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ABSTRACT

In this paper, we introduce TennisSense, a technology plat-
form for the digital capture, analysis and retrieval of tennis
training and matches. Our algorithms for extracting useful
metadata from the overhead court camera are described and
evaluated. We track the tennis ball using motion images for
ball candidate detection and then link ball candidates into
locally linear tracks. From these tracks we can infer when
serves and rallies take place. Using background subtraction
and hysteresis-type blob tracking, we track the tennis play-
ers positions. The performance of both modules is evaluated
using ground-truthed data. The extracted metadata provides
valuable information for indexing and efficient browsing of
hours of multi-camera tennis footage and we briefly illustra-
tive how this data is used by our tennis-coach playback inter-
face.

Index Terms— sports video analysis, semantic knowl-
edge extraction, tennis, ball tracking, player tracking

1. INTRODUCTION

In this work, we are concerned with the automatic extraction
of semantic information from tennis video in order to facil-
itate efficient browsing and retrieval of the video content by
tennis coaches. In collaboration with Tennis Ireland [1], the
national governing body for the sport of tennis in Ireland, we
have developed the TennisSense system [2]. This is a tech-
nology platform which aims to provide their coaches with
technological solutions that allow them to more effectively
develop the next generation of elite tennis athletes. This plat-
form includes a network of nine IP cameras positioned around
the tennis court.

This paper describes the TennisSense system and how
video analysis techniques are used to extract semantic infor-
mation from tennis training matches recorded by the system.
Specifically, we track the tennis ball and players, and detect
when the ball is hit. We illustrate how this semantic informa-
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tion can be used in an interface for tennis coaches, allowing
powerful navigation and searching of tennis video.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines previous work in the area of sports video anal-
ysis. We give an overview of the TennisSense platform in
section 3. In section 4 and 5, we describe and evaluate the
video analysis components we use for semantic information
extraction, namely ball hit detection and player tracking, re-
spectively. Section 6 provides illustrative examples of how
the extracted semantic information is used in our tennis-coach
playback interface. We give our conclusions and directions
for future work in section 7.

2. PRIOR WORK

At present, there are a number of commercial technological
solutions for sports video analysis. Both Protracker Tennis [3]
and Dartfish [4] provide frameworks that simplify the manual
annotation of sports video and give statistical feedback to the
analyst. Dartfish also includes some semi-automated track-
ing and measurement features. ProZone [5] provide semi-
automatic frameworks for indexing sports video but with high
labour costs due to the manual intervention required to cor-
rect the errors of the automatic processing and to provide high
quality annotation.

There is much work in sports video analysis focusing on
the detection of important events in the video [6]. However,
the majority of approaches use broadcast sports video and can
exploit the editing style of the content, such as the close-up
of a player after a soccer goal, for example. Player-tracking
and ball-tracking are also common methods for extracting se-
mantic knowledge and the majority of approaches employ
background subtraction or frame differencing to obtain can-
didate blobs which are then classified, tracked or discarded
[7, 8, 9, 10]. The main difficulty in such approaches is the
problem of occlusion, but this can be overcome by using mul-
tiple cameras [10] or using an overhead camera, as we do in
this work. Candidate detections can be filtered if they do not
conform to certain constraints, such as knowledge of the ball’s
colour [9]. In our setup, the ball contains a relatively small



number of pixels and is subject to compression artifacts, so
we do not use such constraints.

3. TENNISSENSE SYSTEM

The TennisSense technology platform [2] is an indoor tennis-
court that we have instrumented with extensive data-gathering
infrastructure for use as a test-bed for sports and health re-
search. The platform has been developed in collaboration
with Tennis Ireland [1], the national governing body for the
sport of tennis in Ireland, whose members regularly use the
system to record training sessions and matches.

This infrastructure includes a UbiSense spatial localisa-
tion system [11] and nine IP cameras positioned around the
court, with pan, tilt and zoom capability (see figure 1). The
two cameras at either end of the court are AXIS 215 PTZ
cameras and have pan, tilt and high zoom (PTZ) functional-
ity. The high zoom is useful for obtaining a front view of the
opposing side, or for focussing on the feet of the player from
behind the court baseline. The other seven cameras are AXIS
212 PTZ cameras which have wide angle lenses (140◦) and
include fast digital PTZ functionality by subsampling from
a high-resolution sensor. The video from all nine cameras
is captured and synchronised at a single PC. In the future,
we intend to use this framework to augment the video data
with biomechanical and physiological data obtained a variety
of other wearable sensors, for example: accelerometer-vests
[12], heart rate monitors or sweat analysis [13].

