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ABSTRACT

The fact that most users tend to tag images emotionally rather

than realistically makes social datasets inherently flawed from

a computer vision perspective. On the other hand they can be

particularly useful due to their social context and their poten-

tial to grow arbitrary big. Our work shows how a combination

of techniques operating on both tag and visual information

spaces, manages to leverage the associated weak annotations

and produce region-detail training samples. In this direction

we make some theoretical observations relating the robust-

ness of the resulting models, the accuracy of the analysis al-

gorithms and the amount of processed data. Experimental

evaluation performed against manually trained object detec-

tors reveals the strengths and weaknesses of our approach.

Index Terms— Social media, object detection, weak an-

notations, Flickr

1. INTRODUCTION

Semantic object detection is one of the most useful operations

performed by human visual system and constitute an exciting

problem for computer vision scientists. Robust models capa-

ble of capturing the diversity of an object’s form and appear-

ance, need to be learned from a large number of highly de-

scriptive training examples. However, current literature had

showed us that such examples are not existent and therefore

very expensive to obtain.

In this perspective, semantic object detection can be

viewed as a problem of either supervised [1], [2], [3], [4] or

unsupervised learning [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14]. In the first case a classifier is trained to recognize

an object category e.g., a face [1], [4], a building [2] or a car

[3], using a set of hand-labeled training images. The draw-

back of these schemes is that they require a large amount of

strongly annotated images, the generation of which is a labo-

rious and time consuming procedure. To tackle this issue, the

methods resorting to unsupervised learning attempt to solve

the problem by using weakly annotated training examples. In

this case, the idea is to estimate a joint probability distribution

on a space of semantic labels and visual characteristics.

A high number of diverse ideas has been proposed in

the literature for this purpose. In [15], [13] the problem is

viewed as a top-down image segmentation procedure where

the recognition of visual objects is incorporated as an inter-

mediate step of segmentation. Aspect models like probabilis-

tic Latent Semantic Analysis (pLSA) [7], [16] and Latent

Dirichlet Allocation (LDA) [17], [18] have been used with

weakly annotated datasets to estimate the joint probabilities

between semantic labels and visual features. In some cases

these models are coupled with conditional random fields [12],

[19] to incorporate spatial and hierarchical information orig-

inating from context, or use Probabilistic Graphical Models

(PGM) [11] to consider the role of structure within the detec-

tion process. Other techniques, that also rely on observations

statistics to estimate these joint probabilities, include [10], [8]

where Expectation Maximization is employed, and [9] where

stochastic processes are used. Some pioneer work in this

direction has been presented in [5] where much information

is learned from a handful of images by taking advantage of

knowledge coming from previously learned categories, and

[6] where the advantages of supervised and un-supervised ap-

proaches are combined by solving a multiclass classification

problem.

This work concentrates on social media and their poten-

tial to serve as the training examples of an object detection

scheme. Social sites like flickr, accommodate image corpora

that are being populated with hundreds of user tagged images

on a daily basis. We are interested on whether such corpora

can be leveraged to facilitate the robust estimation of mod-

els. By looking at the literature above, we realize that most

of the proposed schemes have been tested on purpose spe-

cific datasets. For instance [5], [18], [7], [10], are evaluated

using the Caltech dataset which is a set of images manually

organized in categories, while [16], [20] operates on images

collected from the web using key-word based search. Simi-

larly [6], [9], [8], [21], [13] use the Corel dataset, which is a

set of images annotated with realistic tags, while [11], [12],

[18] operate on Microsoft Research database which is a set

of strongly annotated images. Few are the attempts where

object detection schemes exploit social data, as in [22], [23],



[14] where photo collections obtained from flickr are used for

this purpose. The advantage of using social sites like flickr is

that we can obtain a high number of images without spending

much effort or time. Consequently, as opposed to supervised

approaches, there is no limitation on the types of objects that

can be trained, since social sites accommodate images depict-

ing a huge variety of objects.

