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Abstract

In this paper, we present the convergence analysis of the
recursive least M -cstimate (RLM) adaptive filter algorithm, which
was recently proposcd for robust adaptive filtering in impulse noisc
environment. The mean and mean squares behaviors of the RLM
algorithm, bascd on the modificd Huber M-cstimate function
(MHF}, in ¢ oataminated Gaussian (CG) noise model arc analyzed.
Closc-form cxpressions are derived. The simulation and theorctical
results agree very well with cach other and suggest that th¢ RLM
algocithm is more robust than the RLS algerithm under the CG
noise model.

2. Introduction

* Robust adaptive fillcring in impulse noisc environment has
reccived considerable attention recently [2-6], due to its practical
importance in communications and other applications. Since the
distributions of the impulsive noise differ significantly from that of
Gaussian noise, the performance of the conventional adaptive
filtering algorithms degrade severely in impulse noise environment.
To overcome this problem, the authors have proposcd a RLS -lke
algarithm, called the recursive teast M -cstimate (RLM) algorithm,
for impulse noisc suppression [1]. It minimizes a new cost function
bascd on robust M-estimators, instcad of the conventional least
squares (LS} estimator (1, 7, 8)]. Simulation results show that the
RLM zlgorithm is morc robust than the conventional RLS [9LN-
RLS [5], and OSFKF [6] algorithms when the input and desired
signals arc corrupted by CG noise or alpha-stable distributed noisc
[1, 7, 8]. Tn addition, a fast implementation of the RLM algorithm
with a computational compiexity of order O(V) was recently
reparted in [16}, where N is the Iength of the adaptive transversal
filtcr.

In this paper, the convergence of the RLM algorithm under CG
noise is analyzed. Both mean- and mean-square behaviors of the
RLM algorithm under CG noise are cxamined. Simulations arc also
carricd out to cvaluate the analytical results. It is found that the
theoretical and simulation results for the convergence behaviors of
the RLM algorithm agree very well with cach other,

Specifically, let’s consider the system identification problem
shown in Fig. 1 where x(m and wn) arc respectively the inputand
of the adaptive filter. The cstimation crror is
e(n) =d(n)=w () X(1), where X(n) =[x{n),..x{(n-N+D]", d(n} is
the desired sipnal and w(n) is the weight vector. Instead of the LS

cost function, the M-cstimate cost function J (mC X, gleli) is

output

adopted [1], where A0 is the forgetting factor, efi) is the
cstimation error and pf) is an M -estimate function. In this paper,

the modified Hubcr M -cstimate function (MHF) ts used duc toits
good performance and simplicity [1]:

[qm={] o< H“f], )

0 otherwise

Ae)= 72, o< <&
E12 otherwise

where & is the threshold parameter and g(e) =(dp(e) / e}t isthe

welghting function of pie} . It is found that the performance of the
RLM algorithm using thec MHF and the Hampel's three part
redescending function arc very close to each other under CG noise
and alpha-stablc distributcd noisc environment [8]. By mininizing
Jola) the following RLM algorithm can be obtained [1]:

Vimy=A' (1 - KX ()W -1), 2)

im= glelnpVn—1)X () \ 3)
A+ glet)X (Y in-HX n)
win) = win=1) 4 ol )= X' (m)wia — D) B = n—d) +e(mdhl ), (4)
where Wm and K(s) arc the inverse matrix of the M-cstimate
autocorrclation matrix Ry = i?ﬂ 'gte(i)X (£)X'{i) and gain vector,
=1
respectively. Interested readers are referred to [1,7,8] for details.
2. Mean and Mean Square convergence Analysis
Our analysis makes usc of the foliowing assumptions:
Ass 1):The input signal x(w is crgodic with zero mean.
Ass 2):The interference noise 13(n) is modeled as a CG noisc,
which is a frequently used modct for analyzing impulsive
interference [2, 3). More specifically, a CG noisc is given by
i =+ 1,0 = r}(n)+h(n)71(ﬂ)1 (5)
where r3(n) and n(w are independent identically distributed
(i.i.d.) and zero mean Gaussian neisc with variance & and o},
respectively; b(n) is a sequence of ones and zeros, which 1s
modcled as i.i.d Bernoulli random process with probability
Pla(m)=1=p, and Phin)=0)=1-p, . The ratio r = poi/c is
used to determine the impulsive characteristic of 72(m . The
probability density function (pdf) of 7(n) in (5} is given by

) 1-p 77 p, 17
= oy )+ — =k 6
L) @) Su 3 Jl) 2 V]ACXP( 3 X 6)

where @ = + @ =g +p,0 is the variance of 72(n).
Ass 3):x(n) and e(n) havea jointly Gaussian distribution. wn) ,
x(n) and 7p(m arc statistically indcpendent. Although this

assumption might not be valid in genera! applications, it is
commonly used to simplify the convergence analysis of a lot of
adaptive filtering algorithms [2, 3.

