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ABSTRACT

This paper proposes two new methods for designing a class of 2-channel PR FIR filterbanks and wavelets with K-
regularity of high order. The K-regularity constraints are expressed as a set of linear constraints in the design variables.
The first method formutates the design problem as a quadratic programming problem with linear equality constraints
(QPLC), which can be solved using the method of Lagrange multiplier. The second design method employs the
minimax error criteria and solves the design problem as a semidefinite programming problem (SDP). By removing the
redundant variables, the equality constraints are automatically imposed into the design problem. The optimization
probiem is then formulated as a linear convex objective function subject to a umion of affine set which can be
represented by a set of linear matrix inequalities. Hence they can be solved using existing SDP solver. Design examples
are given to demonstrate the effectiveness of the proposed methods.

1. INTRODUCTION i

Perfect reconstruction (PR) multirate filterbanks (FB)
have important applications in signal analysis, signal
coding and the design of wavelet bases. A number of
techniques for designing linear-phase and low-delay two-
channel PR FIR filter banks are now available [1-11]. In
[2], it was shown that the structurally PR 2-channel FB
proposed in [1] can be formulated as a complex
Chebyshev approximation problem, which can be solved
using the REMEZ exchange algorithm to obtain linear-
phase as well as low-delay FBs. The construction of
wavelet basis from these FBs satisfying certain K-
regularity condition up to one zero order moment was
also studied. The advantage of these FBs is their low
implementation and arithmetic complexities.  The
incorporation of K-regularity with higher order, however,
was not addressed due to the difficulties in solving the
constrained optimization problem. The design of
paraunitary 2-channel FBs (the conjugate quadrature
filters (CQF)) with prescribed number of K-regularity
was previously considered in {3]. The FBs (wavelets) so
obtained are in general not linear-phase (antisymmetric).
Recently, Tay [10] showed that it is possible to
incorporate the K-regularity condition (or equivalently a
certain number of zeros of the lowpass analysis filter and
highpass analysis filter at @ =0 and w=m respectively)
for the linear-phase FB in [1] using the Berstein
polynomial. Since the ercer function is 2 linear function
of the coefficients in the Berstein polynomial, it can be
solved as a simple quadratic programming problem if the
least squares error criteria is used. The Genetic
Algorithm (GA) was also proposed for designing such
FBs and wavelets with higher order moments and sum-
of-powers-of-two (SOPOT) coefficients [8].

In this paper, we extend the approach in [2] to the
case of higher order K-regularities. This will enable a
larger class of wavelet FBs with different smoothness
and delay to be constructed. More precisely, we show
that it is possible to formulate the design problem as a
quadratic programming problem with linear constraints
(QPLC), if a least squares criteria is employed. The
approach is rather general and it applies to the linear-
phase as well as the low-detay cases without making use
of the Berstein polynomial expansion. We also show

that for the minimax error criteria, the design problem
can be solved using semidefinite programming (SDP)
[15]. SDP has been successfully applied in areas, such
as control, logistic, digital filter design [6], digital signal
processing, etc. Thanks to the interior-point- method [12-
14], SDP can now be solved efficiently in polynomial
time. Design results show that the proposed constrained
least squares design method gives rise to least squares
optimal solution that satisfies the required K-regularity
condition, whereas the SDP design method produces
filters with almost equi-ripple approximation error while
satisfying the given regularity condition. Comparing the
result reported in [2] for K=1, considerable improvement
was achieved using the SDP approach for the same
design specification.

The paper is organized as follows: In section 2, a
brief description of the FB to be designed and the
problem formulation will be given. Section 3 is devoted
to the proposed constrained least squares design method.
The second design method using the SDP will be
introduced in Section 4. This is followed by several
design examples in Section 5. Finally, conclusions are
drawn in section 6.

2. PROBLEM FORMULATION

The structurally PR FBs [i,2] that we are going to
design is shown in figure 1. 1t can be seen that the FB is
parameterized by the sub-filter pairs S(z) and @(z) and
the delay parameters ¥ and M . The FB is PR for
arbitrary choice of filter pairs B(z) and a(z) . The
functions a(z} and B(z) can be chosen as linear-phase
FIR or all-pass functions to realize FIR and IIR filter
banks with very low design and implementation
complexities. In [1], the case of using identical a(z) and
B(z) with delay parameter M =2N -1 is studied s0 as to
obtain linear-phase FIR or passband linear-phase 1IR
FBs. Later in [2], a{z} and B(z) are generalized to
include general FIR functions. As the linear-phase
requirement is relaxed, the lengths of a(z) and S(z) are
no longer restricied by the delay parameters of the
system. Therefore, higher stopband attenuation can still
be achieved at low system delay. In addition, wavelets
FBs with one zero order moment was constructed.
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Imposing K-regularity of higher order gencrally requires
the solution of a constrained optimization problem, as we
shall see laiz: in Sections 3 and 4.