Our work bears many similarities with [8], where seg-

mentation, visual feature extraction and region clustering are

applied on a set of tagged images to facilitate object detec-

tors’ training. However, we examine from both theoretical

and experimental perspective, the way the robustness of the

generated detectors is affected by the relation associating the

accuracy of the image analysis algorithms with the size of the

processed dataset.

2. FRAMEWORK DESCRIPTION

The goal of our framework is to start from a set of user tagged

images, obtained from social sites, and automatically extract

training examples, suitable for learning an object detection

model. Social media processing, segmentation, visual fea-

tures extraction, clustering and machine learning constitute

the analysis components incorporated by our framework, as

shown in Fig. 1. We mainly focus on the components of social

media processing and clustering, with the intention to tackle

the reduced amount of supervision foreseen by our framework

and the low quality of tags contributed by the social users. In

Social Media 


Processing

Segmentation


Vis. Features 


Extraction


Clustering

Machine


Learning


Tag
-
based clustering


-
Social Knowledge


-
Semantic Knowledge


Un
-
supervised image 


segmentation

MPEG
-
7 Descriptor extraction 


from image regions


Region clustering based on 


visual features


Learn models for recognizing 


specific objects


Focus of our work


Fig. 1. Analysis components incorporate by our framework.

our framework, we identify six analysis steps that are applied

consecutively on a set of user tagged images: a) Cluster im-

ages using their tags and acquire image groups each one em-

phasizing on a particular topic. The linguistic description of

this topic is usually reflected in the most frequent tag. b) Pick

an image group so as its most frequent tag to conceptually re-

late with the object of interest. c) Segment all images in the

selected image group into regions that are likely to represent

objects. d) Extract the visual features of these regions with

the expectation that all regions representing the same object

will share a relative high amount of common characteristics.

e) Perform feature-based clustering so as to create groups of

similar regions. We anticipate that the majority of regions

representing the object of interest will be gathered in one of

the clusters, pushing all irrelevant regions to the others. f) Use

the visual features extracted from the regions belonging to the

cluster representing the object of interest, to train a machine

learning-based object detector.

Although, there are issues to be addressed such as a) how

to derive image groups with an increased level of semantic

coherence, b) how to determine the number of clusters for

the feature-based region clustering procedure, and c) how to

select the cluster containing the regions depicting the object

of interest; our great advantage relies on the social aspect

of the analyzed dataset and its potential to grow particularly

large. It has been shown [24] that the majority of users tend

to contribute similar tags when faced with similar type of vi-

sual content. This is attributed to the common background

that most users share and is expected to lead the prevailing

concepts in tag and visual information space to convergence.

Based on this assumption we adopt the following solutions

in order to fully automate the aforementioned process. Se-

mantically coherent groups of images are generated using a

tag-based clustering approach that incorporates both social

and semantic knowledge, detailed in Section 4. The num-

ber of clusters for the feature-based region clustering step

is determined in an un-supervised manner by employing the

Maximin algorithm, tuned using cross validation as described

in Section 4. Finally, the most populated of the generated

region-clusters is chosen to provide the machine learning al-

gorithm with the necessary training examples, as explained in

Section 3.3.

It is evident that selecting the most populated of the

generated clusters would certainly constitute the appropriate

choice, if all analysis components of computer vision (i.e,.

segmentation, discrimination by visual features) worked per-

fectly. However, since current literature has shown us that

this is not true, we examine how the size of the analyzed

dataset affects the legitimate error space of the analysis mod-

ules, for letting the aforementioned cluster selection to be the

appropriate choice. The following section investigates the

issue from a theoretical perspective.

