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ABSTRACT

In this paper, we propose a method for time interval segmen-
tation of signals based on an EquiPartition principle (EP).
According to EP, the signal is segmented into segments that
give equal errors in reconstruction selecting the most suit-
able model to describe each segment. Moreover, the segments
are equivalent in the content domain, since the signal is seg-
mented into segments that are modelled by the same num-
ber of coefficients. The proposed method has been success-
fully applied on different types of signals like: physiologic,
speech, human motion, financial time series. Finally, the pro-
posed methodology is very flexible on changes of error crite-
ria, signal modelling and on signal dimension yielding a ro-
bust method for segmentation and modelling of signals.

Index Terms— Signal segmentation, signal modelling,
time-frequency analysis, equipartition.

1. INTRODUCTION

Nowadays, there is a tremendous increase of time series data
such as audio files, seismic signals, financial time series, med-
ical time series data, etc, being stored, analyzed and trans-
mitted. This explosion of information is combined with a
technological evolution in the areas of terminals, network-
ing and pattern recognition. All these technological achieve-
ments require new services, software methods and tools for
searching, understanding, retrieving and browsing signal con-
tent. Therefore, curve/signal segmentation and modelling is a
challenging problem, particularly for pattern recognition ap-
plications. Signal summarization, classification [1] and key
frames extraction from a video sequence could lead to a curve
segmentation problem in an appropriate feature space. An
example of such segmentation approach is the polygonal ap-
proximation, which is a well-known and widely studied prob-
lem [2]. In [1], sound segmentation and classification into
speech and music is done successfully using frequency and
energy based features computed on constant time intervals.
Earthquake signal segmentation/classification is solved using
constant time intervals and the statistical analysis of the esti-
mated features [3].

In many of the above applications it could be interesting
to have a uniform representation according to an appropriate
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Fig. 1. (a) The segment bisector based method has been in-
ductively applied for N = 4. The corresponding line seg-
ments are not necessary equal. (b) A curve equipartition ex-
ample for N = 3, |AP1| = |P1P2| = |P2B| under Euclidean
distance metric.

quality measure. The objective is the partition of the feature
sequence into “homogenous” segments with uniform charac-
teristics according to a predefined criterion. We have adopted
such an approach for 3D modelling and non articulated mo-
tion tracking [4], polygonal approximation [5], key frames
detection [6] leading to the curve equipartition problem (EP).
More formally, the equipartition problem (EP) is the follow-
ing [7]. Let c : [a, b] → R

m be a continuous, injective curve
in m-dimensional space. Let us further suppose that a dis-
tance d(., .) is defined on the m-dimensional space, so that
d(c(t), c(t′)) is a measure of how dissimilar are the corre-
sponding trajectories. We ask for a sequence of points that
are uniformly distributed according to this distance. Let us
consider a simple case of EP problem under Euclidean dis-
tance metric, where N = 2. Then we have to locate a curve
point P , so that |AP | = |PB|. This point can be given as
the intersection of the curve with the AB segment bisector. It
holds that when N > 2, there is not a trivial method to solve
EP (see Fig. 1(a)). Fig. 1(b) illustrates a curve equipartition
example for N = 3, where |AP1| = |P1P2| = |P2B|.

Piecewise continuous signal segmentation and reconstruc-
tion can be solved by first detecting the segments and then
applying the modelling [8]. In [9], discontinuities separating
consecutive time intervals of the original signal are initially
detected by measuring the curvature and arc length of the
smoothed signal. Otherwise, signal segmentation and recon-
struction can be solved simultaneously based on energy opti-
mization methods [10]. These methods compute the time seg-
ments (ti) and the approximations (gi) per segment by mini-



mizing an energy function E(g).

E(g) =
N∑

i=1

∫ ti+1

ti

(gi(t) − f(t))2 + μ(ġi(t))2dt (1)

The optimization problem is solved using level sets algo-
rithms applying successfully in piecewise continuous signals.
The parameter μ controls the smoothness of g i. Another
class of segmentation methods is based on Bayesian infer-
ence [11, 12]. These algorithms consist of defining appro-
priate prior distributions for the unknown signal parameters
(including the change points between the different segments)
and estimating these unknown parameters from their posterior
distributions. Finally, these methods provide a possibility of
change for each frame of given signal. The method proposed
in [11] was applied in speech data. In [12], the segmentation
procedure allows joint segmentation of signals recorded by
different sensors using astronomical time series data.

