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Abstract: A relatively large class of information theoretical measures, including e.g. mutual information or normalized
entropy, has been used in multi-modal medical image registration. Even though the mathematical foundations of the
different measures were very similar, the final expressions turned out to be surprisingly different. Therefore one of
the main aims of this paper is to enlight the relationship of different objective functions by introducing a mathematical
framework from which several known optimization objectives can be deduced.

Furthermore we will extend existing measures in order to be applicable on image features different than image intensities
and introduce “feature efficiency” as a very general concept to qualify such features.

The presented framework is very general and not at all restricted to medical images. Still we want to discuss the possible
impact of our theoretical framework for the particular problem of medical image registration, where the feature space has
traditionally been fixed to image intensities. Our theoretical approach is very general though and can be used for any kind
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of multi-modal signals, such as for the broad field of multi-media applications.

1. INTRODUCTION

The signal processing community has recently been pay-
ing an increased attention to integrated approaches for
dealing with multi-modal signals. In particular the use
of information theoretic quantities, such as mutual infor-
mation, has had a big success. For example the medical
imaging community is very reliant upon mutual informa-
tion to parametrically register multi-modal medical im-
ages [1], [2]. But also other applications, such as audio-
video (multi-media) processing, started to benefit from
integrating different signals which are physically of com-
pletely different nature and to explore their mutual (but
unknown) relationship [3].

In this paper, we describe and explore an approach
very similar to information theoretic feature extraction
and selection for classification [4]. Therefore we will
start with a short review of this topic, before transpos-
ing it into the framework of multi-modal signals. Using
Fano’s inequality [S] and the data-processing inequality
[6], we derive a probabilistic reason to use mutual in-
formation for multi-modal signal processing. This in-
formation theoretical framework shows that the restric-
tion to a particular kind of signal features (such as gray
levels for multi-modal medical images) can naturally be
abandoned. In fact the presented information theoretic
derivation indicates clearly that we can very easily build
multi-modal algorithms which automatically select and
extract the optimal elements within a predefined class of
features.

In order to get a more intuitive feeling and interpreta-
tion about the developed approach, we will describe some
of its possible implications for multi-modal medical im-
age registration. For example we will show how we can

obtain normalized entropy [7], an overlap-invariant en-
tropy measure for multi-modal medical image registra-
tion, from our framework. This gives a more general ex-
planation on when to use mutual information and when
to use normalized entropy, also for applications outside
the medical imaging community.

2. WHY MUTUAL INFORMATION FOR
MULTI-MODAL SIGNALS?

Our mathematical derivation is highly related to informa-
tion theoretical feature extraction and selection for clas-
sification. Therefore we first want to recall the justifica-
tion to use mutual information in this field. Afterwards
we present our own derivation in the case of multi-modal
signals which will lead to a probabilistic interpretation of
mutual information in the context of multi-modal signals.

2.1. Fano’s Inequality for Classification

As shown in fig. 1, the task of classifying a signal into a
set of classes can be modeled by a Markov Chain [4].
It’s interesting to interpret classification as a Markov
chainC - X — F — C as Fano’s inequality [5] gives a
lower bound of the error probability of miss-classification

P, =Pr(C #C=C(F)) 4

H(C|\F) - H(P.)
log(|¥| - 1)
H{C)-I{C,F)-1
log | ®| ’
where C' is a random variable (RV) modeling the learn-
ing sample of the classes. X is the RV of the obser-
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Fig. 1. Learning optimal features for classification with
examples can be mathematically interpreted as a Markov
chain [4]. C represents the random variable of the learn-
ing sample of the classes and X are the associated obser-
vations generated by its conditional probability density
function Px)c(X|C). The features F' are extracted from
X with the feature extractor g{., ) and are used to esti-
mate the output C of the classifier.

vations from the Bayesian source and is conditioned on
the discrete RV C. F' is a RV representing the features
extracted from the initial RV X with a feature extractor
g(., @), characterized by . Finally C is the RV modeling
the probability distribution of the output of our classifier.
H{(.) is the Shannon entropy of a RV, I(.,.) is the Shan-
non mutual information [8] of a pair of RVs and || is the
number of elements in the range of C' (e.g. for classifica-
tion the number of classes).