3. THEORETICAL ANALYSIS

3.1. Preliminary Definitions & Conventions

Table 1 summarizes the notations used throughout the pre-

sented analysis. Given the diversity characterizing an ob-

ject’s form and appearance, both segmentation and visual fea-

ture extraction are likely to introduce errors in the analysis

pipeline of Fig. 1. However, if we consider that our final goal

is to create clusters of image regions depicting the object of

interest, we can accept that all these errors are eventually re-

flected on the efficiency of the clustering procedure. Thus, we

will make the convention that the clustering error incorporates

all these sources of error.



Table 1. Legend of Introduced Notations

Symbol Definition

S The complete social dataset

N The number of images in S

L A particular topic

SL An image group, subset of S that

emphasizes on topic L

n The number of images in SL

Iq An image from S

RIq
= Segments identified

{r
Iq

i , i = 1, . . . , m} in image Iq

fd(r
Iq

i
) = Visual descriptor

{fi, i = 1, . . . , z} extracted from a region r
Iq

i

TIq
Set of tags associated with image Iq

C = Set of objects that appear

{ci, i = 1, . . . , t} in an image group SL

W = Set of clusters created by the

{wi, i = 1, . . . , o} feature-based clustering algorithm

pci
probability that social media processing

draws from S an image depicting ci

Moreover, we will assume that there is a one-to-one rela-

tion between an image and an object (i.e., we do not consider

cases where the same object is depicted in two different loca-

tions of the image).

3.2. Social Media processing

The goal of social media processing is to cluster images into

semantically coherent groups, SL ⊂ S. We are interested in

the frequency distribution of objects ci ∈ C appearing in SL

based on their frequency rank. If we focus on a single image

group SL, we can view this process as the act of populating

SL with images selected from a large dataset S using certain

criteria, (see Section 4). In this case, the number of images

in SL that depict the object ci, can be considered to be equal

with the number of successes in a sequence of n independent

success/failure trials, each one yielding success with probabil-

ity pci
. Considering that an image depicts more than one con-

cepts we can say that the probabilities pci
, ∀ci ∈ C are inde-

pendent from each other and they depend on the nature of the

dataset. Given that S is sufficiently large, drawing an image

from this dataset can be considered as an independent trial.

Thus, the number of times an object ci ∈ C appears in SL

can be expressed by a random variable K following the bino-

mial distribution with probability pci
. In this way we can use

the corresponding probability mass function (Pr(K = k))
depicted in eq. (1), to estimate the probability that SL con-

tains k images depicting ci:

Pr(K = k) =

(

n

k

)

pk(1 − p)n−k (1)

Moreover, since the social media processing aims at cre-

ating groups of images emphasizing on a particular topic, we

can assume that there will be an object c1 that is drawn with
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Fig. 2. a) Distribution of #appearances of the objects C in

SL, for n=100 and pc1
=0.9, pc2

= 0.7, pc3
= 0.5, pc4

= 0.3,

pc5
= 0.1. b) Difference of populations between c1, c2, using

different values of n

probability pc1
higher than pc2

, which is the probability that

c2 is drawn, and so forth for the remaining ci ∈ C. This

assumption is experimentally verified in Section 5.1 where

the tag-frequency histograms of different image groups are

measured. Given the above, we can use the expected value

(E(K)) of a random variable following the binomial distribu-

tion (eq.(2)) to estimate the number of times an object ci ∈ C

will appear in SL, if its drawn from the initial dataset S with

probability pci
. This is actually the value of k maximizing the

corresponding probability mass function.

E(K) = np (2)

In this way, we are able to estimate how the number of ap-

pearances (#appearances) of objects ci ∈ C are distributed in

SL, based on their frequency rank. Fig. 2(a) show how such

a distribution would look like given that (pc1
> pc2

> . . .).
Based on this distribution and given the fact that as N in-

creases n will also increase, we examine how the population

of the generated region clusters relates with the clustering er-

ror space and n.