Most of the above mentioned approaches address the
signal segmentation problem focusing either on a restricted
signal content (e.g. piecewise continues signals) under pre-
defined and specific modelling or minimizing specific energy
criteria. On the contrary, in this paper, signal segmentation
and reconstruction-modelling is performed simultaneously
on continuous or piecewise continuous signals by the use of
an innovative computational geometry algorithm [7], which
equally partitions the signal resulting segments with equal
errors in reconstruction. The estimated segments, that are
modelled by the same number of coefficients, are equivalent
in the content domain. The proposed method can be used
under different energy criteria.

In [13], it is shown that many signals with a finite rate of
innovation can be sampled and perfectly reconstructed using
physically realizable kernels of compact support and a local
reconstruction algorithm. The rate of innovation corresponds
to the number of degrees of freedom per unit of time. These
signals may be not bandlimited, but still have a finite number
of degrees of freedom per unit of time, such as, for example,
nonuniform splines or piecewise polynomials. In this work
we segment the signal into segments with the same number
of degrees of freedom.

The rest of the paper is organized as follows: Section 2
gives the problem formulation describing the proposed mod-
elling, energy criteria. Section 3 presents the proposed signal
segmentation and reconstruction method. The experimental
results are given in Section 4. Finally, conclusions and dis-
cussion are provided in Section 5.

2. PROBLEM FORMULATION

2.1. Signal modelling and segmentation

Let us assume a digital signal f(t), t ∈ {0, 1, · · · , T − 1},
where T denotes the number of samples. The goal of this

work is to automatically segment and to reconstruct each seg-
ment of the given signal using the most appropriate model
for each time segment. However, the performance of recon-
struction depends on the selection of basis. For example, a
reconstruction of piecewise polynomial signal yields more ac-
curate and compact results when a polynomial basis is used.
So, an interesting problem is the selection of basis where the
sparsity of signal is high. It is possible that a signal consists
of piecewise continuous segments that admit a sparse repre-
sentation in different bases. The proposed method selects for
each detected segment a compact representation so that the
signal is segmented into segments with equal reconstruction
errors and number of coefficients per segment solving simul-
taneously the signal segmentation and modelling.

Let g(t) be a modelling of f(t). Let N be the number
of the time segments [0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, T − 1],
where ti ≤ ti+1 ∈ {0, · · · , T − 1}, i ∈ {1, · · · , N − 1} be
the time that define the end time of i−1 segment and the start
time of i segment (t0 = 0, tN = T − 1). The error between
the segment [ti, ti+1] of f and the corresponding segment of
g is given by d(ti, ti+1). Then the global approximation error
of f(t), g(t) is defined as the maximum error between the
segments of f and their corresponding segments of g,

E(f, g) = max
i∈{0,1,2,··· ,N−1}

d(ti, ti+1) (2)

This definition of error has been also used on polygonal ap-
proximation problem [5]. Therefore, the goal of the method
is to select simultaneously the modelling and segments so that
the global approximation error E(f, g) is minimized. A near
optimal solution of the segmentation problem is achieved,
when the approximation errors per segment are equal, as the
error is shared between all the segments,

ε = d(0, t1) = d(t1, t2) = · · · = d(tN−1, T − 1) (3)

The approximation error ε will be minimum or close to min-
imum. This is the equal errors (EE) criterion. A detailed
analysis of EE criterion is given in [5]. The straightforward
implementation of the EP method provides directly N . Ac-
cording to the proposed methodology, the segmentation and
the signal modelling are given at the same time by the reduc-
tion to the EP problem using as input the function d(., .). In
the next sections, d(., .) is defined and the basis selection is
described, under polynomial and Fourier bases.

