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Abstract

Reliable spectrum sensing is a key functionality of a cagmitadio network. Cooperative spectrum
sensing improves the detection reliability of a cognitiadio system but also increases the system energy
consumption which is a critical factor particularly for lgower wireless technologies. A censored
truncated sequential spectrum sensing technique is @mesichs an energy-saving approach. To design
the underlying sensing parameters, the maximum averaggyenensumption per sensor is minimized
subject to a lower bounded global probability of detectiod an upper bounded false alarm rate. This
way both the interference to the primary user due to missctieteand the network throughput as a result
of a low false alarm rate are controlled. To solve this prohli is assumed that the cognitive radios and
fusion center are aware of their location and mutual chapngperties. We compare the performance
of the proposed scheme with a fixed sample size censoringrecheder different scenarios and show
that for low-power cognitive radios, censored truncateglsetial sensing outperforms censoring. It is
shown that as the sensing energy per sample of the cognitilies increases, the energy efficiency of

the censored truncated sequential approach grows sigrilfica
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. INTRODUCTION

Dynamic spectrum access based on cognitive radios has lveposed in order to opportunistically
use underutilized spectrum portions of the licensed alewgnetic spectrum [1]. Cognitive radios
opportunistically share the spectrum while avoiding anynifal interference to the primary licensed
users. They employ spectrum sensing to detect the emptppsf the radio spectrum, also known as
spectrum holes. Upon detection of such a spectrum hole,itbagnadios dynamically share this hole.
However, as soon as a primary user appears in the corresgpbalind, the cognitive radios have to vacate
the band. As such, reliable spectrum sensing becomes a ketidnality of a cognitive radio network.

The hidden terminal problem and fading effects have beervisho limit the reliability of spec-
trum sensing. Distributed cooperative detection has thexebeen proposed to improve the detection
performance of a cognitive radio networkl [2],] [3]. Due to &snplicity and small delay, a parallel
detection configuratiori [4], is considered in this paper mheach secondary radio continuously senses
the spectrum in periodic sensing slots. A local decisioméntmade at the radios and sent to the fusion
center (FC), which makes a global decision about the pres@iabsence) of the primary user and feeds
it back to the cognitive radios. Several fusion schemes baem proposed in the literature which can be
categorized under soft and hard fusion strategies([4]H8Id schemes are more energy efficient than soft
schemes, and thus a hard fusion scheme is adopted in this pégre specifically, two popular choices
are employed due to their simple implementation: the OR &rdAND rule. The OR rule dictates the
primary user presence to be announced by the FC when at leastognitive radio reports the presence
of a primary user to the FC. On the other hand, the AND rule #is&ks=C to vote for the absence of
the primary user if at least one cognitive radio announcestisence of the primary user. In this paper,
energy detection is employed for channel sensing which @anton approach to detect unknown signals
[5], [6], and which leads to a comparable detection perforceafor hard and soft fusion schemegs [3].

Energy consumption is another critical issue. The maximaeargy consumption of a low-power radio
is limited by its battery. As a result, energy efficient spect sensing limiting the maximum energy

consumption of a cognitive radio in a cooperative sensiaghéwork is the focus of this paper.

A. Contributions
The spectrum sensing module consumes energy in both thimgemsl transmission stages. To achieve
an energy-efficient spectrum sensing scheme the followimgributions are presented in this paper.

« A combination of censoring and truncated sequential sgnsiproposed to save energy. The sensors

sequentially sense the spectrum before reaching a tromcadiint, N, where they are forced to stop
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sensing. If the accumulated energy of the collected sanmderoations is in a certain region (above
an upper thresholds;, or below a lower threshold)) before the truncation point, a decision is sent
to the FC. Else, a censoring policy is used by the sensor, ariits will be sent. This way, a large
amount of energy is saved for both sensing and transmiskioour paper, it is assumed that the
cognitive radios and fusion center are aware of their locaéind mutual channel properties.

« Our goal is to minimize the maximum average energy consumier sensor subject to a specific
detection performance constraint which is defined by a ldearmd on the global probability of
detection and an upper bound on the global probability afefalarm. In terms of cognitive radio
system design, the probability of detection limits the hfatnmterference to the primary user and
the false alarm rate controls the loss in spectrum utiliwatiThe ideal case yields no interference
and full spectrum utilization, but it is practically impdske to reach this point. Hence, current
standards determine a bound on the detection performarahteve an acceptable interference and
utilization level [7]. To the best of our knowledge such a fmiax optimization problem considering
the average energy consumption per sensor has not yet basideed in literature.

« Analytical expressions for the underlying parameters anéved and it is shown that the problem
can be solved by a two-dimensional search for both the OR axid Aule.

« To reduce the computational complexity for the OR rule, @leithreshold truncated sequential test
is proposed where each cognitive radio sends a decisioret6@hupon the detection of the primary
user.

« To make a fair comparison of the proposed technique witrectignergy efficient approaches, a fixed
sample size censoring scheme is considered as a benchtriarirfiply called the censoring scheme
throughout the rest of the paper) where each sensor emplogssoring policy after collecting a
fixed number of samples. The censoring policy in this case&svbased on a lower threshold;
and an upper thresholdy. The decision is only being made if the accumulated energyotsin
(A1, A2). For this approach, it is shown that a single-threshold @emg policy is optimal in terms of
energy consumption for both the OR and AND rule. Moreoveplat®n of the underlying problem

is given for the OR and AND rule.

