

2

2

2

2

2

4

2

(a) task graph (c) without
 duplication

(d) duplication
 of v1

(f) schedule
 obtained

3

0
p1 p2 p3 p4Time

5

20

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

v1

v2 v4

v1

v3 v6

v5

v8

v7

0 1

0

0

0

0

0

0

0

0 1

1

1

1

1

1

10

15
0

v9
1

v8

1v7

10

1

0
p1 p2 p3 p4Time

5

20

v1

v2 v4

v1

v3

v1

v2 v4

v1

v3

0 1

0

0

0

0 1

1

1

1

10

15

0
p1 p2 p3 p4Time

5

20

v1

v2 v4

v1 v1

v2

0 1

0 0

0

1

10

15

0
p1 p2 p3 p4Time

5

20

v1

v2

v4

v1

v2

0 1

0

0

1

10

15

(e) Step 2

v3
0v3

0

0
p1 p2 p3 p4Time

5

20

v1

v2

v1

v2

0 1

0 1

10

15

v3
0

(b) assignment
 of v5

0 0

G1

G2

G3

G4

G5

G6

Figure 3. Illustrative example of Basic algorithm.

qualifying PE, the one on which the test can be executed
earliest is selected.

If there is no such PE, the test is duplicated and scheduled
in such a way that each of the two copies is executed on a
different PE from each other.

All the instances of v in S participate in the test. Note
that there may be more than two instances of v in S, because
v may be duplicated by Procedure TDP as successors of
v are scheduled. Therefore, tests are not necessarily binary
equality checks, unlike in [3, 4, 14].

Scheduling Algorithm for Tests TST
Input: TQ, a test queue; S0, a partial schedule
Output: S, a 1-fault-secure schedule
Begin

For each task v in TQ do
Find PEs to which no instances of v or its predecessors are
assigned, and put them into AP .
If (AP 6= NULL) Then

For each PE p in AP do
ST [p] := the earliest start time of the test � on p.

pt := the PE where ST [pt] is the smallest
Schedule � to pt at time ST [pt]

Else
For each PE p in P do
ST [p] := the earliest start time of the test �1 on p.

pt1 := the PE whose ST [pt1] is the smallest
Schedule �1 to pt1 at time ST [pt1]
For each PE p in P � fpt1g do
ST [p] := the earliest start time of the test �2 on p.

pt2 := the PE whose ST [pt2] is the smallest
Schedule �2 to pt2 at time ST [pt2]

End If
End For

End

3.2.4 Time complexity

The complexity of task level and height calculation is
O(jEj), where jEj denotes the number of edges in the task

graph. Each instance of a task is scheduled by applying
Procedure TDP to n PEs both in Step 1 and in Step 2 of the
Basic algorithm. The computational complexity of Proce-
dure TDP is known to be O(jV j3) [9], where jV j denotes
the number of tasks in the task graph. Therefore, the com-
plexity of scheduling of one instance is O(njV j3). When
calculating the start time of an instance on each PE, TDFS
checks whether its predecessors need to be tested or not. The
complexity of this check is O(njV j2). Also, the computa-
tional complexity of scheduling one test is O(jV j2). Since
jEj < jV j2 and the number of task is jV j, the complexity of
TDFS is O(jV j4), given that n is fixed.

3.2.5 Illustrative Example

Figures 3 and 4 illustrate how Algorithm TDFS works. In
this example, we assume that the number of PEs, n, is four
and that the task graph shown in Figure 3(a) is given. The
set of tasks is partitioned into six task groups G1, G2, � � �,
G6. Tasks in each task group are ordered according to their
priorities as follows.

G1 : v1 G2 : v2 G3 : v3; v4

G4 : v5; v6 G5 : v7; v8 G6 : v9

These task groups are ordered according to their heights.
Then the Basic algorithm is applied to each task group in
order. The task group whose height is the largest is selected
first.