2.2. Basis description

In this work, we have used two types of bases, polynomial
and Fourier, to model the given signal. The proposed method
can include more bases without changes in methodology. The
model coefficients in each segment can be used for signal
summarization. Let u, v, 0 ≤ u ≤ v ≤ T − 1 be the start
and the end time of a time segment of the given signal f(t).
f(t), t ∈ [u, v], has been modelled by the S most important



Fourier coefficients g1(t), using a polynomial of 2 ·S − 1 de-
gree g2(t), getting equal rate innovations 2·S

v−u+1 for the two
representations 1.

f(t) ≈ g1(t) =
1
N

S∑
k=1

wk · e2πi·fk·t (4)

f(t) ≈ g2(t) =
2·S−1∑
k=0

ak(
t

T
)k (5)

wk and fk denote the weight and the frequency of k Fourier
coefficient, respectively. ak denotes the weight of k−degree
monomial tk. We have used the S highest in energy coeffi-
cients of Fast Fourier Transform (FFT).

These coefficients correspond to a robust reconstruction
of the signal, reducing noise and providing at the same time
meaningful information of the signal. S is a parameter of the
proposed method that can be defined by the user (e.g. S = 5).
In polynomial approximation, we keep the first 2·S−1-degree
monomials in order to model low degree polynomials like
step functions, polygonal functions, splines, etc., where the
Fourier basis fails. The polynomial and Fourier series mod-
elling have been used as an example showing that we can use
more than one models/bases.

2.3. Error criterion

Let dj(u, v), j ∈ {1, 2} be the approximation error between
gj(t) and f(t). Then, d(u, v) corresponds to minimum er-
ror, since we select the basis that gives the approximation of
minimum error per segment.

d(u, v) = minjdj(u, v) (6)

According to the EP problem requirements [5], d(u, v) should
satisfy the following properties:

1. d(u, v) = 0 ⇔ u = v (isolation).

2. d(u, v) = d(v, u) (symmetry).

These properties are satisfied by the difference in mean en-
ergy of signal f(t) and gj(t).

dj(u, v) =
1

v − u + 1
|

v∑
t=u

f2(t) −
v∑

t=u

g2
j (t)|, j ∈ {1, 2}

(7)
In addition, d(u, v) should be continuous that means that
small changes in u, v correspond to small changes in d(u, v)
(discrete case). By the equation 6, it holds that d(u, v) is
continuous, if and only if, dj(u, v) are continuous functions.
According to the definition of g1(t), we select the S highest

1The number of stored parameters for S Fourier coefficients is 2 ·S, since
they are complex numbers having real and imaginary part. The number of
stored parameters for 2 · S − 1 degree polynomial is 2 · S

in energy coefficients, so small changes in u, v correspond to
small changes in energy of the g1(t). Therefore, d1(u, v) is
continuous. Similarly, d2(u, v) is also continuous function.

d(u, v) is a good metric to test if the proposed model
fits well to the data. In the case of Fourier basis, it holds

that
∑v

t=u g2
1(t) =

∑S
k=1 |wk|2
v−u+1 ≤ ∑v

t=u f2(t). Therefore,
d1(u, v) = 0, if and only if, f = g. If d1(u, v) is get-
ting high, it means that the signal cannot be described well
by Fourier basis. Concerning the polynomial approximation,
it minimizes the square error

∑v
t=u(f(t) − g(t))2, fitting to

f(t). If
∑v

t=u(f(t)− g(t))2 is getting low, then d2(u, v) will
also be low, which means that the signal is well described by
polynomial basis.

Consecutively, if the error is low, it means that the seg-
mentation is good and the content description of the signal by
the proposed descriptors is valid. Moreover, it means that the
segment is homogenous in content, since it can be described
by a small number of coefficients that are related to the signal
content.

Fig. 2 illustrates the approximation of synthetic signals
using Fourier basis and polynomial basis, for S = 5. In the
first example, the reconstruction error was 96.97% lower us-
ing Fourier basis, while in the second example, the recon-
struction error was 81.48% lower using polynomial basis. In
each example, the most robust approximation is given by the
model that yields the minimum error in reconstruction.