3.3. Clustering

The goal of feature-based region clustering is to group to-

gether regions representing the same object. Ideally, the

distribution of clusters’ population based on their population

rank, coincides with the distribution of objects’ #appear-

ances based on their frequency rank. In this case, the most

populated cluster w1 contains all regions depicting the most

frequently appearing object c1. However, there is very lit-

tle chance that we will get perfectly solid clusters, each one

containing regions representing a single object.

Nevertheless, given the fact that object models can be ro-

bustly learned even from rather noisy training sets, we seek to

detect the point where w1, which is the cluster containing the

majority of regions depicting c1, will stop be the most pop-

ulated cluster and therefore not selected by our framework

to train c1. Clearly, this depends on the clustering error and



the difference in population separating the first two most fre-

quently appearing objects c1, c2 ∈ C. This difference de-

pends on pc1
, pc2

and increases proportionally to n as derived

from eq. (2) and shown in Fig. 2(b). Here, we work under the

assumption that it is more likely for the second most highly

ranked cluster w2 to become more populated than w1 as the

clustering error increases. Thus, we only consider c1 and c2

and examine how their difference in population relates with n

and clustering performance.

In order to do this we make an initial assignment of ob-

jects to clusters based on their ranks ci → wi, and express

clustering error using the notations of Table 2.

Table 2. Notations for Clustering

Symbol Definition

TCi Number of regions depicting object ci

tci Number of regions depicting ci,

correctly assigned to cluster wi

Popi Population of cluster wi

FPi False positives of wi with respect to ci

FNi False negatives of wi with respect to ci

DRi = Displacement rate of wi,

FPi − FNi with respect to ci

Given the above, FPi = Popi−tci and FNi = TCi−tci.

By substituting tci we have Popi = TCi+FPi−FNi. How-

ever, TCi is actually the number of times the object ci ap-

pears in SL (#appearances) and according to eq. (2) we have

TCi = npi. Now, w1 will be selected by our framework for

learning c1 as long as:

Pop1 − Pop2 > 0 ⇒
TC1 − TC2 + (FP1 − FN1) − (FP2 − FN2) > 0 ⇒

n > DR2−DR1

pc1
−pc2

(3)

The displacement rate DRi shows how the Popi of clus-

ter wi modifies according to the clustering error and with re-

spect to the ideal case where this error is zero. Positive values

of DRi indicates leakages in wi population, while negative

values indicate inflows. Using eq. (3) we 3D plot in Fig. 3

the space where Pop1 − Pop2 > 0. Every horizontal slice of

this volume corresponds to the legitimate values of DR1 and

DR2 for a certain value of n. As n increases, the surface of

the corresponding slices increases also and thus the legitimate

error space for clustering increases too.

4. IMPLEMENTING THE FRAMEWORK

Social media processing: For acquiring image groups with

an increased amount of semantic coherence we adopted the

SEMSOC approach introduced by Giannakidou et. al. in [25].

In this work, an unsupervised model for efficient and scalable

mining of multimedia social-related data is presented. The

Fig. 3. Space in which w1 remains the most populated of the

generated clusters, derived from eq. (3)

reason for adopting this approach is to overcome the limita-

tions that characterize collaborative tagging systems such as

tag spamming, tag ambiguity, tag synonymy and granularity

variation, and increase the semantic coherence of the gener-

ated groups. Each group emphasizes on a particular topic and

the set of its containing tags reflects the way users perceive

it. SEMSOC manages to create meaningful groups by jointly

considering social and semantic features. Its outcome is a set

of image groups SLi ⊂ S, i = 1, . . . , m where Li is an

indicator of the emphasized topic and m is the number of cre-

ated clusters. In this case the number of clusters is determined

empirically, as described in [25].

Every image Iq has an associated set of tags TIq
. We

choose the image group SLi where its most frequent tag con-

ceptually relates with the object that we want to detect. In this

way, we obtain a semantically coherent group of images the

majority of which is expected to depict the object of interest.

