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ABSTRACT

Phoneme classification in frequency bands of acoustic waveforms
is studied. The goal is to investigate whether separate classifications
across a number of subband signals, combined using appropriate ma-
chine learning algorithms, can provide performance similar to clas-
sification performed directly on the original acoustic waveforms. If
this is the case, then combining subband classifications might lead to
speech recognition algorithms that are robust to linear filtering and
narrow-band noise. We perform proof-of-concept experiments on
three binary phoneme classification tasks of varying difficulty, using
Support Vector Machine subband classifiers which are combined by
simple and weighted voting techniques as well as stacked generaliza-
tion methods. We find that combining subband classifiers improves
performance and that the improvement becomes more marked as the
number of subbands increases.

Index Terms— Speech recognition, robustness, Support Vector
Machines, ensemble methods, subban decompositions.

1. INTRODUCTION AND MOTIVATION

Substantial research efforts over the past decades devoted to the higher
levels of speech recognition systems, i.e. language and context mod-
eling, have resulted in major breakthroughs that have made auto-
matic speech recognition (ASR) possible. There are currently many
commercially available speech recognition systems covering appli-
cations which range from dictation and medical transcription to var-
ious customer service applications. However, state-of-the-art ASR
systems still lack the level of robustness inherent to human speech
recognition, which is manifested as a considerable degradation of
performance in the presence of additive noise and/or linear filtering
[1, 2]. The latter occurs, for instance, when the microphone used in
the training process is different from the microphone used when the
particular ASR task is actually performed, or if voice signal signal
is passed to the system through a communication channel different
from the channel under which the system was trained. This work is
motivated by the need to improve the robustness of ASR to linear
filtering and narrow-band additive noise. To this end we investigate
phoneme classification in frequency bands of acoustic waveforms of
speech.

To gain some intuition for the idea that speech recognition based
on classification of subband components of acoustic waveforms fol-
lowed by appropriate combination of these classifiers could indeed
enhance robustness to linear filtering and narrow-band noise, assume
that we have managed to construct such a classifier. Assume further
that the subband components used at the first level of this classi-
fier are contained within very narrow frequency bands. The effect
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of a reasonably smooth linear filter on a narrow-band component of
a speech waveform would be approximately just amplitude scaling
and a delay (see Figure 1), that is, the shape of the subband compo-
nent of the acoustic waveform would not change much. Therefore,
the performance of the subband classifiers, and consequently of the
combined classifier, should not degrade considerably as a result of
linear filtering. In the case of narrow-band noise, provided that the
frequency support of the noise is known, the affected subband com-
ponents can be excluded from the combining method, and hence the
final classification result would again not be significantly affected.
This subband approach may, however, exhibit inferior performance
to classification on the original composite waveforms in the absence
of linear filtering or narrow-band noise, because it imposes a very
specific structure on the overall classification which may not be op-
timal. Our aim in this paper is to investigate whether this is indeed
the case, or whether combining subband classifiers can give perfor-
mance competitive with or perhaps superior to classification of the
original waveforms.

1TTTVTTDE

!

0 50 100 250
frequency

o )
T

filter frequency response

%) »
T T

~
T

Fig. 1. In narrow freqeuncy bands a reasonably smooth linear fil-
ter can be well approximated by a linear-phase constant-magnitude
response. Therefore, the effect of a linear filter on a narrow-band
signal will approximately amount to just amplitude scaling and a
delay.

Robust speech recognition has proved to be an extremely diffi-
cult problem of major importance to industry and of significant in-
terest to acedeme. The method described above for approaching the
specific issue of robustness to linear filtering obviously requires val-
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idation. We focus here on studying the performance of classification
in subbands in comparison to classification of composite waveforms
and investigate also the impact of the number of subbands. Sup-
port vector machines (SVMs) will be used as subband classifiers and
combined using popular ensemble methods [3, 4], such as major-
ity voting, weighted majority voting, and stacked generalization. To
enable a like-for-like comparison, SVMs will be also used as base-
line classifiers, i.e. the classifiers that will be applied to composite
waveforms.