No hypothesis about the specific classifier has been
taken for eq. 1. So the inequality just quantifies how well
we can classify at the best when using a specific feature
space F'. Unfortunately it is impossible to find an upper
bound for the probability of error when we use Shannon’s
expression of entropy [9]. Hence the best we can do is
minimizing this lower bound, so that a suitable classifier
can do well. Observing that H(C) as well as log |¥] is
constant, we have to maximize the mutual information
I(C, F) in order to minimize this lower bound.

Therefore in the sense of error probability, we have to
select/extract those features that contain the largest infor-
mation about the classes C.

2.2. Fano’s Inequality for Multi-modal Signal Process-
ing

We want to show that we can associate Markov chains

with multi-modal signals as well. This allows us to build

feature related quality measures for multi-modal signal

processing algorithms in the same sense as the probability

of error of eq. 1.

In fig. 2 we schematically show the realization of
two signals of different modality from the same physi-
cal scene. Sampling the obtained continuous signal into a
discrete representation can be modeled by a RV .S which
is uniformly distributed over the set of possible measure-
ment “positions”. Or more specifically, the RV S gen-
erates the possible sampling positions of the signals: in
an image the pixel/voxel coordinates and in a video se-
quence the time coordinate of the frames. For instance a
3D image contains 1, X 74 X 1. voxels, the probability
that a certain measurement had been performed at coor-
dinates (7, j,k) is P(s = (i,7,k)) = m,‘ds e
(“for all voxels in the image”).

This initial random variable S can be seen as the start-
ing block of two related Markov chains (Fig. 2): Starting
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'Fig. 2. Markov chains can be built from a pair of multi-

modal signals. They use the joint histogram between the
final features (F'x and Fy) as the connecting block.

from S we can model the specific measurement X (resp.
Y') of the initial signals as RVs conditioned on the out-
come of 5. What exactly is measured is the feature se-
lection step. E.g. in an image, for each sample position
generated from the RV S we can measure the intensity at
that position, but also the gradient, Gabor response, etc.
Farthermore S gives a physical correspondence between
X and Y as we measure both signals at the same position
in the sampling space of S'. Obviously X and Y can also
model multi-dimensional feature spaces, which might ask
for an additional feature extraction step. This means we
project the measured features into lower dimensional sub-
spaces of X and Y. Such sub-spaces are again RVs and
we denoted them F'x and Fy in fig. 2. The physical cor-
respondence of the measurements X and Y, resp. Fx
and Fy (both are conditioned on the same sampling RV
S), makes it possible to link the two signals probabilisti-
cally through a joint probability distribution [12].

Interpreting the realization of multi-modal signals as
a stochastic process as described above allows the con-
struction of two related Markov chains:

S = X = Fx — Fg#t — yest — gest @
SoY = Fy = Fgt = X% 5 8¢, 3

Just as for the case of classification, we can find lower
bounds of the probabilities of error P,; = Pr(S° # S)
(Markov chain eq. 2) and P, = Pr(S¢*t # S} (Markov
chain eq. 3) that the final outcomes of the Markov chains
Sest (the estimated value of .S) are not the initial values
S. We get respectively for eq. 2) and eq. 3):

Pel

i

Pr(8et £ 8)
B I(Fx,Fg'y +1
log ||

and

!Sometimes S is not identical for both signals. For example two
images of different modality might have different dimensions. For such
cases we just want to make reference to interpolators which can build
the bridge between the two respective sampling spaces [10], [11].
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For a detailed derivation the reader is referred to [13].