B. Related work to censoring

Censoring has been thoroughly investigated in wirelessaametworks and cognitive radids [€]=[13].
It has been shown that censoring is very effective in termsnefrgy efficiency. In the early works,|[8]-

[11]], the design of censoring parameters including lowet apper thresholds has been considered and
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mainly two problem formulations have been studied. In thgri@n-Pearson (NP) case, the miss-detection
probability is minimized subject to a constraint on the @ioitity of false alarm and average network
energy consumption [9]=[11]. In the Bayesian case, on therdtand, the detection error probability is
minimized subject to a constraint on the average networkggneonsumption. Censoring for cognitive
radios is considered in [12], [13]. I [12], a censoring rsimilar to the one in this paper is considered in
order to limit the bandwidth occupancy of the cognitive cadetwork. Our fixed sample size censoring
scheme is different in two ways. First, in [12], only the OReris considered and the FC makes no
decision in case it does not receive any decision from thaiteg radios which is ambiguous, since the
FC has to make a final decision, while in our paper, the FC tepbe absence (for the OR rule) or the
presence (for the AND rule) of the primary user, if no locatid®n is received at the FC. Second, we
give a clear optimization problem and expression for theitsmi while this is not presented in [12]. A
combined sleeping and censoring scheme is considered [n Th& censoring scheme in this paper is
different in some ways. The optimization problem in the eatrpaper is defined as the minimization of
the maximum average energy consumption per sensor whilESinthe total network energy consumption
is minimized. For low-power radios, the problem in this papekes more sense since the energy of
individual radios is generally limited. In this paper, tleeeived SNRs by the cognitive radios are assumed
to be different while in[[1B], the SNRs are the same. Finatiyerthat the sleeping policy df [13] can be
easily incorporated in our proposed censored truncatedesgial sensing leading to even higher energy

savings.

C. Related work to sequential sensing

Sequential detection as an approach to reduce the averagkeenwf sensors required to reach a
decision is also studied comprehensively during the pasadies [[14]+[109]. In[[14],[[15], each sensor
collects a sequence of observations, constructs a summesgage and passes it on to the FC and all
other sensors. A Bayesian problem formulation compridigniinimization of the average error detection
probability and sampling time cost over all admissible dieei policies at the FC and all possible local
decision functions at each sensor is then considered tondiet the optimal stopping and decision rule.
Further, algorithms to solve the optimization problem fattbinfinite and finite horizon are given. In
[16], an infinite horizon sequential detection scheme basethe sequential probability ratio test (SPRT)
at both the sensors and the FC is considered. Wald’s analf/sigor probability, [20], is employed to
determine the thresholds at the sensors and the FC. A cotitbirad sequential detection and censoring

is considered in[[17]. Each sensor computes the LLR of theived sample and sends it to the FC,

September 3, 2018 DRAFT



if it is deemed to be in a certain region. The FC then colleltsreceived LLRs and as soon as their
sum is larger than an upper threshold or smaller than a loreshold, the decision is made and the
sensors can stop sensing. The LLRs are transmitted in suey @hat the larger LLRs are sent sooner. It
is shown that the number of transmissions considerablycesiand particularly when the transmission
energy is high, this approach performs very well. However, paper employs a hard fusion scheme
at the FC, our sequential scheme is finite horizon, and fudheear optimization problem is given to
optimize the energy consumption. Since we employ the ORh@®IND) rule in our paper, the FC can
decide for the presence (or absence) of the primary user lyyreceiving a single one (or zero). Hence,
ordered transmission can be easily incorporated in ourrpapetopping the sensing and transmission
procedure as soon as one cognitive radio sends a one (or teetio¢ FC. [[18] proposes a sequential
censoring scheme where an SPRT is employed by the FC andrsbérd local decisions are sent to
the FC according to a censoring policy. It is depicted thatiimber of transmissions decreases but on
the other hand the average sample number (ASN) increasesefdle, [18] ignores the effect of sensing
on the energy consumption and focuses only on the transmigsiergy which for current low-power
radios is comparable to the sensing energy. A truncatedesgigl sensing technique is employed in
[19] to reduce the sensing time of a cognitive radio systehe thresholds are determined such that a
certain probability of false alarm and detection are oladirin this paper, we are employing a similar
technique, except that i [119], after the truncation painsjngle threshold scheme is used to make a final
decision, while in our paper, the sensor decision is censibreo decision is made before the truncation
point. Further,[[1B] considers a single sensor detectibeise while we employ a distributed cooperative
sensing system and finally, in our paper an explicit optiteraproblem is given to find the sensing
parameters.

The remainder of the paper is organized as follows. In Sefffiahe fixed size censoring scheme for
the OR rule is described, including the optimization prabkend the algorithm to solve it. The sequential
censoring scheme for the OR rule is presented in SeCiibtalytical expressions for the underlying
system parameters are derived and the optimization prolslemalyzed. In Sectidn1V, the censoring and
sequential censoring schemes are presented and analyzibeé fABND rule. We discuss some numerical

results in Sectioi V. Conclusions and ideas for further weme finally posed in Sectidn VI.

II. FIXED SIZzE CENSORINGPROBLEM FORMULATION

A fixed size censoring scheme is discussed in this sectiontenehmark for the main contribution

of the paper in Section]ll, which studies a combination afusntial sensing and censoring. A network
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Fig. 1: Distributed spectrum sensing configuration

of M cognitive radios is considered under a cooperative specsensing scheme. A parallel detection
configuration is employed as shown in Fig. 1. Each cognitagia senses the spectrum and makes a
local decision about the presence or absence of the prinsay and informs the FC by employing a
censoring policy. The final decision is then made at the FCrhpleying the OR rule. The AND rule
will be discussed in Sectidn ]V. Denoting; to be thei-th sample received at theth cognitive radio,

each radio solves a binary hypothesis testing problem é&sa®l
H(] LTy = Wiy, ’izl,...,N, jzl,...,M
Hi o rij = hijsi +wgj, i=1,..,N, j=1,..., M Q)

wherew;; is additive white Gaussian noise with zero mean and variaﬁpélij ands; are the channel
gain between the primary user and tlwh cognitive radio and the transmitted primary user signal
respectively. We assume two models fgf ands;. In the first models; is assumed to be white Gaussian
with zero mean and variance?, and h;; is assumed constant during each sensing period and thus
hij = h;, i =1,...,N. In the second modek; is assumed to be deterministic and constant modulus
|sil=s,i=1,...,N, j=1,...,M andh;; is an i.i.d. Gaussian random process with zero mean and
variancea,?lj. Note that the second model actually represents a fastgatienario. Although each model
requires a different type of channel estimation, since #eeived signal is still a zero mean Gaussian
random process with some variance, namely= h;o? + o, for the former model and? = so}.; + o7,

for the latter model, the analyses which are given in the¥alhg sections are valid for both models. The
SNR of the received primary user signal at théh cognitive radio isy; = |h;|?02 /02, under the first
model andy; = s*o;; /o7, under the second model. Furthermalig,s; andw;; are assumed statistically
independent.