An overhead camera was a specific requirement of the ten-
nis coaches, in order to visualise tactical shots and movement
during matches. Currently, we perform video analysis on this
camera only (see figure 2(c)) and not on any of the other cam-
era feeds that are available to us, but we plan to integrate data
from these cameras in our future work. The overhead camera
is an AXIS 212 PTZ camera and is positioned 13.8 metres
above the court to overcome problems of occlusion. We work
with a resolution of 640 × 480 and a framerate of 30Hz. In
the following sections we describe the video processing com-
ponents we use to automatically extract semantic information
from tennis training matches and how we use this data to pro-
vide powerful semantic browsing and querying tools for ten-
nis coaches.

4. BALL HIT DETECTION

The fundamental unit of play in a tennis match is the tennis
shot; a tennis ball that is hit by one player in an attempt to
land the ball on the other side of the court. In this section, we
describe how we detect when a ball is hit by a player and how
we track the trajectory of that ball. The hit detection and ball
tracking algorithm was implemented in C++ using the libm-
peg2 library and OpenCV [14], and it runs comfortably in re-
altime (although for simulation purposes we currently process
the data offline).

Fig. 1. A schematic layout of the nine camera surrounding
our instrumented tennis court, along with sample images from
two of the cameras. The central camera is positioned on the
ceiling above the court.

4.1. Ball detection

Detecting a moving tennis ball is made difficult by compres-
sion artifacts, blurring of the ball due to its high speed and
the camouflage effect of the white lines on the court when the
ball is passing over them. Figure 2 illustrates our approach
to this task. We first determine ball candidates using frame-
differencing and thresholding. Instead of thresholding the
absolute-difference between consecutive frames, we thresh-
old the raw-difference, and therefore exploit the fact that the
ball appears brighter than the background (which is generally
the dark blue/green tennis court surface). After thresholding,
we detect all connected component blobs and remove poor
candidates based on their small size or their aspect ratio (ball
blobs are usually blurred horizontally so that their bounding-
boxes have a low height-to-width ratio). As shown in fig-
ure 2, player movement creates a number of additional false
blobs. We use a heuristic method to remove most of these
false blobs. Since the ball is usually far from other blobs,
we remove any blob that is within a distance d1 of 2 or more
blobs. For all remaining blobs, we retain and store the posi-
tion of their midpoint.

4.2. Ball tracks

We define a ball track as a series of blobs that follow a locally
linear trajectory. We initialise a track if we find 3 blobs fol-
lowing a semi-linear path. That is, where the x coordinate of
the points is descending (or ascending) in time, and the 2nd

point (in time) is within a distance d2 of its predicted location
based on a linear interpolation using the other 2 points. We
also enforced speed constraints and only initialise the track



(a) Frame 1 (zoom) (b) Frame 2 (zoom)

(c) Camera view (d) detected blobs

Fig. 2. Blob detection: (a) and (b) show close-ups of the view
highlighted in (c), the overhead view. Frame-differencing and
thresholding of (a) and (b) results in image (d)

if the speed of the blobs is within a minimum and maximum
speed range.

Before initialising new tracks, all previous tracks are up-
dated if possible. We sort tracks, longest to shortest number
of blobs, and for each track we predict the location of the ball
in the current frame. If there are blobs within a distance d3 of
the predicted location, the blob that is closest to the predicted
location is assigned to this track. We enforce the constraint
that any new blob must be consistent with the x velocity of
previous blobs in the track (either ascending or descending).
After all tracks are processed, any unassigned blobs are used
to search for potential new tracks by an exhaustive search of
the blob triplets in the previous 3 frames, as described above.
If a track has not been assigned a blob for 5 frames, or if the
point predicted by the track is outside the image, then this
track is terminated.

4.3. Track post-processing and ball hit detection

We first remove any tracks that contain less than T blobs, as
they are usually caused by noise or player movement. Occa-
sionally, due to compression and blurring noise, the ball will
be detected as two separate blobs. In those cases, a single
ball trajectory can be detected as two tracks. We remove any
tracks if at least 75% of their blobs are within 45 pixels of the
blobs of another longer track.

Due to ball bounce, the actual location of the ball can
sometimes be outside the predicted position and the correct
trajectory will be split into two tracks. We merge any tracks
that share any single blob. Merging is done by concatenating
the list of blobs of both tracks, and taking the average position
of any blobs that occur in the same frame.