Ass 4):d,0n =W Y X(n), where w” is the optimal Wiener solution
R, C EX(myX"(n)] is thc enscmble
averaged correlation matrix of X(a),and P, T Hd(n}X(m)] isthe
ensemble averaged cross-comelation vector between X(n) and A(n) .
The subscript £ indicates the averaged is taken over the ensemble.
ASSB)I R _ = E[X{m)X'(m)] =R, tm¥ Aty When « is large enough,

given by w' =R.LP

EX K

where  Am =%, 2" is thc normalization factor and
a,tn=Y" gy x@1x" ¢y, Note that when X() is ergodic, the
matrix R, can be approximated by R, (n)=R,(d/A(m) [5],
where R (n)=Z¢, 2/X()HX"'(i) is the time averaged valuc [9].
Whereas, when there arc impulse noise, the cstimated Ry (n) isa
small biased approximation to A(m) R, ,{(n dueto the use of o)
and A" . An experiment was carried out to evaluate the offcet of
using R, (a) when the desired signal is corrupted by a CG noise
with p, =001 to 0.1, £ =2.246{a , and 2048 data length. It was
found that the value | &, - AR, L/ IR, , |, averaged over 100
independent runs, is within 1.16% to 1.97%. This shows that the
proposcd estimator for R, (#) here is robust to different impulse
noisc density and Ass 5)is justificd. Further theorcetic results
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regarding the estimation coror of R, (#) can be found in[L13.

Let's define the weight—error vector as vOnD w —w(n).

Substituting  F(r—h)=R,) @ -D=A"'a-DR ., v(n), qlan),
A=AAn-1), and w =R,"P, ,, into (4}, we get
vln)=vn—D-R,', X{n)ale( k() /(A4 X ()R, Xim)) . (N

21  Mean behavior of the RLM Algorithm
Taking cxpectation over {v, X.77} on{7), onc gets
Avim) = Avn-10]-R, L, (8)
where £[] on the right hand side of (8) denotes the cxpectation
over fv(n—1), X0, 17(m} , and is denoted as £, (b . Dropping
the time index from all variables and using the assumption of 13(n),
win) and x(n) in Ass 3), onc pets

L = A X{male(n)etn)/(Z+ X7 (m)R), X(n))}= £, (4], (9

where AC E;‘”i_:[Xq(e)ef(i—v- X'R. X)|v]. The detailed evaluation
of 4 is given In Appendix A. From cquation (33}, we have

A={C, {[ A Xiexp(~$ X" B! X)dX/2}1,R, ,v(n=1}/2, (0

Nad

where B=R, 41423, C,=(2m **|B|'*, I and A,(r.X) arc
given in (34) and (30), tespectively. Note that A,(v, X)) is bounded
by 0<A(r,X)<2, but it is rather difficult to obtain a closcd-fom
expression for the integral inside the |} in (10). Anapproximation
of 4,(v.X) is therefore sought to simplify ( 10). First, let’s consider
the evaluation of &=k, &n) in (32). In the RLM algorithm, the
impulsive component #7,(n) of 77(n} 1 likely to be rejected and the
corresponding “impulse-free” estimation error can be approximated
by €(n =1p(m)+v (n=1)XU ) Dropping the time index and using
the condition that v, 1, and X arc uncorrclated, one gets

E=kAE [ 1+ E[0r XP I 2 kB[ X1 (an
If k >>1, & will be much larger thar {£[(+'X)*}}" . Furthermore.
il the probability density function of w'X decays sufficiently fast, it
follows that P{E>yv' X ) =1, which is a consequence of the
condition E>>1E((v' X)1}'" and the Chernoff Bound ([12]pp.54),

though the latter bound is rather loose. This observation together
with the property of the error function and the rapidly decaying

exponential function exp(—+ X’ 8'X) in (10} allows us to usc the
following approximation of A,(»,X)

