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ABSTRACT

In linear image restoration, the point spread function of the degrading system is assumed known even though this
information is usually not available in real applications. As a result, both blur identification and image restoration must
be performed from the observed noisy blurred image. This paper presents a computationally simple linear adaptive finite
impulse response filter for blind image deconvolution. This is essentially a two-dimensional version of the Constant
Modulus Algorithm that is well known in the field of blind equalization. The two-dimensional extension is shown
capable of reconstructing noisy blurred images using partial a priori information about the true image and the point
spread function. The method is applicable to minimum as well as mixed phase blurs. Experimental results are provided.

1. INTRODUCTION

The purpose of image restoration is to reconstruct an un-
observable true image from a degraded observation. Blur
and observation noise are the main sources of degrada-
tion. An observed image can be written, ignoring addi-
tive noise, as the Two-Dimensional (2-D) convolution of
the true image with a Linear Shift-Invariant (LSI) blur,
known as the Point Spread Function (PSF). Restoration in
the case of known blur, assuming the linear degradation
model, is called linear image restoration and it has been
investigated extensively in the last three decades giving
rise to a variety of solutions [1] [2]. In many practical sit-
uations, however, the blur is unknown. Hence, both blur
identification and image restoration must be performed
from the degraded image. Restoration in the case of un-
known blur is called blind image restoration (deconvolu-
tion).

Kundur and Hatzinakos [3] [4] provide excellent tu-
torials which divide blind image deconvolution methods
into two major groups: i) those which estimate the PSF a
priori independent of the true image, and ii) those which
estimate the PSF and the true image simultaneously. Al-
gorithms belonging to the first class are computationally
simple, but they are limited to situations in which the PSF
has a special parametric form, and the true image has cer-
tain features. Algorithms belonging to the second class,
which are computationally more complex, must be used
for more general situations.

In this paper, a new iterative blind image deconvolu-
tion method that belongs to the second class is proposed.
The method is based on linear adaptive Finite Impulse
Response (FIR) filtering and is most applicable to six or
less-bit gray scale images. The proposed method utilizes
a cost function like all other iterative linear adaptive filter-
ing methods in order to update coefficients of the adaptive
filter. The Constant-Modulus (CM) cost [5] [6], which
is one of the most studied and implemented methods of

blind adaptive equalization for data communications over
dispersive channels, is used as the cost function. First, it
is shown how the method can be extended to the 2-D case.
Then, this 2-D extension is applied to the blind image de-
convolution problem.

This paper is organized as follows. The problem is
described in section 2. The proposed method is explained
in detail in section 3, which also discusses the CM cost.
Computer simulation results are provided in section 4. Fi-
nally, section 5 concludes the paper.

2. PROBLEM STATEMENT

Consider the Single-Input Single-Output (SISO) discrete-
time LSI system depicted in Fig. 1, in which f(m, n),
h(m, n), v(m, n), and g(m, n) represent the the true im-
age, the PSF of the degrading system, additive Gaussian
noise that is independent of f(m, n), and the degraded
image, respectively.

It is clear from Fig. 1 that the observed M ×N noisy
blurred image g(m, n) can be written as

g(m, n) = f(m, n) ∗ h(m, n) + v(m, n)

=
M−1∑
k=0

N−1∑
l=0

f(k, l)h(m − k, n − l) + v(m, n)

for m = 0, . . . , M − 1, n = 0, . . . , N − 1, where ∗
denotes the 2-D linear convolution operator and h(m, n)
assumes non-zero values only over the support Sh. Since
blurs are usually modeled as 2-D Finite Impulse Response
(FIR) filters, Sh is a proper subset of the set of 2-D inte-
gers.

The PSF of the degrading system, h(m, n), is usu-
ally unknown in most real applications. Hence, the true
image must be estimated directly from the noisy blurred
image using only partial information about the true image
and the PSF. This process is called blind image deconvo-
lution. As shown in [7], ambiguities in both gain and
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Fig. 1. Linear image degradation model.

delay are inherent to blind image deconvolution. Hence,
the problem to be solved can be stated more precisely
as follows: Obtain an estimate of the form f̂(m, n) ≈
αf(m − m0, n − n0) for some real α �= 0 and for some
integers m0, n0 from the observed image g(m, n), using
partial or no information about the true image f(m, n)
and the PSF h(m, n).

3. IMAGE DECONVOLUTION VIA DISPERSION
MINIMIZATION

This section explains the proposed method in detail. In
the remainder of the paper, the true image pixels are as-
sumed to have odd integer gray levels±1,±3, . . . ,±(L−
1), where L is the number of gray levels in the true im-
age, unless otherwise stated1. The CM cost on which the
proposed method depends are explained next before the
proposed method is described.