The mutual informations I(Fy, F¢**) and I(Fx, Fg*
are determined form the same joint probability distribu-
tion estimated by non-parametric probability estimation
[12] (for example joint histogramming). From the sym-
metry of mutual information it follows that both lower
bounds are equal, so that minimizing them simultane-
ously equals maximizing the mutual information between
the feature representations of the multi-modal signals.

In fact eq. 4 and S give simply a lower bound of the
error probability when mapping one signal into the sec-
ond signal of a corresponding muiti-modal couple. For
example it estimates the minimal error probability when
generating a magnetic resonance image from a computer
tomography image or when estimating a video sequence
(the speaker’s mouth motion) from a speech signal. These
probabilistic mappings are modeled as the Markov chains
ofeq. 2and 3.

2.3. Feature Efficiency

There exists one danger though when simply maximizing
the mutual information in order to minimize the lower
bounds of eq. 4 and 5. In order to visualize this dan-
ger, let’s re-write the lower bounds in a different way and
use that for any pair of random variables X and Y we
have H(X,Y) > I(X,Y) and ZXUHX) > 1(x y)
to weaken them:

I(Fx,Fy) +1
C o log|Y]
- HEx, Fy) +1
- log |¥|

Prerezy 2
(6)

and

I(Fx,Fy)+1

log ||

1- H(Fx)+ H(Fy)+2
= 2-log|¥| ’

A%

P{el,e2)

O]

Eq. 6 and 7 both indicate that the error bounds can be
decreased by increasing the marginal entropies H (F'x)
and H(Fy) without considering their mutual relation-
ship (this is equivalent to maximizing the joint entropy
H(Fx, Fy), as we also have H(Fx, Fy) > H(Fx) and
H(Fx,Fy) > H(Fy)). This would result in adding su-
perfluous information to the feature space RVs F'x and
Fy. What we really want though is adding selectively
the information that determines the mutual relationship
between the signals while discarding superfluous infor-
mation. Mathematically we want to maximize the bounds
of eq. 6 and 7 and (in the resulting intervals) minimize the
bounds of eq. 4 and eq. 5.

For this aim we defined a feature efficiency coefficient
which measures if a specific pair of features is efficient in
the sense of explaining the mutual relationship between
the two multi-modal signals while not carrying much su-
perfluous information. The problem of efficient features
in multi-modal signals is closely related to determining
efficient features for classification. Our proposed coef-
ficient e(X,Y") of a pair of RVs X and Y is defined as
follows:

I(X,Y)
e(X,Y)= AXY) € [0,1]. (8)

Maximizing e(X, Y') still minimizes the lower bound
of the error probabilities, but also minimizes the joint en-
tropy H(X,Y) which results in maximizing the weak-
ened bounds of eq. 6 and 7. Looking for features that
maximize the efficiency coefficient of eq. 8 will there-
fore look for features which are highly related (large mu-
tual information) but haven’t necessarily much informa-
tion (marginal entropy)?.

Interestingly there is a functional closely related to
e(X,Y) that has already been widely used in multi-modal
medical image processing, even though it’s derivation was
completely different. It was called normalized entropy
NE(X,Y) [7] and was derived as an overlap invariant
optimization objective for rigid registration:

H(X)+H(Y)

NEX,Y)= A(X.7)

=e(X,Y)+1€1,2].
®

The derivation was specific for image registration and
arose from the problem that mutual information might in-
crease when images are moved away from optimal regis-
tration when the marginal entropies increase more than
the joint entropy decreases. This is equivalent to our
mathematically derived problem above, but for the spe-
cial case of image registration. Obviously maximizing
NE(X,Y) of eq. 9 is equivalent to maximizing the effi-
ciency coefficient of eq. 8.