2. METHODOLOGY

The data set used in this study consists of 64ms segments (1024 sam-
ples, at 16kHz sampling frequency) of phonemes from the TIMIT
data base. For the purpose of our explorative study we considered
the following three binary classification tasks:

e /iy/ (vowel) versus /sh/ (fricative) - easy classification task
e /iy/ (vowel) versus /n/ (nasal) - reasonably easy task
e /n/ (nasal) versus /m/ (nasal) - difficult task.

As indicated, from the structure of the phonemes involved, these
tasks are expected to be increasingly difficult in the order listed.

2.1. Subband Decompositions

Each phoneme realization is decomposed into N subband compo-
nents using a perfect reconstruction filter bank. For this purpose a
cosine modulated filter bank is used consisting of filters

1 2k —1
hi[n] = —thpr[n] cos ( N
k=1,...,N,n=1,...,2N )

(2n — N — 1)77) ,

where the prototype window hp.[n] is a raised cosine function

hpe[n] = V2sin (%) o n=12_..2N. (2

This prototype filter satisfies the following two conditions
hpe[2N —n] = hpe[n], n=1,...,N

hpe[n)” + hpe[ N —n—1> =2, n=1,...,N,

These imply that given an acoustic waveform z[n], the ensemble
of its subband components {z1[n], ..., z~[n|}, where zg[n] is the
result of the convolution between x[n] and hy[n], is a tight frame
representation of z[n] [5, 6]. The meaning of the tight frame prop-
erty is that the distance between any two waveforms is magnified by
the same amount in the subband component domain, and hence that
the geometric configurations of data sets are not changed by means
of this transform.

2.2. SVM classification and ensemble methods

For each of the IV subband components we trained a standard SVM
classifier with RBF kernel K (xx,z},) = exp(—7y||zr — z},||*) [7],
on training data sets containing 1,500 examples of each of the two
phonemes. The parameter y and the standard SVM misclassification
penalty parameter C' were set separately in each case by a grid search
over

v € {0.05,0.1,1,5,20} and C € {0.1,1, 10, 100, 1000} .

More specifically, for every combination (y, C') the test (misclassi-
fication) error was estimated by 5-fold cross-validation; the combi-
nation giving the lowest error was adopted as optimal and the SVM
then retrained on the full training set. In the same fashion we trained
SVM baseline classifiers on the original composite waveforms. This
entire process was carried out separately for each of the three classi-
fication tasks at hand. We consider initially a set of N = 8 subbands;
the effect of increasing IV is studied later.

The splitting into subbands produces an ensemble of IV classi-
fiers. For a new (test) waveform x, one calculates the subband com-
ponents xx (k = 1,...,N) and feeds each into its corresponding
subband classifier to obtain a prediction fi (). The key question is
then how to combine these V “level-1" predictions optimally into an
overall “level-2” prediction f(z) of the phoneme class. We consider
several choices. Firstly, the output fi(zx) from each subband SVM
is a real number and we have to decide whether to feed this directly
into the level-2 classification. Conventionally, one thresholds SVM
outputs to sgn(fx(xx)); we follow here the usual SVM convention
of taking the class labels as &1 (rather than, say, 0 and 1). But such
thresholding may lose information that is useful for classification at
level 2. We therefore consider four possible “squashing functions”

Fi(fx) = sen(fr)

f f frl <1
F(fy) = { sgn(fk) 1clse 17
Fs(fx) = fr
Fu(fr) 1/[1 + exp(— fx)]

F1 is hard thresholding; F’3 leaves the “raw” prediction of the level-
1 SVMs intact. F5 and Fj provide a compromise, the former by
thresholding only when |fx(zx)| > 1, and the latter by applying a
sigmoid nonlinearity.