3.1. The CM Cost

Even though traditional uses of the CM cost have all been
One-Dimensional (1-D), the CM cost can be extended for
use in 2-D. The CM term was introduced for blind equal-
ization of communication signals over dispersive chan-
nels by Godard [5] and Treichler and Agee [6]. The
reader is referred to [8] for a comprehensive introduction
to the CM cost in the context of adaptive equalization.
This section generalizes the CM cost for use in 2-D by
reformulating the cost for a real-valued zero-mean true
image f(m, n) and a real-valued PSF h(m, n). It is as-
sumed that each gray level of the true image is equally
likely (a suitable preprocessing of the degraded image
such as histogram equalization may be necessary to sat-
isfy this condition). The CM cost is given by

JCM := E[(f̂2(m, n) − γ)2]

= E[f̂4(m, n)] − 2σ2
fκfE[f̂2(m, n)] + σ4

fκ2
f

where γ and κf are the dispersion constant and normal-
ized kurtosis of the true image, respectively. They are
defined by

κf :=
E[f4(m, n)]

(E[f2(m, n)])2

γ :=
E[f4(m, n)]
E[f2(m, n)]

.

1Most of real images are 8-bit having non-zero gray levels. These
images can be transformed to have gray levels ±1,±3, . . . ,±(L − 1)
by a uniform or non-uniform thresholding based on the distribution of
pixels in the true image.

Gray levels γ κf

2 1 1
4 8.2 1.64
8 37 1.716
16 152.2 1.790
32 613 1.797
64 2456.2 1.799

128 9829 1.799
256 39320 1.800

Table 1. Dispersion constant and normalized kurtosis for
a zero mean uniformly distributed image having different
gray levels.

It is evident from its definition that the CM cost penalizes
the deviations of f̂2(m, n) from constant γ. This is why
the proposed method is called blind image deconvolution
using dispersion minimization. Table 1 gives the disper-
sion constant and normalized kurtosis of a zero mean uni-
formly distributed gray scale image for various gray lev-
els.

Gradient Descent (GD) methods are generally used to
solve for CM estimators (dispersion minimizers) because
closed form expressions do not usually exist. Since ex-
act GD requires statistical knowledge of the degraded im-
age, which is not available in real applications, stochastic
GD methods are utilized. The algorithm that performs
a stochastic GD minimization of JCM is referred to as
the Constant Modulus Algorithm or CMA. Plotting the
CM cost versus the adaptive filter parameters results in
a surface called the CM cost surface. CMA attempts to
minimize the CM cost by starting at some location on the
surface and following the trajectory of the steepest de-
scent.

3.2. Proposed Algorithm

The proposed method is shown in Fig. 2, where the ob-
served image g(m, n) is applied to a 2-D adaptive FIR
filter w(m, n) with support [−C, C] × [−D, D] which
tries to remove the blur. Thus, output of the adaptive fil-
ter at the jth iteration f̂j(m, n) is an estimate of the true
image given by

f̂j(m, n) =
C∑

k=−C

D∑
l=−D

wj(k, l)g(m − k, n − l) (1)

for m = 0, . . . , M − 1, n = 0, . . . N − 1, where wj(k, l)
are the adaptive filter coefficients at the jth iteration for
−C ≤ k ≤ C, −D ≤ l ≤ D. Initially, since the adaptive
filter is not a good approximation to the inverse of the
blur, f̂j(m, n) is not reliable enough. However, it may
be used in an adaptive scheme to obtain a better estimate
for the next spatial location. If the true image f(m, n)
were known, then the difference between f̂j(m, n) and
f(m, n) could be used to provide an efficient update of
the filter parameters. In blind image deconvolution, how-
ever, the true image is unavailable. As in adaptive equal-
ization, one possibility is to attempt to minimize the dis-
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Fig. 2. Block diagram of the proposed method.

persion of f̂j(m, n) using the CM cost JCM . Since it is
not possible to minimize an expected value directly, the
method uses an instantaneous estimate of JCM given by

J :=
1
4

(
f̂2(m, n) − γ

)2

. (2)

Note that the function of the zero-memory nonlinearity
(the rightmost term in Fig. 2) is to produce an artificially
generated desired image f̂NL,j(m, n) for the algorithm
so that an error between f̂NL,j(m, n) and the output of
the adaptive filter f̂j(m, n) can be obtained to update the
adaptive filter coefficients. The zero-memory nonlinear-
ity is chosen such that this difference is equal to negative
of the gradient of J .