An energy detector is employed by each cognitive sensorhwtadculates the accumulated energy over
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N observation samples. Note that under our system model péeasnthe energy detector is equivalent
to the optimal LLR detector [5]. The received energy cobecbver theN observation samples at the

j-th radio is given by

& = Z o8 @

When the accumulated energy of the observat|on samplescislated, a censoring policy is employed
at each radio where the local decisions are sent to the FCibiiyy are deemed to be informative
[13]. Censoring thresholds; and A\, are applied at each of the radios, where the rakge: £; < Ao

is called the censoring region. At theth radio, the local censoring decision rule is given by

send 1, declaring, if £ > Ag,
no decision ifA1 < & < Ao, (3)
send 0, declaring{g if £ < Ap.

It is well known [5] that under such a modei; follows a central chi-square distribution withV
degrees of freedom undét, and?. Therefore, the local probabilities of false alarm and dixte can

be respectively written as

Prj = Pr(& > Xa|Ho) =

ey ;) @

(N

( ’2(1-1—%)
INCAO

wherel'(a, z) is the incomplete gamma function given bya, z) = [° t*~ e~ dt, with I'(a, 0) = T'(a).

de = PT(Ej > )\2‘7‘[1) (5)

Denoting C; and Cy; to be the energy consumed by theth radio in sensing per sample and
transmission per bit, respectively, the average energguwuoerd for distributed sensing per user is given
by,

Cj = NCg; + (1 — p;j)Cyy, (6)

wherep; = Pr(\ < & < \2) is denoted to be the average censoring rate. Notethats fixed and only
depends on the sampling rate and power consumption of ttengemodule whileC;; depends on the
distance to the FC at the time of the transmission. Thergforthis paper, it is assumed that the cognitive
radio is aware of its location and the location of the FC ad agltheir mutual channel properties or
at least can estimate them. Defining = Pr(Ho), m1 = Pr(Hi1), do; = Pr(M < & < X2|Ho) and
015 = Pr(M\ < & < Xo|Ha1), pj is given by

pj = 7T050j + 7T151j, (7)
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with
(N, &) T(N,2)

doj = F(]’Vi  I(N) v
I(N,37%5) TV, 55
b1 — F(N)v B F(N)v 9)

Denoting Q¢ and Qg to be the respective global probability of false alarm anteck®on, the target
detection performance is then quantified @f < o and Qg > 5, wherea and g are pre-specified
detection design parameters. Our goal is to determine thimom censoring thresholds, and A; such
that the maximum average energy consumption per sensgnni&; C;, is minimized subject to the

constraintsRf < o andQf > 5. Hence, our optimization problem can be formulated as

min max Cj}
A, A2 g

SLQE<a, Qh =B (10)

In this section, the FC employs an OR rule to make the finalsitatiwhich is denoted by ¢, i.e.,
Drc = 1if the FC receives at least one local decision declaringse Bl-- = 0. This way, the global

probability of false alarm and detection can be derived as
M

Qf = Pr(Dpc = 1[Ho) = 1 - [[(1 = Py), (11)
j=1
M

Qb = Pr(Dpc =1[H1) = 1— [ (1 - Py). (12)
j=1

Note that since all the cognitive radios employ the same wipeshold),, we can state thalPy; = Py

defined in[[#). As a resulti(11) becomes
F=1-(-pry)". (13)

Since the FC decides about the presence of the primary usebyneceiving 1s (receiving no decision
from all the sensors is considered as absence of the prinsamny and the sensing time does not depend
on )y, it is a waste of energy to send zeros to the FC and thus, theapolution of [I0) is obtained
by A\; = 0. Note that this is only the case for fixed-size censoringabse the energy consumption of
each sensor only varies by the transmission energy whilesé¢hsing energy is constant. This way (8)
and [9) can be simplified té,; = 1 — Py andd;; = 1 — P4, and we only need to derive the optimsJ.
Since there is a one-to-one relationship betwégrand \,, by finding the optimalP;, Ao can also be

easily derived as, = 2I'" '[NV, T'(V) P¢] (whereI'"! is defined over the second argument). Considering
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this result and definin@g = H(Py), the optimal solution of {10) is given b§; = H~'(3) as is shown
in Appendix[A.
In the following section, a combination of censoring andwsatdial sensing approaches is presented

which optimizes both the sensing and the transmission gnerg

[Il. SEQUENTIAL CENSORING PROBLEM FORMULATION
A. System Model

Unlike Sectioril, where each user collects a specific numbsamples, in this section, each cognitive
radio sequentially senses the spectrum and upon reachiegisiah about the presence or absence of
the primary user, it sends the result to the FC by employingresaring policy as introduced in Section
M The final decision is then made at the FC by employing the 1OR. Here, a censored truncated
sequential sensing scheme is employed where each cogratilie carries on sensing until it reaches
a decision while not passing a limit @ samples. We defing,; = >, |ri;|*/02 = Y., ;; and
a;=0,i=1,....,p,a;, =a+iA, i =p+1,..,N andb; = b+ iA, i = 1,...,N, wherea = a/o2,
b=1"b/o2,1 <A < 1+~;is a predetermined constant,< 0, b > 0 andp = [—a/o2A] [19]. We
assume that the SNR; is known or can be estimated. This way, the local decisioa iulorder to make

a final decision is as follows

send 1, declaring{; if (nj > by, andn € [1, V],
continue sensing i€,; € (an,by) andn € [1,N), (14)
no decision if¢,; € (an,by) andn = N,
send 0, declaring{, if ¢nj < an andn € [1,N].