The subband classifications, transformed via squashing func-
tions as above, still have to be combined into an overall classification
f (). The simplest option is majority voting,

N
f(x) = sgn (Z Fa<fk<wk))>

k=1

where o € {1,2,3,4} numbers the possible squashing functions
that can be used; should the sum equate to zero, we have a draw
and randomly predict class +1 or —1 with equal probability. As a
generalization we also study weighted majority voting, where each
F,(fr(xr)) is multiplied by a weight wg. To set the weight we
adopt the heuristic wy = 1 — €, where €, is the cross-validation
error obtained during the optimization of -y and C}; this attributes less
weight to less reliable subband classifiers as it should be. Finally we
consider stacked generalization [8]. Here the subband classifiers are
considered as preprocessors which transform a waveform z into an
N-dimensional vector

& = (Fa(fi(21)), -, Fa(fn(2N))) -

One can then use the training data preprocessed in this way to learn
the optimal level-2 classifier. We implement the latter as an SVM
with a dot-product kernel, so that the final classification is of the

form
N
f(x) = sgn (Z wiFa(fu(@r)) + b) :
k=1
Compared to weighted majority voting this allows for an offset pa-
rameter b. More importantly, the {w} and b are not set by hand
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Fig. 2. Test errors for the three classifi cation tasks considered (top to
bottom). Within each graph, the three groups refer to the combina-
tion methods considered as indicated; within each group, the results
for the squashing functions F, ..., Fy are shown from left to right.
Horizonal lines indicate the test error of the baseline classifi er trained
(and tested) on the composite waveforms.

but determined in a data-dependent way to give the best classifica-
tion performance (again estimated by cross-validation, and used to
optimize C).

3. CLASSIFICATION RESULTS

We show in Fig. 2 the test errors obtained in our experiments. The
combination of the four possible squashing functions Fi, with the
three combination methods (majority voting, weighted voting and
stacked generalization) gives us 12 results for each classification
task. The test errors are obtained from 400 test examples per phoneme
for each task; note that these examples are entirely unseen during the
training of the level-1 (and, for stacked generalization, level-2) clas-
sifiers. We see from Fig. 2 that test errors across the three classifi-
cation tasks increase in the order expected from the intuitive assess-
ment of the difficulty. Much more importantly, however, the combi-
nation of subband classifiers yields better classification performance
than the baseline classifiers trained on the composite waveforms: the
availability of an ensemble of classifiers has helped rather than hin-
dered classification ability. Given our motivation for this study, this
result is very encouraging, suggesting that robustness to linear filter-
ing and narrow-band noise might be achievable, while at the same
time increasing recognition accuracy in the absence of these distor-
tions.

Looking in more detail at Fig. 2, we see that stacked general-
ization performs consistently better than the other two combination
methods. The increased flexibility in combining subband predictions
that this method affords is therefore clearly worth the small com-
putational overhead of having to train a level-2 classifier. Stacked
generalization also performs best when one considers the test error
separately for each of the two phonemes to be distinguished, giving
similar errors for both rather than performing well on one and poorly
on the other as happened in a few cases with the other methods.

As regards the effect of the squashing function on classification
performance, Fig. 2 shows that this is relatively modest. Hard thresh-
olding (F1) is clearly suboptimal for /iy/-/n/ with stacked generaliza-
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tion but otherwise reasonable; the piecewise linear squashing func-
tion F5 is seen to be a good compromise which performs close to
optimally in all cases.

It should be stressed that the enhancement in classification per-
formance that arises from combining subband classifiers is not due
to the fact that the individual subband classifiers themselves are very
reliable. In fact, as one might intuitively expect, the subband classifi-
cations are more error prone than those on the basis of the composite
waveforms. For the task /iy/-/n/, for example, the average test error
of the subband classifiers was 30%, which is considerably worse
than the baseline classifier’s error of 21%. However, after com-
bining the classifications (using, say, hard thresholding followed by
weighted majority voting) the test error or the subband ensemble was
reduced to 17%, improving on the baseline result. This improvement
is possible because the subband classifiers are sufficiently diverse to
make up for the fact that each one of them individually is not very
accurate.