Now suppose that task groups G1 and G2 have been
scheduled. Then the Basic algorithm is applied to G3. In
Step 1, each task inG3 is scheduled, and its instance is tagged
with “0”. This is done by applying Procedure TDP to each
PE. For example, an instance of v, which is indicated by v0

4
in Figure 3, is scheduled as follows. As shown in Figure
3(b), an instance of v3 (indicated by v0

3) has already been
assigned to p0. It can be seen that the start times of v0

4 on
p1 and on p2 are 10 and 7, respectively. The start time of v0

4

6

0-7695-0707-7/00 $10.00!�!"###!$%%%!

would be 6 on p3 if no instances were duplicated, as shown in
Figure 3(c). (Note that v4 must receive necessary data from
v1.) In order to improve the start time of v0

4 , TDP applies
task duplication. Figures 3(c) and (d) illustrate the concept
of task duplication. In this case, TDP duplicates v1 and
schedules another instance to p3 at time 0. (All instances
generated in Step 1 are tagged with “0”.) As a result of this
duplication, v0

4 can receive necessary data directly from v1

without any communication delay, and the start time of v0
4

on p3 becomes 4. As a result, p3 can start execution of v0
4

earlier than p1 and p2. Therefore, v0
4 is scheduled to p3 as

shown in Figure 3(d).
In Step 2, each task in G3 is duplicated and scheduled

to one of the n PEs other than the PE to which its instance
is already scheduled. For example, since an instance of v4

(v0
4) is already scheduled to p3 in Step 1, TDP is applied

to p1, p2, and p4. As a result, an instance tagged with
“1” (v1

4) is scheduled to p4. (All instances generated in
Step 2 are tagged with “1”.) Similarly, each remaining task
is scheduled so as to be executed on two different PEs as
shown in Figure 3(e).

The Basic algorithm is applied to the remaining task
groups G4, G5 and G6. As a result, a schedule is obtained
as shown in Figure 3(f).

When TDP calculates the start time of an instance on
a PE, TDFS also checks whether the predecessors of the
instance need to be tested or not. For example, when an
instance of v7 with version number “0” (v0

7) is scheduled to
p2, the algorithm decides to test four tasks; namely, v1, v2,
v3 and v5, because v0

7 receives data directly from v1
5, and for

v1; v2; v3, which are all predecessors of v7, their instances
tagged with “1” are already assigned to p2 (v1

1, v1
2, v1

3).
Finally, TQ becomes fv1; v2; v3; v5; v9g, and tests for

these tasks are scheduled. In this example, since v1, which
is a common predecessor to the tasks in TQ, is assigned to
all PEs, every test is duplicated and assigned to two distinct
PEs. As a result, a 1-fault-secure schedule is obtained as
shown in Figure 4(b).

4. Correctness Proof of Proposed Algorithms

In this section, we present a sketch of the correctness
proof of Algorithm TDFS. For complete proofs of Algo-
rithms STR and TDFS, readers are referred to [5].

In the following proofs, we letS denote a schedule gener-
ated by TDFS. As in [3, 4], we introduce an MV C DAG
G0 = (V 0; E0) for S, where V 0 is the set of nodes and E0 is
the set of edges. G0 represents the state of data exchanges
between instances in S, i.e., G0 is unique to S. Each node
represents an instance of a task in S. If an instance s0 re-
ceives necessary data from another instance s, then there is
an edge from s to s0. If there exists a path from s0 to s, we
call s0 an ancestor of s. Figure 4(c) shows an example of an

v1

v2

v4

v6

v3

v8

v5

1

2

3

2

2

3

3

v7

v9

22

2

2

2

2

2

2

2

4

2

(a) task graph

0
p1 p2 p3 p4Time

5

20

v1

v2 v4

v1

v3 v6

v5

v8

v7

v9

v1

v2 v4

v1

v3 v6

v5

v8

v7

1(v9) 2(v9)

0 1

0

0

0

0

0

0

0

0 1

1

1

1

1

1

10

15

(b) 1-fault-secure
 schedule

0

v9
1

v8

1v7

10

1

1(v1) 2(v1)

1(v2) 2(v2)

1(v3)

2(v3)

1(v5)

2(v5)

3

v1

v2

v3

v5

v8

v7

v1

v2

v3

v5

v7

v8

v1

v4

v6

v1

v4

v6

v8

v7

v9

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

v9
0

(c) MVC_DAG

Figure 4. Example of MVC DAG.

MVC DAG for the schedule in Figure 4(b).

Lemma 1 For every fault pattern P 0 and for every interpre-
tation I consistent with P 0, if a task v is tested in S, then the
following conditions hold.
[Case 1:] If there exists only one instance t of the test in S,
the following two conditions hold for every pair of instances,
s and s0, of v, where s and s0 have different version numbers.

1. if LabelI(s) 6= LabelI(s
0), then the test reliably re-

ports “not equal”, i.e., LabelI(t) = “n”.

2. if the outcome of the test is unreliable, then
LabelI(s) = LabelI(s

0) = “c”.

[Case 2:] If there are two instances of the test in S, the
following condition holds for every pair of instances, s and
s0, of v, where s and s0 have different version numbers.