The probability density function of;; = |r;;|*/o2 underi, and, is a chi-square distribution with

2n degrees of freedom. Thus;; becomes exponentially distributed under bath and#,. Henceforth,

we obtain
1 .
Pr(uij|Ho) = 5€™™ 11z, >0y, (15)
1 s .
Priyit) = e o (16)
J

wherely, ¢ is the indicator function.
Defining ¢y; = 0, the local probability of false alarm at thjeth cognitive radio,Py;, can be written

as

N
Ppj =Y Pr(Coj € (a0, b0), s Ga1j € (an-1,bn—1),Cnj > bu|Ho), (17)
n=1
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10
whereas the local probability of detectioRy;, is obtained as follows

N
Py = ZPT(COJ' € (ag,b0); s Cn=1j € (an—1,bp—1),Cnj = bp|H1). (18)

Denotingp; to be the average censoring rate at jhth cognitive radio, andyy; and ¢, to be the

respective average censoring rate untgrand?{,, we have

p; = modoj + T101;, (19)
where
doj = Pr(¢ij € (a1,b1),...,¢nj € (an,bn)|[Ho), (20)
815 = Pr(¢ij € (a1,b1),....,Cnj € (an,by)[H1). (21)

The other parameter that is important in any sequentiattetescheme is the average sample number
(ASN) required to reach a decision. Denoting to be a random variable representing the number of
samples required to announce the presence or absence airtfagypuser, the ASN for thg-th cognitive

radio, denoted aNj:E(Nj), can be defined as

N;j = moE(N;|Ho) + m E(N;[H1), (22)
where
N
E(N;|Ho) = ZnPr = n|Hop)
N_ 1
Z n[Pr(Coj € (a0,b0); - Cn—15 € (an—1,bn—1)|Ho)
n=1
PT(COJ S (a07b0)7"'7<nj € (anabn)’HO)]
+ NPr(Coj € (a0, b0), .., (n—1j € (an—1,bn-1)Ho), (23)
and
N
N "Hl ZnPT = n!?—[l)
n=1
N—1
= > n[Pr(Co; € (ao,bo), - Cnj € (an-1,bn—1)[H1)
n=1
— Pr(Coj € (ao,b0), .-s Cnj € (an,bn)|H1)]
+ NPr(o; € (ao,bo),-..,(n—15 € (an—1,bn-1)|H1). (24)
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11

Denoting agairC; to be the sensing energy of one sample apdto be the transmission energy of a
decision bit at thej-th cognitive radio, the total average energy consumptiatheyj-th cognitive radio
now becomes

Cj = ]\_ijsj + (1 — pj)Ctj. (25)

Denoting QF° and QF’ to be the respective global probabilities of false alarm datection for the
censored truncated sequential approach, we define ourepnodt the minimization of the maximum
average energy consumption per sensor subject to a caoristrathe global probabilities of false alarm

and detection as follows

min max Cj
ab  J

SLOQF <a, QF = 6. (26)

As in (11) and[(1R), under the OR rule that is assumed in theticse the global probability of false

alarm is
M
¢ = Pr(Dec =1/Ho) =1 - [[(1 - Pyy). (27)
j=1
and the global probability of detection is
M
& =Pr(Dec=1"1) =1—[J(1 - Py). (28)
j=1
Note that sincePy; = --- = Py, it is again assumed thdt;; = Py in this section.

In the following subsection, analytical expressions fag grobability of false alarm and detection as

well as the censoring rate and ASN are extracted.

B. Parameter and Problem Analysis

Looking at [1T), [(AB),[(19) and_(22), we can see that the jpimtbability distribution function of

p(Cij, .-, Cnj) IS the foundation of all the equations. Sineg = ¢;; — (;—1; for i =1,..., N, we have,

P(Cjs s Cnj) = P(Tnj)p(Tr—15)--P(215)- (29)

Therefore, the joint probability distribution function der H, and?#; becomes

1 .
P(Crjr s Gng [ Ho) = €™ P Loce, <6y (30)
1 o ,
P(C1js s GnjHa) = 2O+ s PR Lo, <oy} (31)

whereIyo<¢, <c,,..<c,,} 1S again the indicator function.
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12

The derivation of the local probability of false alarm and #th"SN underH in this work are similar to
the ones considered in [19] arid [21]. The difference is thdi8], if the cognitive radio does not reach
a decision aftetN samples, it employs a single threshold decision policy t@ @i final decision about
the presence or absence of the cognitive radio, while in aukywno decision is sent in case none of the
upper and lower thresholds are crossed. Hence, to avo@Hinting a cumbersome detailed derivation of
each parameter, we can use the results inh [19] for our asalyigh a small modification. However, note
that the problem formulation in this work is essentiallyfeliént from the one in_[19]. Further, since in
our work the distribution oft;; under#, is exponential like the one undét,, unlike [19], we can also
use the same approach to derive analytical expressionsidolotal probability of detection, the ASN
under#,, and the censoring rate.

Denoting E,, to be the event where; < (;; < b;, i =1,...,n — 1 and(,; > b,, (1) becomes

N
Pyj =Y Pr(Eqn|Ho). (32)

n=1

where the analytical expression fév(E,,|H,) is derived in AppendiX'B.