2.4. Generalizing Feature Efficiency

We want to introduce a small chapter that should enlarge
the vision of feature efficiency for multi-modal signals.
It is very interesting to note that in the early years
of information theoretical multi-modal signal processing,
joint entropy HY(.,.) was also an optimization objective
of choice. Interestingly this statistic had to be minimized
in order to get for example good registration. Looking at
the deduced error bounds of eq. 4, 5 and particularly 6,
one realizes that minimizing joint entropy does not mini-
mize these error bounds. On the contrary, it actually max-
imizes the weakened bound of eq. 6 and therefore con-
tradicts error bound minimization. The result were very
“efficient” features, but with relatively large error bounds
(e.g. mapping a black on a white image). This results for
example in disconnecting the images during the registra-
tion process. We employed the same property in the pre-
vious chapter but only in combination with error bound

2Because of the range [0, 1] of e(X,Y), this functional is some-
times called “normalized measure of dependence” [14].
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minimization to separate the superfluous information in
the signals from the predictive information.

These arguments are very general. Nevertheless they
could have resulted in other definitions for feature effi-
ciency than eq. 8, such as

L IXY)
e(X, Y) = m, (10)
e(X,Y) é%% an

While the first example is a variant equivalent to eq.
8, as it simply uses the weakened inequality of eq. 7 in-
stead of eq. 6, the second is an extension of e(X, Y"), that
can be generalized as follows:

Ix,y"
H(X, Y)l—n ’
We call an element of this class of functions the feature

efficiency coefficient of order n.. The three cases of n = 0,
n=1andn = % represent:

en(X,Y) = ne 0,1 (12)

e n = (0: We emphasize entirely on the feature ef-
ficiency without caring about the resulting lower
bound of the error probabilities (minimizing joint
entropy). The algorithm will always converge to-
wards image representations where all the voxels
of an image has been assigned the same single fea-
ture value.

e 7 = 1: We emphasize on minimizing the lower
error bound without caring about the efficiency of
the features (maximizing mutual information). The
algorithm would converge towards an image rep-
resentation where each voxel has been assigned a
different feature value.

e n = %: We put equal emphasize on minimizing the
lower error bound and on feature efficiency (maxi-
mizing normalized entropy).

The two objectives of on the one hand minimizing
the lower error bounds and on the other hand maximizing
feature efficiency are therefore contradictory. The user
has to choose an appropriate order n of eq. 12 for a given
problem. For example order % has shown to be very in-
teresting for medical image registration [7], [15]. In fig.
3 we show a quantitative sketch of feature efficiency for
different orders of n.

3. ADDING MODELING ASSUMPTIONS

The previously developed theory is very general. No as-
sumptions have been taken with respect to the employed
features or the underlying probability distributions. De-
pending on the particular multi-modal signals, these gen-
erality can be abandoned in favor of a more specialized
objective function in the sense of the error probabilities
ofeq. 4 and 5.

In everything that follows, we argue solely on the
Markov chain of eq. 2. A completely analogue devel-
opment is possible for eq. 3.

Minimize Joint Entropy: n=0]

i

l_M'aximiZ/_a_, Efficiency qufﬁcient:'vri?o.j-

Feature Efficiency

I Maximize Mutual Fnformatior: n'=1J

Lower Error Bound

Fig. 3. The sketch puts the efficiency coefficients for
different orders 7 into a quantitative relationship. The
contradictory optimization objectives of minimizing the
lower error bound, but maximizing the feature efficiency
have to be combined in a suitable way for a given prob-
lem. In the case of medical images, n = % has shown
to work fine, as it results into an optimization functional
equivalent to normalized entropy [7].

3.1. From Error Probability to Correlation ratio

Let’s start with recalling Fano’s inequality for the Markov
chain of eq. 2 for multi-modal signals (eq. 4):

P, = Pr(S*t#35)

S 1_I(Fx,Fy)+1
= log ||
-: I_H(Fy)—H(FYIFX)+l (13)
log |¥|
> 1 log(v/2meVar(Fy)) — H(Fy|Fx) + 12
= log | 7| ’
(14)

where the last inequality approaches an equality when F'y
goes towards a discretized Gaussian [6]. It’s important
to note that in contrast to eq. 4, 5, 8 and 12, the last
lower bound is not symmetric anymore with respect to
the exchange of F'x and Fy.