A0, X) = A =201 = p,Yerf (EiN2e ) + s (E Ty} an
(¢.1.{30)) during thc cvaluation of the expectation, Since @ >3,
A, in (12) is bounded by 0 <4 =i . From simulation results, it was
found that 4 in(12)isa very goed approximation to A,(v, X)

under the specified simulation conditions. Inserting (12) into {10)
yields

A= ALR, ¥O1=T). a3
Substituting (13}, (), and (34) into (8), the fallowing rclation
between Hv(m] and Ev(n~1)] is obtained

Evm] = = 4 exp(U2) E, (H2) M n-1]] - (14)
It can be verified that the term within the brace ) in (14}is less
than one because O<exp(A/2)E, ,, (A/2)<i and 0<4 <1. The
former incquality results from the propertics of the function £ (x}

and the fact that A/2>0 and W~/2+1>1. Canscquently,
lim B »{n)} =0 . This concludes that the RLM algorithm converges

in the mean and w{n) converges approximately to the system

parameter wounder the stated assumptions. It should be noted that
Ass 3) cannot be applicd to the conventional RLS algorithm when
the tmpulse density, p,,ishigh. The reason is that the impulses will
change significantly the valuc of w{n) and hence win) in
successive iterations. Therefore, rp(m and w(n) beccomes
corrclated, Whereas in the proposed RLM algorithm, the impulscs
will most likely be rejected and vin) can be stabilized, Therefore,
the independent assumption in Ass 3) remains valid, Actually, if £
is taken as infinity as in the conventional RLS algorithm, the
impulses cannol be detected and Ass 3)is violated, Thechoke of &
and its sensitivities have been studied in [8]. It was found that,
within a wide range of the threshold paramcters, the RLM algorithm
together with the robust parameter estimation method proposed in
[1] is robust to impulse noise. This substantiates the validity of the
proposcd mean convergence analysis and theoretically explains the
advantages of using the M -cstimate cost function and the threshold
cstimation method in [1,8] over the conventional RLS algorithm,
22  Mean Square behavior of the REM Algorithm

Post-multiplying {7) by its transposcand taking expectations on
both sides over (v, X.1)} gives

F(my=F(n-1-R'S~S,R' +R' SR/ (15)

where F(mT Ev( o' (1] is defined as the weight-crror vector
corrclation matrix [9] and we have

8=E, ¢, )Xy’ AA+X"R\ X)) =ALR . (n-[)}2, (16)

5. = .E_M,,‘:{q(e)wxl A+ X' R'.X) 45 R-1y, /2, (IT)

where 4 is given in (12), Note that the approximation introduced

to derive A in (13) has been used to obtain (16)and(17). Morcover

5, =E, XX {4 X R XF}=E, 15}
={f,~LIAR[, Ry 24 {f -1 04 (18)

where £, I, I, s, are given in (34), (51), and (48) respectively.
5= E I e XX HA+X'R' XF |v] and other integrals are
cvaluated in Appendix B and § i3 given in (46). Substituting {16),
(17) and {18) into (15) and then post-multiplying R, and taking
the trace operation on both sides of it, we get
Cim=C(n-D+T.S,, (19)
where C () trace(F (m)R, . } is the misadjustment [9],
Co=1-A(L+1)/2,and T, ={, -1 }/4. (20)

It can be seen from (19) that £ (a) is prevented from going to
zero by the tast term. Because 0 <A <1, and N >>1, the bound for
I, from (20) can be deduced as 0 < T, <1 . Similarly, with >0
and N >»1, T, from (20) is found 1o bc a smali positive value with
bound 0<I% <2/[(A+ N—Z)(i+ N+2)]. Therefore, from (19), it can
be seen that the weight-error vector converges in the mean Square
sense under the stated assumptions and the stcady-stac erroris
mainly decided by the parameter S piven in (46). Morcover, the
convergenee of T (n) is verified numcrically by selving (19) under
specitied parameters and the results are presented in Section 32,
3. Simulation Results

In the following simulations, the adaptive filter 1s configured as
the system identification problem as in Fig. 1.
31  Mean Convergence Performance

In this simulation, the mean convergence performance of the
RILM algorithm will be cvaliated. The unknown system is modeled
as a FIR filter with » ={02-0.4.0.6-0.8.1-0.8.06-0402 }'. The
input signal x(n) is a colored signal generated by passing a zero-
mean white Gaussian noisc through a lincar-time invariant filter
with cocfficicnts [0.3887,1,0.3887] [9]. The parameters and initial
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values used in the simulation are
A, =2=09, SW=d4(),