Similarly for the local probability of detection, we have

N
Py =y Pr(E,[H), (33)

n=1
where the analytical expression féwr(FE,,|H1) is derived in Appendix .
Defining R,,; = {¢ij|Gij € (a;,b;), i = 1,...,n}, Pr(R,;|Ho) andPr(R,;|#:) are obtained as follows
I
Pr(Ry;|Ho) = Q—NJén?bn(l/Z), n=1,..N, (34)

1 n
PT(RHJ‘Hl) = )]n Jém)bn(l/2(1 +fYJ))7 n=1..,N, (35)

2(1 +;

wherejéf?bn (0) is presented in Appendx]D and(23) andl(24) become

N-1 N-1

E(N;[Ho) = > n(Pr(Rpn_1;Ho) — Pr(Rn;[Ho)) + NPr(Ry_1;/Ho) = 1+ > _ Pr(Rn;[Ho), (36)
n=1 n=1
N N-1

E(N;[H1) =Y n(Pr(Rn_1j/H1) — Pr(Rnj[H1)) + NPr(Ry_1j|H1) = 1+ > _ Pr(Rn;[H1). (37)
n=1 n=1

With @8) and [[(3¥), we can calculate {22). This way.](20) d2f) (can be derived as follows

1
b0 = Pr(Ru;lHo) = 55 Jin b, (1/2) (38)
_ _ 1 (N)
b1 = Pr(Rn;[H1) = Ton o (1/2(1 +75)). (39)

EEEEnIa
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We can show that the probler {26) is not convex. Therefore,stlandard systematic optimization
algorithms do not give the global optimum farand b. However, as is shown in the following lines,
a andb are bounded and therefore, a two-dimensional exhaustmelsés possible to find the global
optimum. First of all, we have < 0 anda < 0. On the other hand, i has to play a role in the sensing
system, at least oney should be positive, i.eqy = a + NA > 0 which givesa > —NA. Hence, we
obtain—NA < a < 0. Furthermore, definin@¢* = F(a,b) andQS = G(a, b), for a givena, it is easy
to show thatg—1(a, 8) < b < F~!(a,a) (where F~! andG~! are defined over the second argument).

Before introducing a suboptimal problem, the followingdhem is presented.

Theorem 1For a given local probability of detection and false alaf &nd Py) and .V, the censoring
rate of the optimal censored truncated sequential sengifigi¢ less than the one of the censoring scheme
(r°).

Proof. The proof is provided in AppendiXE.

We should note that, in censored truncated sequentialrggresiarge amount of energy is to be saved
on sensing. Therefore, as is shown in Sedfidbn V, as the geesiergy of each sensor increases, censored
truncated sequential sensing outperforms censoring imst@f energy efficiency. However, in case that
the transmission energy is much higher than the sensinggriemay happen that censoring outperforms
censored truncated sequential sensing, because of a lgsoring rate * > p°). Hence, one corollary
of Theorem 1 is that although the optimal solution [of] (10) dospecificN, i.e., Py = 1 — (1 — g)/M
and Py = H~!(3), is in the feasible set of (26) for a resulting ASN less thénit does not necessarily
guarantee that the resulting average energy consumptiosepsor of the censored truncated sequential
sensing approach is less than the one of the censoring scpamieularly when the transmission energy
is much higher than the sensing energy per sample.

Solving [26) is complex in terms of the number of computatiand thus a two-dimensional exhaustive
search is not always a good solution. Therefore, in ordee&zht a good solution in a reasonable time,
we seta < —NA in order to obtaine; = --- = ay = 0. This way, we can relax one of the arguments

of (28) and only solve the following suboptimal problem

min max Cj
b J

StQF <a, Qp = 0. (40)

Note that unlike Sectiohlll, here the zero lower thresholdas necessarily optimal. The reason is that
although the maximum censoring rate is achieved with thesta, the minimum ASN is achieved with

the highest:, and thus there is an inherent trade-off between a high cegs@te and a low ASN and a
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zeroa; is not necessarily the optimal solution. Since the anay#xpressions provided earlier are very
complex, we now try to provide a new set of analytical exgmessfor different parameters based on
the fact thatuy = --- = ay = 0.

To find an analytical expression fdt;, we can deriveA(n) for the new paradigm as follows
A(n) = /"'/[{OSCljSC2j~~SCn1j}dC1j~~~dC —15° (41)
Fn

Since0 < (15 < (25... < (y—15 anda; = --- = ay = 0, the lower bound for each integral ¢s_; and

the upper bound i%;, wherei = 1,...,n — 1. Thus we obtain

bl b2 bn71
A(TL) :/ / / dglij2j---d<n—1ja (42)
Coj JCuy Cn—2j
which according to[[21] is
by b2
A(n) = (nl_ o = 1,..,N. (43)
Hence, we have
N
Pfj = anA(n)7 (44)
n=1

e*bn/z

andp,, = S;=. Similarly, for Py;, we obtain

b1 b2 bn71
B(n) = / / / dc:[ijQj...an_lj
Goj /€1y Cn—2j

b1b2_2

(TL _ 1)‘7 n Y ) ) ( )
and thus
N
Py = ZQnB(”)> (46)
n=1
whereq,, = W Furthermore, we note that far, = --- = any =0, A(n) = B(n) = %, n=
1,...,N.

It is easy to see thak,; occurs undet, if no false alarm happens until theth sample. Therefore,

the analytical expression faPr(R,,;|Ho) is given by
Pr(Rp[Ho) =1 =Y piA(i), (47)
=1
and in the same way, faPr(R,;|H1), we obtain

Pr(Ry [H1) = 1= qiA(i). (48)
i=1
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Putting [4T) and[(48) in(36) and_(37), we obtain

N—-1 n

E(N]‘HO) =1+ Z {1 - ZPZA(Z)}, (49)
n=1 i=1
N—-1 n

B =1+ 3 {1- 3w} (50)
n=1 i=1

and inserting[(49) and(50) ih_(P2), we obtain

N; = w0<1 +i§ {1 - izz;piA(i)}> +m (1 +]§ {1 — gin(i)}>. (51)

Finally, from (47) and[(48), the censoring rate can be easigined as

N N
i =mo(1- 3 ) +m (1= i), (52)
i=1 i=1
Having the analytical expressions for [40), we can easilgt flee optimal maximum average energy
consumption per sensor by a line search dveBimilar to the censoring problem formulation, here the
sensing threshold is also bounded®% ' () < b < QF~'(3). As we will see in SectiohV, censored

truncated sequential sensing performs better than cathspeetrum sensing in terms of energy efficiency

for low-power radios.