1. if LabelI(s) 6= LabelI(s
0), then one of the two in-

stances of the test, t1 or t2 reliably reports “not equal”,
i.e., LabelI(t1) = “n” or LabelI(t2) = “n”.

Proof: IfLabelI(s) 6= LabelI(s
0), then there exists at least

one ancestor of s or s0, say x, in P 0. In Case 1, the algorithm
never assigns the test to PEs where s, s0, or their ancestors
have been scheduled. Therefore, t =2 P 0, that is, the outcome
of t is reliable. Consequently, t reliably reports “not equal”.
If t is not reliable, i.e., t 2 P 0, then for the same reason
mentioned above, the labels of all the instances of v and its
ancestors must be “c”. That is, LabelI(s) = LabelI(s

0) =
“c”.

In Case 2, there are two instances of the test in S. Each of
them has been assigned to a different PE. Since only one PE
is assumed to be faulty, it is obvious that either t1 =2 P 0 or
t2 =2 P 0. Therefore, if LabelI(s) 6= LabelI(s

0), then either
t1 or t2 reliably reports “not equal”. 2

Lemma 2 Let s and s0 be two instances of a task v, each with
a different version number, and letD(s) = (�1; �2; � � � ; �r)
and D(s0) = (�0

1; �
0

2; � � � ; �
0

r
). For every fault pattern

7

0-7695-0707-7/00 $10.00!�!"###!$%%%!

P 0 and for every interpretation I consistent with P 0, if
LabelI(s) = LabelI(s

0) 6= “c”, then the following con-
ditions hold.
[Case 1:] If s =2 P 0 and s0 =2 P 0, then LabelI(�q) =
LabelI(�

0

q) for all q (1 � q � r) and there exists at least
one p (1 � p � r) such that LabelI(�p) = LabelI(�

0

p) 6=
“c”.
[Case 2:] If s 2 P 0 and s0 =2 P 0, then LabelI(�

0

p) 6= “c”
holds for some p (1 � p � r).

Proof: In Case 1, from conditions (A), (D) and (E) in
Definition 2, it is clear that LabelI(s) = LabelI(s

0) 6=
“c” if and only if the condition described above holds. In
Case 2, it is clear from condition (A) in Definition 2 that
if LabelI(s0) 6= “c”, then LabelI(�

0

p) 6= “c” for some p
(1 � p � r). (Note that s 2 P 0 and s0 2 P 0 never hold
simultaneously.) 2

Lemma 3 Let s and s0 be two instances of a task v, each with
a different version number. For every fault pattern P 0 and
for every interpretation I consistent with P 0, if LabelI(s) =
LabelI(s

0) 6= “c”, then there exists an instance t of some
test in S such that LabelI(t) = “n”.

Proof: We prove this by induction.
[Base Step] From the definition of height, no tasks in

the task group G1 have immediate predecessors. There-
fore, if v 2 G1, then LabelI(s) = LabelI(s

0) = “c” or
LabelI(s) 6= LabelI(s

0) holds. Next, suppose v 2 G2 and
LabelI(s) = LabelI(s

0) 6= “c”. When s; s0 =2 P 0, by Lem-
ma 2, there is an instance � such that Label(�) 6= c and � is
both in D(s) and in D(s0). In this case, whichever version
number � is tagged with, TDFS guarantees that the task
corresponding to � is tested. Lemma 1 also ensures that
the test for � reliably reports “not equal”. When s 2 P 0

and s0 =2 P 0, s0 receives data from an instance assigned to
the same PE as s. Due to the rule of assigning tests, a test
is assigned for this instance, and by Lemma 1 it reliably
reports “not equal”.

[Induction Step] Assume that the lemma holds if v 2

G1 [G2 [� � � [Gk(k � 2). Now suppose v 2 Gk+1 and
LabelI(s) = LabelI(s

0) 6= “c”. Then two cases must be
considered, namely, [Case 1:] s =2 P 0 and s0 =2 P 0, and
[Case 2:] s 2 P 0 and s0 =2 P 0. For Case 1, we can prove
that there is a test that reports “not equal” by Lemma 1 and
Lemma 2. For Case 2, we can prove this by Lemma 1. Thus
the lemma follows. (For a complete proof, see [5].) 2

Theorem 1 TDFS generates 1-fault-secure schedules.