The stochastic GD minimization is used to update the
adaptive filter parameters. The derivative of J with re-
spect to the adaptive filter parameters is needed in order
to implement the stochastic GD minimization. Let wj ,
g(m, n) denote the following lexicographically ordered
adaptive filter vector at the j the iteration and the regres-
sor vector for the (m, n)th pixel:

wj :=




wj(−P,−Q)
wj(−P,−Q + 1)
wj(−P,−Q + 2)

...
wj(P, Q)




(3)

g(m, n) :=




g(m + P, n + Q)
g(m + P, n + Q − 1)
g(m + P, n + Q − 2)

...
g(m − P, n − Q)




(4)

Using vectors wj and g(m, n), the output of the adaptive
filter for the (m, n)th pixel at the jth iteration f̂j(m, n)
can be written as

f̂j(m, n) = wT
j g(m, n) (5)

where T denotes vector transposition. Now, the derivative
of J with respect to wj can be evaluated, which is given
by

dJ

dwj
=

(
f̂2

j (m, n) − γ
)

f̂j(m, n)g(m, n). (6)

Hence, the adaptive filter is updated according to

wj+1 = wj − µ
dJ

dwj

= wj − µφ(f̂j(m, n))g(m, n)
(7)

where µ is a small positive step-size that guarantees sta-
bility of the algorithm and

φ(f̂j(m, n)) :=
(
f̂2

j (m, n) − γ
)

f̂j(m, n) (8)

is called the prediction error function. The prediction
error function φ(·) has some interesting and important
properties when the coefficients of the adaptive filter are
near the global minimum of JCM . The static and dy-
namic convergence analysis of the proposed method in
the vicinity the global minimum of JCM can be performed
by using important features of φ(·) which were presented
in detail in [7].

Equations (5)-(7) constitute the proposed blind im-
age deconvolution via dispersion minimization method.
When convergence occurs, f̂(m, n) provides an estimate
of the true image f(m, n), and the lexicographically or-
dered adaptive filter vector w is an approximate inverse
of the PSF.

4. SIMULATION RESULTS

A computer simulation result is provided in this section
to demonstrate usefulness of the proposed method. The
classical 8-bit gray-scale Lena image was chosen as a test
image. Histogram equalization was performed on the test
image, which results in an approximately uniformly dis-
tributed image. Then, its mean was subtracted from the
histogram equalized image resulting in a zero-mean uni-
formly distributed image. Finally, a uniform quantization
was applied to the zero mean uniformly distributed im-
age to obtain a 4-bit true image that fulfills most of the
assumptions made about the true image.

In order to obtain artificially generated blurred im-
age, a 5 × 5 scatter blur was applied to the true image.
Zero-mean Gaussian noise was added to the blurred im-
age to get the observed noisy blurred image at 70 dB-
Blurred Signal-to-Noise Ratio (BSNR). Performance was
measured in terms of the frequently used Improvement in
Signal-to-Noise Ratio (ISNR) metric.

Note that the CM cost is non-convex. Hence, the
method may converge to a local minimum instead of the
global minimum of JCM depending on how it is initial-
ized. If there is no a priori information about the PSF, the
adaptive filter is initialized using a 2-D spike character-
ized by a non-zero coefficient usually located somewhere
in the central portion of the adaptive filter. If there is a
priori information about the PSF, this information may
aid in initializing the adaptive filter in a better way.

Blind deconvolution result using the proposed method
is depicted in Fig. 3. Support of the adaptive filter and the
value of step-size µ were 5 × 5 and 0.0001. The method
was successful in estimating the true image. Magnitude
of the 32×32-point 2-D Discrete Fourier Transform (DFT)
of the blur and the adaptive filter at convergence are shown
in Fig. 4. Observe that the adaptive filter has approxi-
mately converged to the inverse of the blur (this may be
a local minimum since the CM cost is non-convex and
2-D impulse function initialization may not produce the
global minimum of the CM cost).



Fig. 3. Blind deconvolution result for a 4-bit true image at 70 dB BSNR. (left) True image; (middle) Degraded image;
(right) Estimated true image, ISNR 6.12 dB.
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Fig. 4. Magnitude of (top) blur; (bottom) adaptive filter
at convergence.

5. CONCLUSIONS

A new method which is based on linear adaptive FIR fil-
tering for blind deconvolution of noisy blurred images
was proposed in this paper. The method is essentially
a 2-D extension of the CMA. An important aspect of the
method is that images which were blurred by minimum
or mixed-phase blurs can be recovered. This is due to the
fact the method does not impose constraints on the phase
of the blur. Another important aspect is that the method is
computationally simple, which makes its implementation
easy for real applications. Performance of the method de-

pends on the kurtosis ( number of gray levels) of the true
image and BSNR. As the true image kurtosis and BSNR
increase performance worsens. The method is most likely
to work for six or less-bit images up to 30 dB BSNR. Fi-
nally, the CM cost could be minimized using an adaptive
Auotoregresive (AR) filter instead of an adaptive FIR fil-
ter ,which provides better results, but whose implementa-
tion and analysis are more difficult. See [7] for complete
details.
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