IV. EXTENSION TO THEAND RULE

So far, we have mainly focused on the OR rule. However, amatiie which is also simple in terms
of implementation is the AND rule. According to the AND rul®rc = 0, if at least one cognitive
radio reports a zero, elsBrc = 1. This way the global probabilities of false alarm and deétegtcan

be written respectively as
M

QFanp = QFanp = Pr(Drc = 1[Ho) = H(50j + Pyj), (53)
j=1
M

@b.anp = @panp = Pr(Drc = 1[H1) = H(51j + Pyj).- (54)
j=1

Note that[(58) and(34) hold for both the sequential cengaaimd censoring schemes. Similar to the case
for the OR rule, the problem is defined so as to minimize theimam average energy consumption
per sensor subject to a lower bound on the global probalsfitgetection and an upper bound on the
global probability of false alarm. In the following two sudadions, we are going to analyze the problem

for censoring and sequential censoring.
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A. AND rule for fixed-sample size censoring

The optimization problem for the censoring scheme congigehe AND rule at the FC, becomes

min max Cj}
A, A2 g

S.t. QFanp < @, Qpanp = B (55)

where(; is defined in[(B). Since the FC decides for the absence of ihepy user by receiving at least
one zero and the fact that the sensing energy per sample ssacdnthe optimal upper threshoM is
X2 — co. This way, cognitive radios censor all the results for whith> A, and as a resulf_($3) and
(54) become

M

Qfanp = Pr(Drc = 1|Ho) = H 00; (56)
7j=1
M

Qb anp = Pr(Drc =1[H1) = [ ] 015 (57)
7j=1

wheredy; = Pr(&; > A\|Ho) anddy; = Pr(E; > Ai|H1). Since the thresholds are the same among the
cognitive radios, we hav&y; = §po = --- = doar = dp. Since there is a one-to-one relationship between
A1 and dy, by finding the optimal)y, the optimal\; can be easily derived. As shown in Appenflix F,
we can derive the optimal, asd, = «!/™. This result is very important in the sense that as far as the
feasible set of[(85) is not empty, the optimal solution [of)(E5independent from the SNR. Note that
the maximum average energy consumption per sensor stiiraspon the SNR vid,; and is reducing

as the SNR grows.

B. AND rule for censored truncated sequential sensing

The optimization problem for the censored truncated seiiplesensing scheme with the AND rule,

becomes

min max Cj
ab  J

S.t. QEanp < @, Qbanp = B (58)
where C; is defined in [(Zb). Similar to the OR rule, we haveVA < a < 0. Defining Qo =
Fanp (@, ) and Qanp = Ganp (@, b), for a givena, we can show thaGap (@, 8) < b < Fanp (@, )
(where Fap andGayp are defined over the second argument). Therefore, the dptiraadb can again

be derived by a bounded two-dimensional search, in a simiéar as for the OR rule.
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V. NUMERICAL RESULTS

A network of cognitive radios is considered for the numdriessults. In some of the scenarios, for
the sake of simplicity, it is assumed that all the sensorseggpce the same SNR. This way, it is
easier to show how the main performance indicators inctudite optimal maximum average energy
consumption per sensor, ASN and censoring rate changes ovieof the underlying parameter of the
system changes. However, to comply with the general ided@fpaper, which is based on different
received SNRs by cognitive radios, in other scenarios, ifierent cognitive radios experience different
SNRs. Unless otherwise mentioned, the results are baseleosirigle-threshold strategy for censored
truncated sequential sensing in case of the OR rule.

Fig. depicts the optimal maximum average energy consamper sensor versus the number of
cognitive radios for the OR rule. The SNR is assumed td0#B, N = 10, Cs; = 1 and C; = 10.
Furthermore, the probability of false alarm and detectionstraints are assumed to be= 0.1 and
= 0.9 as determined by the IEEE 802.15.4 standard for cognitig@®sa7]. It is shown for both high
and low values ofry that censored sequential sensing outperforms the cegsscimeme. Looking at
Fig.[2B and Fig[2c, where the respective optimal censoritg) and optimal ASN are shown versus the
number of cognitive radios, we can deduce that the lower ASNldaying a key role in a lower energy
consumption of the censored sequential sensing.[Flg. 2ashlsws that as the number of cooperating
cognitive radios increases, the optimal maximum averageggnconsumption per sensor decreases and
saturates, while as shown in Fig.l2b and Fig. 2c, the optiraasaring rate and optimal ASN increase.
This way, the energy consumption tends to increase as a i&sAISN growth and on the other hand
inclines to decrease due to the censoring rate growth andsttige reason for saturation after a number of
cognitive radios. Therefore, we can see that as the numbawgsfitive radios increases, a higher energy
efficiency per sensor can be achieved. However, after a nuafilbegnitive radios, the maximum average
energy consumption per sensor remains almost at a constaitdnd by adding more cognitive radios
no significant energy saving per sensor can be achieved wialéotal network energy consumption also
increases.