Proof: Suppose that an instance of an output task v is
labelled with an erroneous value. Then, by Lemma 3, there
is a test that reports “not equal”, or there is another instance
of v that is labelled with “c”. Also in the latter case, there

is a test that reliably reports “not equal” by Lemma 1, since
all output tasks are tested. Thus the theorem follows from
the definition of a 1-fault-secure schedule. 2

5. Experimental Evaluation

5.1. Simulation Environment

Using a large number of task graphs as a workload, we
performed simulations for comparison studies of Algorithm-
s STR and TDFS. In the simulations, we used task graphs
for two practical parallel computations: Gaussian elimina-
tion [10] and LU-decomposition [11]. These task graphs can
be characterized by the size of the input matrix because the
numbers of tasks and edges in the task graph depends on the
size. For example, the task graph for Gaussian elimination
shown in Figure 1(a) is for a matrix of size 3. The number
of nodes in these task graphs is roughly O(N 2), where N is
the size of matrix. In the simulation, we varied the matrix
sizes so that the graph sizes ranged from about 100 to 400
nodes. For each task graph size, we generated six differ-
ent graphs for ccr values of 0.1, 0.5, 1.0, 2.0, 5.0 and 10.0
by varying communication delays. The communication-to-
computation ratio (ccr) is defined as follows [10].

ccr =
average communication delay between tasks

average execution time of tasks

In the simulation, for each task graph, the execution time
of a test is set to the smallest execution time of tasks, and
the communication cost between a test and tasks is set to the
average communication delay between tasks.

As a baseline, we used the finish time of a (non-fault-
secure) schedule generated by DSH . All results presented
in this section are normalized to this length. In the studies,
we considered two cases: the number of PEs n = 8, and
n = 16.

5.2. Evaluation Results

Figures 5 and 6 show the simulation results for Gaussian
elimination and LU-decomposition task graphs, respective-
ly. The value of ccr is fixed to 5, and the matrix size is
varied so that the number of tasks in the corresponding task
graph ranges from 100 to 400. The results show that TDFS
outperforms STR. As the matrix size increases, the differ-
ence between the performance of TDFS and that of STR
increases. The following reason is conjectured. In general,
as the size of the task graph increases, its parallelism also
increases (here, parallelism means the maximum number
of tasks that can be executed in parallel at a time). We can
take advantage of the parallelism only if we have a sufficient
number of PEs. In this simulation, the number of PEs n is

8

0-7695-0707-7/00 $10.00!�!"###!$%%%!

fixed regardless of the size of task graph. Therefore, as the
matrix size increases, TDFS can extract more parallelism
than STR because STR can essentially use only n=2 PEs.

Figures 7 and 8 show the simulation results when the
matrix size is 24. In this simulation, we varied the value of
ccr from 0.1 to 10.0. In both kinds of task graphs, when
the value of ccr is small, e.g., ccr < 1:0, STR shows
better performance than TDFS. In most cases, the number
of tests in a schedule obtained by STR is smaller than
TDFS becauseSTR requires tests for the output tasks only.
Note that as communication delays decrease, the amount of
idle time between tasks, which is available for scheduling
tests by TDFS, decreases. As a result, TDFS has worse
performance thanSTR. On the other hand, when ccr � 1:0,
TDFS shows better performance than STR.

Compared with the non-fault-secure scheduling algorith-
m DSH , TDFS achieved 1-fault security at the cost of a
small increase in schedule length. For example, in the case
where n = 16 and ccr � 1, TDFS achieved 1-fault secu-
rity with less than 20% overhead. (Note that each result is
normalized to the schedule length of DSH .)

6. Conclusions

In this paper, we proposed two multiprocessor scheduling
algorithms, STR and TDFS, to achieve 1-fault security.
We showed that the time complexity of these algorithms is
O(jV j4), where jV j is the number of tasks in the given task
graph.

We performed simulation studies using two kinds of task
graphs for practical parallel computation; namely, Gaussian
elimination and LU-decomposition. As a result, it was found
that TDFS outperforms STR especially when the value of
ccr is large (ccr � 1:0).

A drawback of TDFS is its running time. For example,
for a Gaussian elimination task graph with matrix size = 24
(the number of tasks is 297), it took 8391 seconds to produce
a 1-fault-secure schedule. (We conducted the simulations on
a COMPAQ XP1000 workstation.) We consider improving
the running time as future work.

References

[1] P. Banerjee and J. A. Abraham, “Fault-secure algo-
rithms for multiple processor systems,” Proc. of 11th
Int’l Symp. on Computer Architecture, pp. 270-287,
1984.