3. SEGMENTATION AND RECONSTRUCTION

3.1. Iso-Level Algorithm (ILA)

The signal segmentation and reconstruction is done simulta-
neously using the Iso-Level Algorithm (ILA). The input of
the proposed method is the number of segments N . In ad-
dition, it needs the matrix d(tk, tl), k, l ∈ {0, 1, · · · , T − 1}
of distortions. The detailed description of the algorithm used
can be found in [5]. It is a recursive method. Thus, when it is
executed for N segments, it uses the precomputed results for
N − 1 segments. According to our analysis [7], the equipar-
tition problem (EP) always admits at least one solution.

N can be given by the user or can be estimated automat-
ically by terminating the EP algorithm, when the estimated
“distortion” exceeds a predefined error, similar with the prob-
lem of minimum number of segments (min−#)2 in polygo-
nal approximation [5]. Both cases are solved in O(N · T 2)
steps thanks to the property of the method that solves the
problem for values less than N without additional cost [5].

3.2. Selection of the Number of Segments

The selection of N could be done by the user to fit specific
preferences and information needs. A ‘semiautomatic’ com-

2min − # is used for the problem of finding the minimum number of
segments that gives error lower than the given error.
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Fig. 2. The given synthetic signals (blue line) are approximated by g 1(t) and g2(t) with S = 5. (a) d1(0, 200) = 0.0063 and
d2(0, 200) = 0.2082. (b) (a) d1(0, 400) = 0.0086 and d2(0, 400) = 0.0465

putation of N can be done by terminating the EP algorithm,
when the estimated “distortion” (error) exceeds a predefined
error. However, it is crucial to develop a mechanism able to
automatically estimate the most appropriate number of seg-
ments N . In [14] the number of segments are automatically
determined by permutation tests. According to the tests, a
segmentation algorithm is executed for increasing number of
segments and the error is measured. When we exceed the true
number of segments, the error keeps decreasing as well, but
the reduction of error is due to noise in the data (overfitting).

A similar idea is used on the proposed method so that N
can be provided without any user interaction estimating, if the
segments at iteration l of the algorithm suffice to approximate
the given signal. Let Ql is a measurement of the distortion
between the given signal and its approximation using the l
segments. As Ql we use the error of the approximation (ε l).
Ql is usually decreasing as l increasing, Ql ≥ 0. Ql has char-
acteristics of a convex function, that is, if we smooth it we
will get a convex function. Therefore, we have to introduce
a new criterion instead of minimum of this function. Thus,
we propose to select the appropriate level l so that the nu-
merical approximation of the second derivative of Q l, Q̈l, is
maximized.

Q̈l = Ql+1 + Ql−1 − 2 · Ql, l ∈ {2, 3, · · · , T − 2} (8)

This is due to the fact that the second derivative expresses a
measure of the curvature of the content curve.

4. EXPERIMENTAL RESULTS

4.1. Dataset content description

In this section, the experimental results of the proposed algo-
rithm are presented.We have tested the proposed algorithm on
a data set consisting of different types of signals, like physio-
logic signals [15, 16], speech signals, human motion signals,

financial time series and synthetic signals, in order to show
that our method can be used under any type of signal without
any constraint. The goal on physiologic signals is to segment
them into homogenous in content time segments, detecting
in electrocardiogram (ECG) irregular states like arrhythmia,
tachycardia, bradycardia, etc. In speech signals, the proposed
method can be applied for phoneme recognition [17], since
during a phoneme the speech signal is almost stationary. Hu-
man motion tracking data have been used for human action
recognition [18] using data from athletics meeting. An im-
portant task for human action recognition is to segment the
human motion signal into homogenous in content segments
that correspond to sequential human actions. For example,
in a high jump sequence we have to determine the running,
jumping, falling and standing actions. The segmentation of
financial time series [19] is another challenging problem. The
goal is to segment the signal into intervals, where the market
characteristics are homogeneous.

Fig. 3 illustrates signals that have been used in the article
with blue curves. Fig. 3(a) shows a bradycardia electrocardio-
gram (ECG) from a defibrillator [15]. Fig. 3(b) shows an 100
msec speech signal [15] (sample rate = 6 Khz). The wave-
form changes during phonemes. Fig. 3(c) shows the human
major axis angle φ [18, 20] during a high jump sequence. In
this case, the signal corresponds to several sequential phases
(actions) like running (φ 	 π

2 ), jumping (0 ≤ φ ≤ π
2 ),

falling (− π
2 ≤ φ ≤ 0) and standing ( π

2 ≤ φ ≤ π
2 ) actions.