From*ig. 1. the frequency responses of the analysis
filters are given by:

Ho(ij)tj;(e"ﬂNw +g~jmﬁ(ej2w))

8y

Hy(7) = —at(e P29 g (1) 4 M D
Let Ly and [, be respectively the lengths of Be’®)

and @(e/®y. From [2], it was shown that the desired

responses of B(e/) and xx(e/®) are respectively
B, (27 = gHmi 1D
and a,,(e’“) = glimMN e s

Next. we shall show that the K-regularity can be written

we[-7,m] (2)

as a set of linear constraints in the coefficients of [)‘(ej“’)
and a(e’®) . and the design problem can be solved using
a QPLC or a SDP problem.
3. CONSTRAINED LEAST SQUARES DESIGN
The objective functions for the least squares design of
Bte!®y and ofe’®) are
L = [ W@ 7 e, B, Pdo

e s (3a)
L(a) =J'_’2: Wiw)la™ e, —a,(e™)F do

where ¢, =[1 e ® Panibiad U w,, and @, are the
passband cutoff frequencies of H () and Hl(ej“')

p=18, B ﬁ!.,-l]r and

a, ] are the impulse responses of

respectively.
a=[a, o
B(zy and a(z) respectively, and W{w} is a positive
weighting function. Expanding equation (3a), we have
LBy=F W, g-208" g, +
AM=F s B-28" g, Py (3b)
Liay=a W, a-2a" g, +p,

where W, =j2:)m Wiawe, e dw

g:'f_::u Re(W(wle, -ij(e™)do and p, are same

constants with f=¢,8 . The oplimal least squares

solution is obtained by differentiating (3b) with respect
te the oplimization vector variables and setting the
resulting derivatives to zero. It gives

Bo=Ws gy and o, =W " g, (4)
To construct a wavelet FBs, the analysis filters Hy{e/®)
and Hl(ej‘”}should possess at least one zero at @ =7
and =10, respectively. A higher order of K-regularity
can be obtained by imposing Ko and K zeros at @ =7
and =0 for Hy(e!®) and H,{e/¥), respectively (with
K, 2 K, >1). This is equivaleni to the following

a* " ah w
[—aw"’ Hn(eJ ):|m=~ :[_aa)’“ HJ(EJ )}wgo
for ky=0,-,Kp-1 and & =0.-,K-1 . For
incorporating the regularity constraints for H (e), we

=0, (3

have to assume the regularity constraint is already

Ho(e™} After
differentiation, the regularity constraints of (5) can be
expressed in terms of the coefficients of f(z) and a(z)

incorporated in performing  the

as follows:
Iy-1-fk g2
, vidhe] Ly (=M
o w3k (2L N1 ER
=)
&, =1 (R =F)i2
2 L %‘r) 1a CH Ly N )L -2mir 21, -2)t
m (2Lp NI 1=r Y =2maily <3k +rR
r=0 w={} 4 " ‘ (63)
(UL, +ig =3 =4

for kg =0,---Kq-1 and k =0,---K, 1. Obviously, (6a)
is a linear combination of the optimization parameters
with constant coefficients, which represents a set of
linear constraints to be satisfied by # and «. (6a) can
also be written more compactly in matrix form as
B-f=cy, and A-a=c, . (6b)

for some matrices B and A , and vectors ¢y, and ¢, , .
whose entries are defined in (6a). (3a) and (6a) together
form a quadratic programming problem subject to a set
of linear equality constraints, which can be solved
analytically using the method of Lagrange multiplier
[16]. Define the following Lagrangean functions

Lim=8 W, p-28"g,+p,
+f (B-B-eye )

. ‘ 9
Lim=a W, .a-2a" g, +p,
+i' (A-a ~Cug, )
where 1, and J, are the Lagrange mullipliers

associated with § and &, respectively. Differentiate (7)
with respect to the corresponding vector variables, we
have

E 1., .
ﬂnpl =Wﬁl ‘85 “Eij 'AE ‘B,
| (Ba}
Gy =W, g~ W] A

Sice cﬁuation (8a) has to satisfy (6b), the Lagrange
mnultiplicrs are determined (o be

2, =2ABBY (g, -Ws(B'BY'B'c;, ),

A, = AAATY (g, ~W_(ATA)" ATe, ).
Substituting equation (8b) into {8a), we obtain the final
desired solution.