Figures[3h[ 3b and Bc consider a scenario where= 5, N = 30, Cs; = 1, Cy; = 10, a = 0.1,

g = 0.9 andm, can take a value dd.2 or 0.8. The performance of the system versus SNR is analyzed
in this scenario for the OR rule. The maximum average eneoggumption per sensor is depicted in
Fig.[3a. As for the earlier scenario, censored sequentiiisg gives a higher energy efficiency compared

to censoring. While the optimal energy variation for the sming scheme is almost the same for all
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Fig. 2: a) Optimal maximum average energy consumption pes@eversus number of cognitive
radios, b) Optimal censoring rate versus number of cognitadios, c) Optimal ASN versus number

of cognitive radios for the OR rule

the considered SNRs, the censored sequential schemeagavenergy consumption per sensor reduces
significantly as the SNR increases. The reason is that adNReii®reases, the optimal ASN dramatically

decreases (almo$% for v = 2 dB andmy = 0.2). This shows that as the SNR increases, censored
sequential sensing becomes even more valuable and a sagimiicergy saving per sensor can be achieved

compared with the one that is achieved by censoring. Sire&NR changes with the channel gaii;
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Fig. 3: a) Optimal maximum average energy consumption pes@eversus SNR, b) Optimal censoring

rate versus SNR, c) Optimal ASN versus SNR for the OR rule

under the first model oa%j under the second model), from Fig.] 3a, the behavior of théesysvith
varying |h;|* or o} ; can be derived, if the distribution ¢f;|* or o7 is known.

Figures[4h an@_4b compare the performance of the singlehthicesensored truncated sequential
scheme with the one assuming two thresholdsgi.endb for the OR rule. The idea is to find when the
double threshold scheme with its higher complexity becowadisable. In these figured/ = 5, N = 10,
v=0dB, Cy =10, mp = 0.2, 0.8, anda = 0.1, while g changes fron®.1 to 0.99. The sensing energy
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Fig. 4: Optimal maximum average energy consumption per agemsrsus probability of detection

constraint,s, for the OR rule, a’s =1, b) Cs =3

per sample(; in Fig.[4a is assumetl, while in Fig.[4D it is3. It is shown that as the sensing energy
per sample increases, the energy efficiency of the doubéshibid scheme also increases compared to
the one of the single threshold scheme, particularly wheis high. The reason is that whem is high,

a much lower ASN can be achieved by the double threshold seteemmpared to the single threshold
one. This gain in performance comes at the cost of a highepuatational complexity because of the

two-dimensional search.
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Fig. 5: Optimal maximum average energy consumption perseregsus number of samples for the OR

rule

Fig. [ depicts the optimal maximum average energy consamgier sensor versus the number of
samples for the OR rule and for a network &f = 5 cognitive radios where each radio experiences a
different channel gain and thus a different SNR. Arranging 8NRs in a vectofy = [v1,...,75], we
havey =[1dB, 2dB, 3dB, 4dB, 5dB]. The other parameters @te= 1, C; = 10, 7o = 0.5, « = 0.1 and
S = 0.9. As shown in Fig[h, by increasing the number of samples aus the total sensing energy, the
sequential censoring energy efficiency also increases amdpo the censoring scheme. For example,
if we define the efficiency of the censored truncated secalestinsing scheme as the difference of the
optimal maximum average energy consumption per sensormofesgial censoring and censoring divided
by the optimal maximum average energy consumption per sarismensoring, the efficiency increases
approximately three times from 0.06 (fof = 15) to 0.19 (for N = 30).

In Fig.[g, the sensing energy per sampl&is= 10 while the transmission energy; changes from 0
to 1000. The goal is to see how the optimal maximum averageygrm®nsumption per sensor changes
with C; for the or rule and for a network af/ = 5 cognitive radios withy =[1dB, 2dB, 3dB, 4dB,
5dB]. The other parameters of the network &e= 30, 79 = 0.5, « = 0.1 and 8 = 0.9. The best
saving for sequential censoring is achieved when the treasgon energy is zero. Indeed, we can see that
as the transmission energy increases the performance fjaggoential censoring reduces compared to
censoring. However, in low-power radios where the sensiregygy per sample and transmission energy

are usually in the same range, sequential censoring pesfonoch better than censoring in terms of
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Fig. 6: Optimal maximum average energy consumption perseressus transmission energy for the OR

rule

energy efficiency as we can see in Hig). 6.

Fig.[@ depicts the optimal maximum average energy consomyr sensor versus the sensing energy
per sample for both the AND and OR rule. For the sake of sirtpliand tractability, the SNRs are
assumed the same fdvl = 50 cognitive radios. The other parameters are assumed t&/ be 10,

C; =10, mp = 0.5, vy =0dB, a = 0.1 and 5 = 0.9. For both fusion rules, the double threshold scheme
is employed. We can see that the OR rule performs better odaWw values ofC,. However, asC;
increases the AND rule dominates and outperforms the OR palgicularly for high values of’;. The
reason that the OR rule performs better than the AND rule gt Mev values ofC is that the optimal
censoring rate for the OR rule is higher than the optimal egng rate for the AND rule. However as
C; increases, the AND rule dominates the OR rule in terms ofggnefficiency due to the lower ASN.

The optimal maximum average energy consumption per semseusn is investigated in Fig.18 for
the AND and the OR rule. The underlying parameters are assumeeC; = 2, C; = 10, N = 10,

M =50,v=0dB,a=0.1 andg = 0.9. It is shown that as the probability of the primary user albsen
increases, the optimal maximum average energy consumpéiogensor reduces for the OR rule while it
increases for the AND rule. This is mainly due to the fact floatthe OR rule, we are mainly interested
to receive a "1” from the cognitive radios. Therefore,asincreases, the probability of receiving a "1”
decreases, since the optimal censoring rate increaseopfusite happens for the AND rule, since for

the AND rule, receiving a "0” from the cognitive radios is itered to be informative.
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V1. SUMMARY AND CONCLUSIONS

We presented two energy efficient techniques for a cognsiresor network. First, a censoring scheme
has been discussed where each sensor employs a censoiitygtpaleduce the energy consumption.
Then a censored truncated sequential approach has beasedipased on the combination of censoring
and sequential sensing policies. We defined our problemesnthimization of the maximum average

energy consumption per sensor subject to a global probabiiifalse alarm and detection constraint for

September 3, 2018 DRAFT



24

the AND and the OR rules. The optimal lower threshold is shtavbe zero for the censoring scheme in
case of the OR rule while for the AND rule the optimal uppeetirold is shown to be infinity. Further,
an explicit expression was given to find the optimal solufanthe OR rule and in case of the AND rule
a closed for solution is derived. We have further derived dhalytical expressions for the underlying
parameters in the censored sequential scheme and have #mevaithough the problem is not convex,
a bounded two-dimensional search is possible for both ther@Rand the AND rule. Further, in case
of the OR rule, we relaxed the lower threshold to obtain a earch problem in order to reduce the
computational complexity.