Instead of minimizing the lower bound of 13, we can
minimize the weakened lower bound of eq. 14 by max-
imizing log(\/2meVar(Fy)) — H(Fy|Fx). Let’s now
assume that the probability density P(fy|fx) of the tran-
sition F'x — FYy is characterized by

fyr = E(Fy|Fx) + e(E(Fy|Fx)), (15)

where €(.) is an additive Gaussian noise and E(X|Y) is
the conditional expectation of X knowing Y. The condi-
tional probability P(Fy = fy|Fx = fx) is given by

1 ‘_Uz~E(F!:§|FK))2
[ 20 f
V2ro
(16)

P(Fy = fy|Fx = fx) =
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with 02 = E(Var(Fy|Fx)). Therefore we can easily
calculate the conditional entropy H (Fy |Fx):

H(Fy|Fx) = = > P(fx.fv)
fx.fy
1 (fy = B(Fy |Fx))?
oz L I
AV )

log(v/2reE(Var(Fy|Fx))). (17)

This means that we can minimize the lower bound of
eq. 14 by maximizing

log(\/m) — H(Fy|Fx) =
— log(m)

— log(y/2meE(Var(Fy|Fx))),

(18)

which is equivalent to maximizing its squared exponen-
tial

_ VaT(Fy)
m{Fy|Fx) = BWar(Fy|Fx))’ 19
or maximizing
T]‘Z(FYIFX) =1— E(Var(FYIFX)). (20)

Var(Fy)

12(Fy|Fx) is just the correlation ratio as proposed in
[16] for multi-modal medical image registration, when
the employed features F'x and Fy are the image intensi-
ties.

3.2. From Error Probability to Maximum Likelihood

In the previous section-(chap. 3.1), only assumptions
about the underlying transition probabilities were taken.
On the other hand we didn’t use any prior on the specific
feature representations to be used. Let’s now relax the
prior on the probabilities, but assume that we can fix the
feature representation F'y. This means that also the en-
tropy H(Fy) remains constant during the minimization
of the lower error bound of eq. 13. Therefore we want to
find the feature representation F'x so that the conditional
entropy

H(Fy|Fx)=— Y P(fx, fv) log P(fy|fx) @)
Ix. [y

is minimal.
Reversing the arguments of [17], it’s easily shown
that H(Fy|F'x) can be re-written as

1

H(Fy|Fx) = B

I PUv )l fx(s)). @2)
SEW

This is up to the negative constant — é, exactly the likeli-
hood of getting a signal F'y from a signal F'y for a given
transition probability distribution P(Fy = fy|Fx =
fx) and a fixed feature space representation Fy .

3.3. Feature Efficiency for Correlation Ratio

It’s important to note that in chap. 3.1 and 3.2 we argued
solely on the error probabilities and not on feature effi-
ciency coefficients of the feature space representations.
Using the definition of eq. 12 it’s straight forward to
construct specific feature efficiencies (“normalized en-
tropies”) for particular modeling assumptions.

In the case of maximum likelihood, maximizing fea-
ture efficiency is equivalent to maximizing the following
expression:

(H(Fy) - H(Fy|Fx))"

e”(Fx,Fy) = H(FX,FY)”'l

,ne1],(23)

where H(Fy) is constant though and allows therefore
easy evaluation of e, (Fx, Fy).

We can also find interesting expressions for the case
of correlation ratio. Using the definition of eq. 12 and
the modeling assumptions of chap. 3.1, we can write our
generalized feature efficiency coefficient as follows:

(].O V2reE(Var(Fy{Fx)) )n
Py Fo) = g V2neVar(Fy)
en( X Y) = H(FX',FY)"—I ?

24

withn € [0,1].

Forn = %, the functionals of eq. 23, resp. 24, should
correspond to an overlap invariant likelihood, resp. cor-
relation ratio, just as normalized entropy is the overlap
invariant expression for mutual information.