(8b)

4. SEMIDEFINITE PROGRAMMING (SDP) DESIGN
For the case of minimax design criteria with a prescribed
number of zeros, we resort to SDP. For brevity of
presentation, only the SDP design of Be®y will be
described. The design of a(e’®) is similar. First of all,

minimizing the maximum ripple of the approximation
error is equivalent to the following

mintf’ e - B, (e™)P=aj @)+ (@) <8 {(9a)
F
for wme [D.Zm@,] , where
(w) = B -c - Re(B, (™))
@, (@)= g -5+ Im{(B,(e")) . (9b)

To minimize the metric in (9a) using SDP, we densely
discretize @ over the band of interest we [0.2mg,] 1nto a
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set of frequencies points w,’s, k=1,--K . (9a) is then
approximated as:

min O

k=l.-K. (102)

ol{m) rol (@) <8
Using Schur complement [15], il can be shown that [6]
{10a) is cquivalent to

min 6 kel K . (10b)
E()z0
) oL(w) o, (@)
where F, (i) =|a,(w,) 1 0 Since F, () is

@) 0 1

affire in B, it is equivalent to a set of linear matrix
inequalities (LMI}. Define the augmented variable
xT =18 A"]. The optimization problem in (10b) can be
cast into the following standard LMI or SDP
optimization problem

min ¢’ - x

Flxyz0
where F(x) = diag(F (x), F(x), F(x)) . Theoretically, it
is possible 1o determine whether a feasible solution
exists for a SDP such as (10c), and if so, it is possible to
determine the global optimal solution, since the problem
is convex. In order to simultaneously solve the SDP
problem (10c) and the regularity constraints (6b), the
dependent variables defined by the equality constraints
(6b) are expressed as a linear combination of the
independent variables. The number of optimization
variables is therefore reduced. It not only speeds up the
optimization process but also structurally imposes the

(10¢)

regularity condition. To remove the redundant
optimization variables, we can rewrite (6b) as follows:
[Bn—r Brl'[p"._r}zcﬂ.kn (1])
By

g
B
and n-r indicate the redundant and non-redundant parts,
respectively. Using equation (11), g can be written in
termms of g, as:

~Jor,, I 12
L Pl gy (12)

where B=(B,_, B.], ﬂ=[ ], and the subscripts r

Substituting (12) into (10¢) and redefine ™ =[§ A7 1,
we still have the objective function and the constraints
affine in x. In other words, it is still a standard SDP
problem. The design of a(z) is similar to that of B(z),
and is omitted here for simplicity.

5. DESIGN EXAMPLES

For comparison purpose, a 2-channel PR FBs with the
same specification as example 4.1 in [2] is designed
using the proposed QPLC and the SDP methods.
However, the number of zeros to be imposed for
Hole™) and  H (/®) and K=l ,
respectively.  The lengths of 8(z)and a(z) are Lg =8,

are Ky=2

and I, =10 , respectively. The delay parameters are
N=2and M=1. Since Lg/2-N=2 and I,/2-M=4,
it is a low-delay FB. The passband cutoff frequencies are

wy, =0.34n and g, =0.667 , respectively. The results

for the least squares-based method are shown in figure 2.

For the SDP design method, w in the passband is
uniformly  discretized using 30 samples. The
oplimization is carried out using the MATLAB LMI
Toolbox and it takes less than 40 iterations to obtain the
solution. The design results are shown in figure 3. 1t
can be seen that the stopband attenuation of Hg(z) is

41.54B while that of [2] is a bit less than 404B. As for
H,(z) , our design gives a stopband attenuation of

46.3dB , which is 648 better than that in [2].

6. CONCLUSIONS

We have presented 2 methods for designing a class of 2-
channel PR FIR FBs and wavelels previously proposed
in [1,2]. The K-regularity conditions are expressed as a
set of linear equality conditions and the design problem
is formulated as either a QPLC or a SDP problem
depending on whether the least squares and minimax
design criterion are used respectively. Design results
show that FBs and wavelets with good quality and high
order of K-regularity can be designed by the proposed
methods.
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Figure 2. Design results using QPLC. (a) Frequency response of  Figure 3. Design results using SDP. (a) Frequency response of
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pair. (c) Analysis scaling function. (d) Analysis wavelet function  pair. {c) Analysis scaling function. (d) Analysis wavelet function
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