Fig. 3(d) shows a 450-day EURO-USD exchange rate (from
04/16/2004 to 07/10/2005). Fig. 3(e) shows a synthetic sig-
nal. The signal of Fig. 3(f) is produced by added Gaussian
white noise (12 dB Signal-to-noise ratio (SNR)) in the signal
of Fig. 3(e). The synthetic signal consists of 4 segments, a
sinus series, a polynomial and two sequential sinus series.
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Fig. 3. Original signal (blue curves) and segmentation (black dotted lines) - modelling (red curves) results of the proposed
method on: (a) electrocardiogram (ECG), (b) speech signal, (c) human major axis angle signal, (d) EURO-USD exchange rate,
(e) synthetic signal, (f) synthetic signal with noise.

4.2. Segmentation and Modelling

In this section, we discuss the robustness of segmentation re-
sults of the proposed algorithm. Fig. 3 illustrates the original
signals (blue curves) and segmentation (black dotted lines)
- modelling (red curves) results of the proposed method. In
each case, N was automatically estimated by the method of
Section 3.2. According to the proposed method, it holds that
the number of estimated parameters (modelling) of each seg-
ment are equal, as well as the errors of reconstruction for each
segment. Therefore, the given signals have been modelled by
the S most important Fourier coefficients, or using a polyno-
mial of 2 ·S − 1 degree. We have used different values for S,
like S = 4 (Figs. 3(a), 3(e), 3(f)), S = 5 (Fig. 3(c)), S = 6
(Fig. 3(b)) and S = 10 (Figs. 3(d)).

In each example, the segmentation gives homogenous in
content segments, due to equipartition principle. For exam-
ple, the method divides the signal of Fig. 3(c) into 4 seg-
ments, that corresponds to 4 different actions of high jump
(first segment: running, second segment: jumping, third seg-
ment: falling, fourth segment: standing). The method divides
the signal of Fig. 3(d) into 5 segments, that corresponds to
5 different phases of the exchange rate (first segment: stable-
decreasing, second segment: stable, third segment: fast de-
creasing, fourth segment: unstable, fifth segment: fast in-
creasing). Moreover, the segmentation and modelling results

of Figs. 3(e) and 3(f) are almost the same yielding robustly
the equation of original synthetic signal, showing that the
method is robust to noise effects. In addition, we get accurate
modelling with low number of coefficients, due to the selec-
tion of most appropriate basis to model each segment. For
example, the last segment of Fig. 3(a) as well as the segments
of Fig. 3(b), that correspond to periodic signals, have been ef-
ficiently modelled by Fourier basis, while the other segments
of Fig. 3(a) have been modelled by polynomials.

5. CONCLUSIONS

Consecutively, an EP based method for time interval segmen-
tation and modelling of signals is described. According to
the proposed method the signal is segmented into segments
that give equal errors in reconstruction, selecting the most
suitable model to describe each segment. Moreover, the seg-
ments are equivalent in the content domain yielding segments
of the same number of degrees of freedom. Therefore, each
segment has the same significance under the used principle.
Concerning, the number segments, two automatic approaches
are proposed each exploiting supervised or unsupervised con-
tent based criteria. The proposed methodology is very flexi-
ble on changes of error criteria, signal modelling and on sig-
nal dimension yielding a robust method for segmentation and
modelling of signals.



Experimental results on a large data set of different types
of signals like physiologic signals, speech signals, finan-
cial time series and synthetic signals have been obtained to
demonstrate the efficiency and the robustness of the proposed
schema. In all cases, the appropriate number of segments N ,
the segmentation and modelling as obtained by the proposed
automatic processes is close to the human’s perception with
respect to the content fluctuation.

A possible extension of the proposed methodology may
include more models (e.g. wavelets) and other minimization
criteria. The proposed methodology can also be applied to
multidimensional signals (e.g. produced by many sensors).
Finally, we plan to apply the proposed method on signal de-
noising and compression problems.
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