K0 =201 where 4, and [, arc the zero and identity
mutrices, respectively. The CG impulse noise is gencerated from (5)
with Phin)=1) =p, =0.005 in cach independent run. The norm of

N=9, r,=300, N =9,
POy =0, w0=0,, and

[T

the mean squarcd weight-crror veetor flv,(a]]. is uscd as
performance measure. The theoretical result is obtained from
cyualion {14} with &£=224-&un). where &n) is oblained by
averaging &(n) over 200 independent runs, The resulting numerical
and simulation results are illustrated in Fig. 2..It can be scen that
there is a good mateh between the theerctical and simulation results,
cspecially when s sufficiently large. The small discrepancy at
the beginning may result from the inaccurate cstimation of &n),
and the approximations used in the performance analysis.

3.2 Mean Squarc Convergence Petformance

This experiment follows the same settings in Section 3.1 and it
cvaluates the mean square convergence performance of the RLM

algorithm. The misadjustment £ (1) = pacetd ( R, ) is considered.
The numerical result obtained from (19) and the simolation results

averaged over 200 independent runs arc plotted in Fig. 3. Again,
there is a good match between the theoretical and simulation resuits,

4. Conclusion
This paper presents the mean and mean squarc cenvergence
analysis of thc RLM algorithm under the contaminated Gaussian
(CG) impulsc noisc model. The simulation and theerctical
convergence results agree very well with cach other and suggest
that the RLM algorithm is more robust than the RLS aigorithm
under the CG noise model.
5. Appendix A
The classical method proposed by Bershard in [13] is cmployed
to cvaluate AC E,,[Xglep/(A+ X R\ X)|v] . where the subscript
indicatcs that the cxpectation is taken over X ,17). Using Ass 2}
and X arc jointly Gaussian with covariance matrix R,., , onc gels
A=C Xg(de

i
= —xp{-—X"R, X drpdX, 21
¥ ol fold A+ X' RL.‘.\' X expl 2 o )f"(n) 1 ¢ )

where €, =(2m *?| R, |'. To evaluate (21), let’s consider

=G, | (x"f_{’g{“;x L. X)) i gx @)
Notice that the desired result is obtained when fg=0 :
A=F{0) . 23)
Differcntiating (22) with respeet to 3, gives
dFUB)Id = —oxp(= L, (2 B2 1), 24)

where L CE, . (X Iv]|

conditioned on v when x.x,e X are jointly Gaussian with

is the cxpectation of Xy(e)e

AR ]

covariance matrix B and B=R, ,{1+2/3 . In Ass 3), X and ¢
are assumed as jointly Gaussian, the Price theorem [14]for X and
¢ can be invoked to obtain the following:

i, =Fy gk, + By Lot vl =by 4 by, (29)
where gi{e)=dy(aide, v, [ 1‘:‘”_‘_[-’&’{ vlY, is the covariance of x
and e, L,LE, [4lede)|, and L,CE,, a|t],. Thesc
expectations will be evaluated as foflows, Ficst of all, it is noted that

Fene CEy [ Xelvl,= £ [X+ X 0]l
=By =(1423 'R, ,v. (26}

Since X and 1} are statistically independent, we get

X'

1= Jl tdtorar, o ymiow-E2Fx -0, @7

In fact, /=[(gleydlf, (7)) is an odd function and we have

1=[1801, 1) =8, + S, +v' X)f,(nydn, =& L0 - £ (-3} (28)
where, T =&-'X, 3=&+v'X, &=k an) We also used the
identitics e=np+v' X and g'e)=Se+ §+8-35), where &) is
the Dirac-delta function. Next, we consider L. . The derivation
process is similar to deriving L;,, we get

x'g'x

L,=C, ‘er A, XJexp(- X, (29}

where 4,0 X)C [a(ef,(1)dn, . Substituting £ (n) given in (6)
into (29), onc gets
A0, Xy =0 - p) el (L A2 ) +ef (3HSZa))
+0.terf € ANZE N af (3 IN20 ) 30y
where erf(x)=2]2 exp(—3) &/ Jrr . Using the result in (27), (25) can
be simplificd to
oL,

s,

=L.=¢, || 4‘(’v‘x}cxp(—%z\" B’ 0dx an
A K
Integrating (31) with respect o 5, , one gets
1 R Mu=1)
L=iC, [ AnXexp-=X' B' Xgxp—i" " 4, | 32)
2 =4 H (v, Xlexp(-— Xdx TR (
where (26} is used and €, = £, {Xg@p |v]ir,

af integration, which can be shown to he zero. [nserting (32)into -
(24), integrating with respect to 8 and setting 8=0 yiclds

is the constant

Nemtt

. ¥ L
A=FO=(C, [ A00.Xexnt X—‘:—X)mk,.__,.»(n “nhiz (33)
Afidd
i _f cxp(—!ﬁ) - i - jl
and f, —Jﬂ Ry dp= Dxp(z)E%”(?Jv (34)

where 5 (x) :rcxp(—.\'ﬁ)/ fBup is the Exponential Integral
\

function. Note that the constant of integration for F(/3) iscqual to

zero because of the boundary condition F(e=)=0.