Looking in more detail at the performance of individual subband
classifiers is also revealing. Fig. 3 shows the histograms of decision
values fi.(z) for each of the N = 8 bands, separately for phonemes
from each of the two classes in the /iy/-/n/ task. One notices that
bands 6 to 8 separate the classes only very poorly; this is because at
these higher frequencies distinguishing between the two phonemes
is a substantially more difficult task.

Subband 1 Subband 2
100 100
4 2 0 2 4 6 3 2 -1 o0 1 2 3
Subband 3 Subband 4
200 400
150 300
100 200
50 100
0 0
-2 -1 0 1 -2 -1 0 1
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) i ) i
0 0
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Subband 7 Subband 8
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-10 -5 0 5 10 -10 -5 0 5 10

Fig. 3. Decision values for test set by subband for /iy/-/n/. Blue: Test
examples from class +1 (/iy/); red: class -1 (/1/).

We finally consider the effect of increasing the number of sub-
bands from N = 8 to N = 16. To keep computational effort
manageable we reduced the number of training examples to 600 per
phoneme in this case; to allow a fair comparison we then also re-ran
the V = 8 experiments with this smaller training set. As Fig. 4
illustrates, the larger number of subbands tends to further enhance
classification performance, thus continuing the trend we saw above
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Fig. 4. Left: Comparison of test errors for N = 8 and N = 16
subbands and 600 training examples per phoneme. Only the results
for squashing function Fy are shown. Right: Test errors according
to subband; the x-axis is labelled by k for N = 8 and by k/2 for
N = 16 so that equal values correspond to similar band frequencies.
Test errors for the larger training set (1500 examples per phoneme)
used initially for N = 8 are also shown.

in going from N = 1 (baseline) to NV = 8. The exception is the
easy /iy/-/sh/ task, but here so few test examples are misclassified
that the apparent increase of the test error for NV = 16 is not sta-
tistically significant. On the right of Fig. 4 we show test errors for
the individual subband classifiers, including also the IV = 8 results
for the original larger training set. The performance variation across
subbands is similar between N = 8 and N = 16, being dependent
mainly on the frequency of the subband considered. For /iy/-/n/ we
have the performance degradation at high frequencies as observed
previously. For /iy/-/sh/ this does not occur because of the noise-like
nature of /sh/; conversely, performance here is worse in some of the
lower frequency subbands, presumably because at least one of the
two phoneme classes contains insufficient energy in this range.

4. CONCLUSION

We have investigated classification of phonemes by combination of
predictions derived from subband components of the original com-
posite waveform. This was motivated by the idea that such an ap-
proach might convey robustness both to linear filtering and narrow-
band noise. While one might naively expect that a price may need
to be paid for this gain in robustness, our key result is that classifica-
tion performance is systematically enhanced by combining subband
classifications. This effect arises because, even though the individ-
ual subband classifiers are rather poor, they are sufficiently diverse
that their errors can, to a large extent, cancel out.

There are a number of possible ways in which the present proof-
of-concept study could be extended. For simplicity we considered
only binary classification tasks where two phonemes need to be dis-
tinguished; it would be interesting to see how combinations of sub-
band classifiers fare in more realistic multiclass contexts. We em-
ployed SVMs here for their ease of use, placing less emphasis on
the actual classification performance they yield. Particularly attrac-
tive as a conceptual alternative would be methods which predict
class probabilities at level 1, such as Gaussian process classifiers [9].
These could then be combined into similarly probabilistic level-2
predictions by making appropriate (in)dependence assumptions be-
tween subband classifications and the final phoneme class. Other
variations of the level-1 classifiers could be considered. For exam-
ple, our SVM classifiers could presumably be further improved by
applying ensemble methods already at level 1, e.g. by training sev-
eral classifiers using different training subsets and combining them
appropriately. As the sophistication of the classifiers in the method
increases it will be particularly interesting whether the performance
enhancements from subband combination persist or eventually de-
crease to zero.

Finally the potential of the proposed concept for attaining ro-
bustness to linear filtering and narrow-band noise needs to be in-
vestigated by performing classification on test data subject to these
forms of degradation.
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