These expressions have a relatively complicated form
as we used explicitly the definition of eq. 12 in order to
emphasize the relation to normalized entropy. It’s possi-
ble though to construct efficiency coefficients more tai-
lored for likelihood or correlation ratio. For such a con-
struction it would be important though to keep in mind
that the feature efficiency coefficient has to find a trade-
off between minimizing the lower bound of the error prob-
abilities and maximizing the efficiency of the employed
features (summarized in fig. 3).

4. MULTI-MODAL MEDICAL IMAGE
REGISTRATION

So far our developments have been completely unrelated
to medical images or image registration. Everything has
been derived in the very general context of a correspon-
dent pair of multi-modal signals and their feature space
representations. In the case of medical images we simply
deal with image features, such as image intensity [1], {2],
edgeness [18] etc. We have still to make the connection
to the particular problem of medical image registration
though. To do this we identify image registration as a
special case of feature selection: Which transformation
selects the best features (e.g. image intensities) for the
voxels of the floating image so that the error bounds of
the corresponding Markov chains are minimized?
Therefore for the very general case of completely un-
specified Markov chains (eq. 2 and 3), the optimization
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objectives (mutual information resp. feature efficiency
coefficient of order 1) can be formalized as follows:

B P =

= ar| max I(T(Fx), Fy) @)

feR4,Fx v} CFix. v}

[, Fix ) =

= arg max

26
) en(THFyx), Fy), @0
teR4, Fix vy CF(x.v}

where £ € R? contains the registration parameters and d
defines the specific transformation (e.g. d = 6 for rigid
and d = 12 for affine registration). Fx,y} are the ini-
tia] feature spaces from which the optimal image feature
representations are selected/extracted. We made the arbi-
trary choice that F'x is the feature space representation of
the floating and Fy of the reference image. It’s just for
more clarity that we wrote £ separately from Fx. In fact
they can be implicitly included in the features F'x of the
floating image.

Let’s now add some assumptions to the general case
of eq. 25. In particular let’s assume that the modeling
assumptions of eq. 16 are met. For this case we have
shown in chap. 3.1 that minimizing the lower bound of
the error probabilities is very closely related (up to the
inequality of eq. 14) to maximizing the correlation ra-
tio between the feature space representations. Thereafter
we have also derived the general feature efficiency coef-
ficient for this particular case. Therefore the optimization
objective for the lower error bound is

[, Fit vyl =

=arg _ max 12 (Fy |T{Fx))
[eR4,Fix,y}CFix.v)

E(Var(Fy |Tz(Fx)))A

= 1-—
arg _max Var(Fy)

LFix vy
@7

which is the correlation ratio [16]. On the other hand
the optimization objective for the feature efficiency coef-
ficient using the definition of eq. 24 is

[Ebpt Fo'pt ] —

XY}
2reE(Var(Y|TH{X)))
10 t n
~ arg _max ( 5 V2reVar(Y) ) )

LFx,vy (log+/2meVar(Y))—n

(28)

Finally for the maximum likelihood expressions (chap.

3.2) we imposed that F'y is a fixed feature space repre-
sentation. Therefore we have to take F'x as features of
the floating image. The resulting optimization objective
is given by

[ FPY = arg  min
teRI, Fx CFx

= arg  max
teR4, Fx CFx

H(T(Fx)|Fy)
P(T[(Fx)]Fy).
(29)

The first equality represents minimal conditional en-
tropy and the second equality maximum likelihood opti-
mization. The equivalence of these two objectives was
shown in chap. 3.2. It's important to note that even
though Fy is fixed during this optimization it has not to
represent image intensities. Furthermore the employed
features F'y and Fy of the initial images have not to be
the same. For example to register an ultrasound (US) im-
age onto a magnetic resonance (MR) data-set we might
want to use image intensities for the MR image but rather
a combination of image intensities and gradients to rep-
resent the corresponding information in the US data-set
[19].