6. Appendix B
The cvaluation of x,=£,, [¢ €X' XX /G+ X' R} X} |¥]
foliows the similar approach used in Appendix A. Specifically,

:(CP:XX'
s,=C T
vl A

cxp(—‘;—X' R X)f,(q)dnadX.  (35)

where .f;l(r].) is given in (6). Let’s define

XX G (e} ¢ TR NS
A+X'R' X)

X'R\X
- 2’“‘ 300 0 &%, (36}

Fim=c,Jj
Aol
Comparing (36} with (35), it can be scen that s, = F).
Differentiating (36) twice with respect to /3, ong gets
EF(HI df = expi- FoL, 120+ 19, 37
where L £, f¢' () XX' 1], . Using the approach introduced

in [15], onc gets from the Price theorem the following

A I, = AL+ ). G8)
where £, T £, laledg( e X' )l L. C 1:‘;”_,[43(‘,»)3)(’ jvll, -
Following a similar approach in deriving £, and L, onc gets

L=G, [ {[4en@ér,onan) X’ -2 X" B Nax =0, (39)
Nl
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L,=C [ B,0.X)X expt-X"B 'X/2)dX . (40)

Mteld
where B,(v.X)T {¢’(elef, (12)dn, . Tnscrting g(e) defined in (1) and
following the same approach in approximating 4 in (10)to (13}
w¢ obtained the approximation for 5,(v,X) as

Byv. X) =[g'(eef, ()dn, =F, e, (n)an

e XIS (D) = A X 41
vi Xl P,)fi,f(ﬁq)+P.Lf.f(J2—q)1 AvX, “4n

where A is given in (12). Inscrting (41} into (40} and then
substituting (39) into (38) gives

L, idr, . =21v'E . : (42)
Intograting  (42)  with " and using
ho=U+25!

L=2A0+2B R,

respeel to [

R, .¥n-1}, one gets

wiR, +C,, (43)
where €, is the integration constant, which can be determined
.=Bv=0.In this

case, the variables ¢ and X arcuncorrclated. Therefore, we have

from £,, [¢'(e)eXX"|¥] conditioned on r,,

N

C, = Eu.n,:{qz(i‘)"lxxl [v] =C,

(o B (44)

LA

—_ N r 1
T.C B, ¢t v, =C, || Cut\mcxpei’j—xwx

fetd

and C,(v.X)C lg*(e)é’f, (). Using the samc argument in

where

deriving (12), €, (v,X) can be further approximated as follows:
CWXIL [ Fie)e), MU =Av XK v+ S, (45)
where A is given n(12) and

s =_.T_2(l"" qucxp(m—zi -

2pGE &
2T ;]

i P

e

H1=p er (EMfZa))+ p Gerl Gz . (46)
Substituting the results in (44), (45) and (46), into {43), we got

L=24 (i+28) R, R, +5(+20) 'R, ,. (47
Finally, substituting (47) into (37) and inlcgrating (37) with respect

o f3, we have

s =FO)y={1,~1 }A R_w'R, 12+(1,~1)S.R, 14 (48)

with the boundary conditions: Fiw)=0 and aF(BR B, =0.
Actually, the integrations in (48) are double integralinthe first half
of the first quadrant in the #,, 8, planc. Interchanging the order of
integration [13], we have
T o BD o
A2+
- How-f4 , 8%
o (2,6'9'[)” ETD]
J‘ J-LXP( ﬂﬂ)dﬁ!dg
ol (2841}

where I,,—cxp{—).[,‘ (—) and f, —usp(-—)L'N (/21) (51

_op=AA) ﬁl)
aap=[I* TR e A

B = - )i, {49)

=(h-1)/4, (50)
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Fig. 1. System identification structure.
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Fig.2. Mean convergence of the RLM algorithm.
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Fig. 3: Mecan squarc convergence of the RLM algorithm.
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