Segmentation: Segmentation is applied to all images in

SL with the aim to extract the spatial masks of visually mean-

ingful regions. In our work we have used a K-means with

connectivity constraint algorithm as described in [26]. The

output of this algorithm is a set of segments RIq
= {r

Iq

i , i =
1, . . . , m}, which in the ideal case correspond to meaningful

objects, ci ∈ C.

Visual descriptors: Seven descriptors proposed by

MPEG-7 [27] capturing different aspects of color, texture and

shape were used. These descriptors namely mpeg7={Dominant

Color (DC), Color Layout (CL), Color Structure (CS), Scal-

able Color (SC), Edge Histogram (EH), Homogeneous Tex-

ture (HT), Region Shape (RS)} were extracted ∀r
Iq

i ∈ RIq

and ∀Iq ∈ SL. Different descriptors’ combinations were

composed by concatenating their normalized values on a

single vector, fd(r
Iq

i ) = {fi, i = 1, . . . , z}. In this case,

d ∈ mpeg7 determines the descriptors’ combination and z

the dimensionality of the feature space, see Section 5.3. The

concatenation approach was used only for training the object



models using SVMs.

Clustering: For performing feature-based region clus-

tering we applied k-means on all extracted feature vectors

fd(r
Iq

i ), ∀r
Iq

i ∈ RIq and ∀Iq ∈ SL. For calculating the

distance between two regions we have used the functions

presented in [27] by independently measuring the distance

in each feature space and summing their normalized values.

However, the problem that arises from the use of a parametric

clustering algorithm like k-means is that a) the number of the

clusters must be known in advance, and b) its performance is

sensitive to the initial positions of the cluster centers. In or-

der to overcome these problems, we employed the Maximin

algorithm as described in [26], both for selecting the number

of clusters and estimating the initial positions of their centers.

Learning model parameters: Support Vector Machines

(SVMs) [28] were chosen for generating the object detection

models, due to their ability in coping efficiently with high-

dimensionality pattern recognition problems. All feature vec-

tors assigned to the most populated of the created clusters

are used as positive examples for training a binary classifier.

Negative examples are chosen arbitrary from the remaining

dataset. Tuning arguments include the selection of Gaussian

radial basis kernel and the adoption of a brute force strategy

for selecting the kernel parameters.

5. EXPERIMENTAL STUDY

The goal of our experimental study is twofold. On the one

hand, we wanted to get an experimental insight on the error

introduced by the analysis algorithms and check whether our

theoretical claims stand. On the other hand, we aimed at com-

paring the quality of object models trained using the proposed

framework, against the ones trained using high quality, man-

ually provided, region-detail annotations. Experiments nec-

essary for tuning some of the employed algorithms are also

presented.

To carry out our experiments we utilized three datasets,

a strongly annotated dataset constructed manually by asking

people to produce region-detail image annotations, and two

weakly annotated social datasets obtained from Flickr. For

the first dataset SM , a lexicon of 7 objects CM ={Vegetation,

Rock, Sky, Person, Boat, Sand, Sea}, was used to strongly

annotate 536 images at region-detail. The output of this pro-

cess was to record relations associating an image segment r
Iq

i ,

identified automatically by the segmentation algorithm, with

an object from CM . On the other hand, two datasets from

Flickr were crawled using the wget1 utility and Flickr API

facilities. The first dataset S3K consists of 3000 images de-

picting among others C3K= {cityscape, seaside, mountain,

roadside, landscape, sport-side}, while the second one S10K

consists of 10000 images, mostly related to C10K={jaguar,

1wget: http://www.gnu.org/software/wget
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Fig. 4. Distribution of objects’ appearance in an image group

SL, obtained from S3K (upper line) and S10K (lower line)

turkey, apple, bush, sea, city, vegetation, roadside, rock, ten-

nis}.

For the purposes of our experimental study and after ap-

plying SEMSOC [25] on both S3K and S10K , we ended up

with four object categories Cbench={sky, sea, person, vegeta-

tion}, that exhibited significant presence in all three datasets.