5. FEATURE EFFICIENCY FOR IMAGE
QUANTIZATION

Let’s consider a simple but illustrative example of fea-
ture extraction. It is closely related to simultaneous im-
age registration and multi-channel segmentation of med-
ical images as introduced in [20]. In this paper we want
to show how the order n of eq. 12 influences the opti-
mal number of uniform quantization levels of a pair of
synthetic T1-T2 magnetic resonance images (MRI) [21],
{22]. Uniform quantization can be seen as a very primi-
tive way to reduce the corrupting noise in the MRIs and
therefore potentially improve the performance of image
registration algorithms. It’s important though that the
quantization will just reduce the noise, but as few as pos-
sible of the anatomical information in the images. This
means that we have to find an order n for eq. 12, which
on the one hand drops the unrelated information of both
MR data-sets (noise), but keeps the related anatomical in-
formation when the number of uniform quantization lev-
els are optimized with the corresponding efficiency coef-
ficient of order n. -

In fig. 4 a) and b), we show the initial T1 and T2 im-
ages resp. In images ¢) we have plotted the efficiency co-
efficients for different ns versus the logarithm of the num-
ber of bins. We see clearly that the maximum value lies at
different numbers of quantization levels. In particular we
can recognize the special case of n = 0 and n = 1. For
n = ( we minimize joint entropy and therefore the op-
timal number of bins is as expected 1 (section 2.4: just
maximize feature efficiency). For n = 1 we actually
maximize mutual information alone and therefore the op-
timal number of bins is the number of gray levels in the
initial images (section 2.4: just minimize error bounds).
Forn = 0.2, 0.5 and 0.8, we lie somewhere in between
these extreme cases, but n = 0.8 has also its global op-
timum where the number of uniform quantization levels
equals the number of image intensities. n = 0.2 has it’s
optimum at 2 and n = 0.5 at 3 quantization levels.

In fig. 5, we have applied the optimal uniform quan-
tization for n = 0.2 and 0.5 to the initial images. For
the cases n = 0, 0.8 and 1 the results are trivially either
completely black or the unchanged initial images. We
can see that n = 0.2 adds some of the anatomical in-
formation to the images. Nevertheless lots of anatomy is
lost in favor of a more efficient feature pair. On the other
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Fig. 4. In a) and b) we show a corresponding T1 and T2
data-set. In c) we show the efficiency coefficients for dif-
ferent orders n as a function of uniform quantization lev-
els. We see that the maximum varies heavily for different
ns and confirm the theoretical expectations of chap. 2.4

hand for n = 0.5 we have lots of anatomical information
conserved, while the corrupting noise is rejected.

In [20] we have shown that the presented quantization
task can easily be combined with image registration.

6. CONCLUSION

We have set-up a very general information theoretical
framework for multi-modal signal processing. Mathe-
matically it is based on Markov chains and the lower
bounds of their error probabilities. Keeping the focus
on medical image registration, we derived several widely
used objective measures from the framework. In partic-
ular we showed how mutual information, normalized en-
tropy (“Feature efficiency”), correlation ratio and likeli-
hood are information theoretically reiated. Our deriva-
tions are very general and extend all these measures, which
are classically applied as image intensity statistics, on
general feature space representations of the initial data-
sets. We also extend the important concept of feature ef-
ficiency to a more general mathematical formulation.

Finally we give an illustrative example about the con-
cept of feature efficiency, by applying a simple quantiza-
tion step on medical images. We show that e.g. noise sup-
pression can easily be integrated in multi-modal medical
image registration. An example, where bias-correction is
combined with registration is presented in [20].

It’s important to note that the presented general frame-
work opens the door towards a wide range of further de-

Fig. 5. In the images a) and b), respectively ¢) and d), we
show the uniform quantization results at optimal feature
efficiency (fig. 4 c)) for the feature efficiency coefficients
of order 0.2 and 0.5 respectively.

velopments about multi-modal signals and in particular
medical images. For example it would be interesting to
derive an upper bound of the error probabilities of eq. 4
and 5 or to incorporate spatial prior information into the
proposed Markov chains.
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