[2] H. El-Rewini, H. H. Ali, and T. Lewis, “Task schedul-
ing in multiprocessing systems,” IEEE Computer, vol.
28, no. 12, pp. 27-37, 1995.

[3] D. Gu, D. J. Rosenkrantz, and S. S. Ravi, “Construc-
tion and analysis of fault-secure multiprocessor sched-
ules,” Proc. of 21th IEEE Int’l Symp. on Fault-Tolerant
Computing, pp. 120-127, 1991.

[4] D. Gu, D. J. Rosenkrantz, and S. S. Ravi, “Fault/error
models and their impact on reliable multiprocessor
schedules,” Proc. of IEEE Workshop on Fault-Tolerant
Parallel and Distributed Systems, pp. 176-184, 1992.

[5] K. Hashimoto, “Multiprocessor scheduling algorithms
for high reliability,” PhD dissertation, Dept. of Infor-
matics and Mathematical Science, Osaka University,
2000.

[6] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “A multi-
processor scheduling algorithm for low overhead fault-
tolerance,” Proc. of 17th IEEE Int’l Symp. on Reliable
Distributed Systems, pp. 186-194, 1998.

[7] B. W. Johnson, “Design and Analysis of Fault-Tolerant
Digital Systems,” Addison-Wesley, 1989.

[8] S. Kartik and C. Siva Ram Murthy, “Task allocation al-
gorithms for maximizing reliability of distributed com-
puting systems,” IEEE Trans. Computers, vol. 46, no.
6, pp. 719-724, 1997.

[9] B. Kruatrachue, “Static task scheduling and grain
packing in parallel processing systems,” PhD disser-
tation, Electrical and Computer Eng. Dept., Oregon
State Univ., Corvallis, 1987.

[10] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path
scheduling: an effective technique for allocating task
graphs to multiprocessors,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 5, pp. 506-521, 1996.

[11] R. E. Lord, J. S. Kowalik, and S. P. Kumar, “Solving
linear algebraic equations on an MIMD computer,” J.
ACM, vol. 30, no. 1, pp. 103-117, 1983.

[12] K. R. Pattipati, T. Kurien, R. -T. Lee, and P. B. Luh,
“On mapping a tracking algorithm onto parallel proces-
sors,” IEEE Trans. Aerospace and Electronic Systems,
vol. 26, no. 5, pp. 774-791, 1990.

[13] S. Tridandapani, A. K. Somani, and U. R. Sandadi,
“Low overhead multiprocessor allocation strategies
exploiting system spare capacity for fault-detection
and location,” IEEE Trans. Computers, vol. 44, no.
7, pp. 865-877, 1995.

[14] J. Wu, E. B. Fernandez, and D. Dai, “Optimal fault-
secure scheduling,” Computer Journal, vol. 41, no. 4,
pp. 208-222, 1998.

9

0-7695-0707-7/00 $10.00!�!"###!$%%%!

100

105

110

115

120

125

130

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
100

110

120

130

140

150

160

170

180

190

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Dimension of Matrix

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

(a) # of PEs = 8

STR

TDFS

Dimension of Matrix

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

(b) # of PEs = 16

STR

TDFS

Figure 5. Results for Gaussian elimination task graphs.

100

110

120

130

140

150

160

170

180

190

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
100

105

110

115

120

125

130

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Dimension of Matrix

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

(a) # of PEs = 8

STR

TDFS

Dimension of Matrix
N

o
rm

al
iz

ed
 S

ch
ed

u
le

 L
en

gt
h

(%
)

(b) # of PEs = 16

STR

TDFS

Figure 6. Results for LU-decomposition task graphs.

100

110

120

130

140

150

160

170

180

190

0.1 0.5 1 2 5 10

ccr

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

100

105

110

115

120

125

130

0.1 0.5 1 2 5 10

ccr

(a) # of PEs = 8

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

(b) # of PEs = 16

STR

TDFS

STR

TDFS

Figure 7. Results for Gaussian elimination task graphs.

100

110

120

130

140

150

160

170

180

190

0.1 0.5 1 2 5 10

ccr

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

(a) # of PEs = 8

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

100

105

110

115

120

125

130

0.1 0.5 1 2 5 10

ccr

(a) # of PEs = 8

N
o

rm
al

iz
ed

 S
ch

ed
u

le
 L

en
gt

h
(%

)

(b) # of PEs = 16

STR

TDFS

STR

TDFS

Figure 8. Results for LU-decomposition task graphs.

10

0-7695-0707-7/00 $10.00!�!"###!$%%%!