Finally, we detect the exact time of each ball hit by com-
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Fig. 3. A ball track is a series of detected blobs. Two ball
tracks are shown here as a ball is hit from one side of the
court and then returned.

puting the crossing time of the incoming and outgoing trajec-
tories. We take all track pairs where the second track starts
within half a second of the end of the first. Figure 3 shows an
example of two consecutive tracks where the ball was hit at
frame 2510, thereby reversing its direction. We determine the
exact time of the ball-hit by fitting two lines, one to the end
of the first track and one to the start of the second track. For
simplicity, we use just two points to fit the lines. The crossing
point on the (t, x) graph gives the time that the ball was hit.
This hit is labelled as a return hit. All tracks that do not start
with a return hit are labelled as serves. A serve, followed by
a series of one or more return hits, is determined to be part of
a rally.

4.4. Evaluation

To evaluate our ball-hit detection, we manually marked a
ground truth of 26 minutes of video containing 243 instances
of the tennis ball being hit from one player to the other. The
players were the two top-seeded players in Ireland engaged in
a competitive training match. Using this ground-truth and a
list of detected hits, we use the maximum bipartite matching
algorithm [15] to assign detected hits to ground-truth hits if
they are within M frames of each other and hit from the same
side of the court (left or right).

By varying the value of the minimum track length T (see
previous section), the precision-recall plots shown in figure 4
were generated. On the graph, M is varied from 3 to 7 frames.
Higher values of M mean a higher tolerance for small mis-
alignment errors. Using M = 6 and T = 9, we have a pre-
cision of 0.9429 and a recall of 0.9506. False positives were
mostly caused by tracks being split in two. Missed detections
were caused by (i) the ball hitting the net and the track being
too short to be detected, (ii) the ball being over the white line
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Fig. 4. Performance of ball hit detection

and therefore not being detected and (iii) the heuristic that we
use (to remove the player’s blobs) causing ball blobs close to
a player to be removed.

5. PLAYER DETECTION AND TRACKING

5.1. Player detection

Since our camera is in a fixed overhead position, we can use
background subtraction techniques to detect moving objects
in the scene. Figure 5 illustrates our approach to player detec-
tion from an overhead camera view. Our background model
is a layer based approach similar to the Stauffer and Grim-
son model [16] but using a fixed variance for each pixel layer.
We also include a shadow-suppression module to reduce the
effects of changes in lighting.

Since the camera is a fixed distance above the ground, we
can assume that people will appear at a particular size, when
viewed from above. We filter the foreground image with a
box filter of size P × P (P = 29 in our system) and this
reduces the effect of noise, highlighting likely locations of
people. We use box-filtering instead of Gaussian filtering as
it can be done efficiently using integral images [17]. We then
employ a greedy algorithm to select the peaks of the filtered
image and detect people.

We first detect all local maximum in the filtered image and
discard any that are smaller than T1 = 128. These are our
player candidates. We then initialise an empty set of detected
players and then process (in order of size) all candidates. If
the candidate is not within a distance P pixels from a detected
player, it is added to the list of detected players.

5.2. Player Tracking

To update player tracks, we process them from longest to
shortest. If there is a peak in the filtered image greater than
T1/2 within a distance P/2 pixels of the last location of the
player, then the track is updated with the highest peak within

(a) original image (b) foreground

(c) filtered (d) detected people

Fig. 5. Player detection: Using the current camera image (a),
foreground is detected (b) and filtered using a box filter, re-
sulting in (c). The peaks of (c) are detected as players.

that range. Any track that has not been updated for 25 frames
is terminated. To convert pixel coordinates to real-world coor-
dinates (in metres), we correct the lens distortion and calibrate
the cameras using the OpenCV camera calibration code [14].

During matches, players are at opposite sides of the court,
so their tracks do not get confused. However, during breaks
in play, players can leave the court, or their tracks can come
together and the identities of the players cannot be accurately
maintained. Currently, if two players get within P pixels of
each other, we split the tracks and assign a new ID to both
tracks. We do this to ensure that each track (with a single
ID) belongs to only one player. Player identification after an
occlusion or a track merging is a non-trivial task from the
overhead camera, but this task could be made easier by using
other cameras and we plan to examine this in future work.