These object categories served as benchmarks for comparing

the quality of different models.

5.1. Social media processing

As claimed in Section 3.2, we expect the gap between the

number of appearances of the first (c1) and second (c2) most

highly ranked objects of C, to broaden as the volume of the

analyzed dataset increases. In order to verify this experimen-

tally, we plot the distribution of objects’ #appearances in an

image group SL. Each of the bar diagrams depicted in Fig. 4,

describes the distribution of objects’ #appearances inside an

image group SL, as evaluated by human subjects. The im-

age groups are created by applying SEMSOC on both S3k

and S10K , and selecting the groups emphasizing in one of the

benchmark object categories . It is clear that as we move from

S3k to S10K the gap between the number of images depicting

c1 and c2, increases in all four cases.

5.2. Tuning Maximin

As mentioned before, Maximin is used to decide the num-

ber of clusters and generate an initial estimation of the cluster

centers, to be used by K-means. However, Maximin largely

depends on a parameter called γ, that specifies the threshold

according to which new clusters are created or not. The pur-

pose of this experiment was on the one hand to optimally tune

γ, in order to use it for all subsequent experiments, and on the

other hand to check whether this value deviates substantially

as the training examples and the object category vary. This is

to ensure that the tuned value can be safely used under vari-

ous contexts. For this purpose we use SM and apply 10-fold

cross validation, for all available objects of CM and all pos-
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CL, EH and RS (γavg = 0.633, γmin = 0.4 ,γmax = 0.8)

sible descriptor combinations d ∈ mpeg7. Given that SM is

strongly annotated, clustering efficiency can be measured ex-

plicitly using typical classification metrics (i.e. F-Measure).

For every object ci ∈ CM , the subset of images Sci de-

picting this object is selected using the manually provided an-

notations. Images are segmented and visual features are ex-

tracted. Subsequently, the regions are divided in 10 folds, us-

ing each time one fold for “testing” and 9 for “training”. For

every run of the experiment we vary the value of parameter γ

within [0.2 0.96] using steps of 0.05. For each value of γ, the

number of clusters determined by applying Maximin on the

“training” folds, is used to perform clustering using k-means

in the regions belonging to the “testing” fold. The F-measure

of the most populated cluster w1 is calculated with respect to

the most frequently appearing object c1 in Sci . Given that

for each value of γ we can measure the clustering efficiency

Fi,j,γ , on the basis of a Sci and fold j, we are able to deter-

mine the optimal value of γ as γopt = argmaxγ(Fi,j,γ).
Finally, the average of the optimal values among folds and

objects (γ = 0.633) was used for the remaining of our exper-

iments. Fig. 5 is a 3D plot summarizing the aforementioned

results for the feature space derived by combining CL, EH

and RS. It is clear that the optimal values of γ does not de-

viate substantially as the object category and the folds vary.

Similar observations were made for all other combinations of

MPEG-7 descriptors, the results of which are not included in

this manuscript due to lack of space.

5.3. Optimal Feature Space

Visual descriptors determine the attributes by which a model

tries to capture an object’s form an appearance. After tun-

ing the Maximin algorithm for all different combinations

of MPEG-7 descriptors, we utilized the strongly annotated

dataset SM to determine the optimal feature space, in terms

of clustering efficiency. As in the previous case ∀ci ∈ CM , a

subset Sci ⊂ SM of images depicting ci was selected to serve

as the image group. For each of those image groups, cluster-
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Fig. 6. Clustering efficiency for all combinations of MPEG-7

descriptors

ing efficiency was measured by calculating the F-Measure of

the most populated cluster w1, with respect to the most highly

ranked object c1 in Sci . Finally, these values were summed

over all different objects ci ∈ CM , to form a cumulative

f-measure metric assessing the clustering efficiency for a cer-

tain combination of visual descriptors (i.e., feature space).