5.3. Evaluation

Since our installation has a UbiSense tag-tracking system
[11], we used this system to create a player position ground-
truth. Each player carried a tag in their pocket during the
recording. The UbiSense system has a 3D localisation ac-
curacy of ±15cm, but has a non-uniform sampling rate and
can suffer from outliers or low accuracy near the border of
the calibrated tennis court area. On the other hand, UbiSense
does not have the same problems with player identification
that video does, since each tag has a unique ID. Additionally,
UbiSense is a low-bandwidth signal and does not require
computationally intensive video processing.

We manually assigned the tracks we detected in video to
one (or neither) of the UbiSense tags. Figure 6 shows a com-
parison of the two tracking systems during an 80 second pe-
riod of the match. The two signals disagree at two points:



around frames 1250 and 2900. We observed the video at this
point and verified that the Ubisense signal is noisy at this point
and giving false readings as the player is near the border of
the calibrated region. In the second case, the player leaves
the court entirely and UbiSense does not give any readings
for a time, then interpolates over the missing data. Results
over the entire video are shown in figure 7. In both cases our
video tracking gave the correct tracks. Therefore, while the
UbiSense generally provides good accuracy, it was mainly a
convenient way to obtain a comparison to our video tracking
and we believe that the video tracking may be performing bet-
ter than the median error suggests, though measured accuracy
is still good.
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Fig. 6. Player tracking using video versus UbiSense tracks:
the two systems disagree on measurements at frame 1250 and
frame 2900. From a visual inspection of the video, this is
due to noisy and intermittent UbiSense readings, rather than
a video tracking failure.
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Fig. 7. Player tracking error histograms: The median errors
were 1.10m (player 1) and 0.99m (player 2)

Fig. 8. Screenshot of the interactive coaching tool. Panels A,
B and C are explained in the text.

(a) Section B (zoom) (b) Section C (query mode)

Fig. 9. Interface components: (a) Rally selection list, (b) Re-
turned shots from a query. Start-area and end-area (marked in
yellow) define the shot query.

6. COACHING INTERFACE

The semantic information we extracted using the techniques
described in sections 4 and 5 can be used to facilitate effi-
cient browsing of the associated video, as well as advanced
querying of the data. We now describe how this is done in our
playback and querying interface.

6.1. Playback interface

Figure 8 shows the user interface for viewing and querying a
selection of recorded tennis matches. It contains three main
sections, labelled A, B and C. Using the Game tab in panel B,
a game can be selected from a drop-down list. Video from the
selected game can then be navigated using either the progress
slider (panel A) or by selecting a rally from the results tab
of panel B (see figure 9(a)). Panel C allows the user to view
the game from any of the nine cameras by clicking on the red
square for the appropriate camera. Video can be viewed in
slow-motion also, by selecting the checkbox in panel A.

As well as providing efficient navigation of the video,
using the search tabs in panel B, the user/coach can search



for particular types of information, such as: find me all ral-
lies lasting over 8 shots. The user can also supply advanced
queries by drawing on the court in panel C. Shown in figure
9(b) is an example where the user has requested all shots start-
ing in the top bounding-box region and ending in the bottom
bounding-box region.

6.2. Redundancy Removal

Often, a coach will want to watch all shots in a recorded
match. In such cases, we can use the extracted information
to remove redundant portions of the video, and therefore re-
duce the amount of time required to watch the video. Using
12 test videos (total length = 5hrs 1mins 32sec) we can re-
duce the relevant video time by 42.46% on average using a
simple approach. Using our hit detection algorithm, we sim-
ply take all frames within an N -second time window centred
on the hit time of any shot. We used N = 5 so that in practice,
most windows will be heavily overlapping since shots often
occur in quick succession (< 1s between shots in a rally). If
we use the same approach, but only take those shots that are
detected to be part of a rally, we reduce the time further, by
59.18% on average.

7. CONCLUSIONS

We have introduced the TennisSense platform that allows us
to record videos of tennis matches from 9 configurable cam-
eras and to augment this video with additional biomechanical
and physiological data. Our video analysis modules were
described for player and ball tracking and evaluated using
ground-truthed data. The proposed algorithms demonstrate
robust performance on challenging data and the resulting
metadata is used in our playback-and-querying interface for
providing tennis-coaches with powerful semantic browsing
and querying tools to review hours of tennis footage.

We plan for future work to integrate the ball and player
tracking modules to mutually improve their performance.
Additionally, we are currently investigating the use of audio
to detect the ball hits. As part of the broader TennisSense
project, we also plan to capture the players’ heart rate, respi-
ration and physical motion [18] and to integrate these sources
of data into our querying interface.
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