Fig. 6 summarizes the results by plotting in the z-axis the

value of cumulative f-measure obtained for the feature space

determined by combining the descriptors indicated by the x−
and y−axis. We can see that clustering efficiency maximizes

when CL, EH and RS are combined. This experimental ob-

servation is also compliant with human intuition since color,

texture and shape are considered important attributes of vi-

sual perception for discriminating between different objects.

The feature space determined by d = {CL, EH, RS} was

utilized for the remaining of our experiments.

5.4. Cluster Selection

Having tuned the Maximin algorithm and selected the opti-

mal feature space, the purpose of this experiment was to val-

idate using real data our theoretical claim that the most pop-

ulated cluster contains the majority of regions depicting the

object of interest. In order to do so, ∀ci ∈ CM we obtain

Sci ⊂ SM and apply k-means clustering using γ = 0.633 and

d = {CL, EH, RS}. In Fig. 7 we visualize the way regions

are distributed among the clusters by projecting their feature

vectors in three dimensions using PCA (Principal Component

Analysis). The regions depicting the object of interest ci are

marked in squares, while the other regions are marked in dots.

Color code indicating a cluster’s rank according to their pop-

ulation (i.e., red: 1st, black: 2nd, blue: 3rd, magenta: 4rth,

green: 5th, cyan: 6th) is used. Thus, in the ideal case all

squares should be painted red and all dots should be colored

differently. Squares being painted in colors other than red,

indicate false negatives and dots painted in red indicate false

positives. We can see that our claim is validated in 5 (i.e., sky,

sea, person, vegetation and rock) out of 7 examined cases.
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Fig. 7. Regions distribution amongst clusters. This Figure is best viewed in color with magnification.

The visual diversity of objects boat and sand, causes segmen-

tation and visual feature extraction to introduce significant

error, that prevents clustering from gathering the regions of

interest into the most populated cluster.

5.5. Object models comparison

Assessing the quality of object detection models, generated

using both the proposed framework and the manually pro-

vided region-detail annotations, is the purpose of this exper-

iment. Additionally, we want to validate our claim that as

the scale of the utilized social dataset increases, the error al-

lowed to be introduced by the analysis components increases

also and the models produced by the proposed framework are

more robust. With this intention, we generated object models

using SM , S3K and S10K for the object categories of Cbench.

For each object ci ∈ Cbench one model was trained in a fully

supervised manner using the strong annotations of SM , and

two models were trained without supervision using the weak

annotations of S3K and S10K and the proposed framework.

In order to evaluate the performance of these models, we uti-

lized a portion (i.e., 268 images) of the strongly annotated

dataset SM
test ⊂ SM as ground truth, not used during training.

By looking at the bar diagram of Fig. 8, we note that

models trained in a fully supervised manner perform opti-

mally in all cases. However, the performance achieved by

the models trained without supervision, although inferior, is

still satisfactory, especially if we take into account the time

and effort gained using the proposed framework. Another

interesting observation concerns the improvement in perfor-

mance achieved in all cases, between the models trained us-

ing S10K and S3K , respectively. This tendency verifies our

claim that there is a relation between the size of the utilized

social dataset and the robustness of the generated models.

6. CONCLUSIONS & FUTURE WORK

Although the quality of the object models trained using the

proposed unsupervised technique is still inferior from the one

achieved using supervised approaches, we have shown that

under certain circumstances social data can be effectively

used to learn the parameters modeling an object’s form and

appearance. Moreover, as it is reasonable to expect that the

proposed framework would not graciously scale to every pos-
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Fig. 8. Comparing the quality of different object models

sible object category, the social aspect of user contributed

content and its potential to scale in terms of content diversity

and size, advocates it’s use for the type of objects that ap-

pear frequently in social context. Our plans for future work

include exploiting more of the user contributed information

(e.g., Flickr groups) for obtaining suitable (from a computer

vision perspective) datasets, and the employment of outlier

detection techniques for training the models using less noisy

region-clusters.
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