Different scenarios regarding transmission and sensimgggnper sample as well as SNR, number
of cognitive radios, number of samples and detection perdioice constraints were simulated for low
and high values ofry and for both the OR rule and the AND rule. It has been shown dhder the
practical assumption of low-power radios, sequential agng outperforms censoring. We conclude that
for high values of the sensing energy per sample, despitegts computational complexity, the double
threshold scheme developed for the OR rule becomes moeztata. Further, it is shown that as the
sensing energy per sample increases compared to the temi@meénergy, the AND rule performs better
than the OR rule, while for very low values of the sensing gyngrer sample, the OR rule outperforms
the AND rule.

Note that a systematic solution for the censored sequentilem formulation was not given in this
paper, and thus it is valuable to investigate a better dlyorito solve the problem. We also did not
consider a combination of the proposed scheme with sleegéngn [13], which can generate further
energy savings. Our analysis was based on the OR rule andNerdle, and thus extensions to other

hard fusion rules could be interesting.

APPENDIXA

OPTIMAL SOLUTION OF (10)
Since the optimal\; = 0, (8) and [9) can be simplified td; = 1 — P; andd,; = 1 — P4 and so
(1d) becomes,

n;\in max [ NCyj + (mo Py + 7T1de)Ctj]
2 J

M
st1-(1-P)M <a, 1-JJ(1-Py) = 5. (59)
j=1
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Since there is a one-to-one relationship betwagemnd Py, i.e., Ay = 2I' '[N, T'(N) P;] (wherel'™!

is defined over the second argumerit),] (59) can be formulad@dZa p.130],
n}l)in max; [ NCyj + (moPs + ﬂlde)Ctj]

: (60)
st1-(1-P)M <a, 1-T[L,(1-Py) > 5.

A2 T 7_*2
Defining Py = F(X\2) = % and Py = Gj(\) = W we can write Py as

Py = Gj(F~1(Py)). Calculating the derivative of’; with respect toP;, we find that

80]' . O[Ctj(ﬂon + 7T1de)]
oP; OP;

where we use the fact that

dPy
— > 61
Ct]ﬂ'(]—F an 0 ( )

OPy T )QF [N,T(N)Pf]N—lezrfl[N,F(N)Pf]/z(lﬂﬂlmfl[N,p(N)Pf}zo}
oy _W(N) D=UN, D(N) PN =12 INEOIPA2 Lop sy (v P01
— LT INI(NP](1/2(147)-1/2) > . (62)

Therefore, we can simplify (60) as

min Py

Fr (63)

st1-(1-P)M<a, 1- 1‘[ (1= Py) > B.
which can be easily solved by a line search o¥er However, since)g is a monotonically increasing
function of Py, i.e., Q5 = H(P;) = 1 —[[}L,(1 — G;(F~1(Py))) and thusaQD = ggd% S =
1=, Pdl)apdﬂ > 0, we can further simplify the constraints in{63) Bs < 1 — (1 — a)'/™ and

Py > H~'(3). Thus, we obtain

min Py
Fi (64)
StPr<1—(1—a)/M Py >HYS).

Therefore, if the feasible set d{64) is not empty, then theneal solution is given byP; = H~1(3).

APPENDIX B
DERIVATION OF Pr(E,|Ho)

IntroducingT,, = {a; < (;; < bi, i = 1,...,n — 1} andp, = e ~>/2, we can write

r(En|Ho) = / // 5.€ ~Cna/2 Tro<¢,,<¢ayo<cn 3 AC15 - ACnj
= pn/"'/[{0<C1j<C2j---<Cn1j}d<1j"'d<n—1j' (65)
I
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Denoting A(n f S Tro<ci <oy <Co 1 ¥dCrsdcr ;0 WE ODEAIN

'n.

blbn72
m, n = 17,p+ 1

A(n) = § [F8D (1) = Inss) 05 3%% S Pr(Eisi|Ho)], n=p+2,.q+1,
£ (bnr) = 20 Of% 1’)(bn 1)2ie s Pr(Ei|Ho)], n=q+2,.,N
(66)
where a|~ ' = [ag,...,a,_1]. Denotingq to be the smallest integer for which, < b; < b,, and
¢ and d to be two non-negative real numbers satisfying< ¢ < d, ap,—1 < ¢ < b, anda, < d,
no =0, n = [M,eesnie), 0 < < ... < 1, the functionsff?’?(() and the vectorp? .. in (€6) are as

follows
(k) -
fr(]i)(g) _ Zf 01 fi (Q{k 771+1 _|_ f

— . (k—1) .
FE =D —0 k=1, k>, P = -3k o L= e = mis )™, V=1 (67)

[bi+1, . bi+1,aq+i+1, . an_l,c], 1€ [0,71 —q— 2]

q n—q—i
e =9 [bist, s biv1,c], i€n—q—1,5—1] ) (68)
N —
n—i

| bi—l—lln—ia 1€ [S,TL — 2]

with s denoting the integer for which, < ¢ < bsy; and fﬁi)(g) =1

APPENDIX C

DERIVATION OF Pr(E,|H;)

Introducingq,, = We—bnﬂ(lﬂﬂ, we can write

1+7;

PT(En‘,Hl) :/ // 1+’Y _an/2(l+yj)I{oggljgczjmgcnj}dclj...anj
J

_— / / Lo<cr, <o <en s} GG (69)

n
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DenotingB(n f fI{0<<1]<<2J <Cu_1;}dC,..dc,,;» @Nd using the notations of Appendik B, we obtain

n

blbn72
r"l)!, n = 1, D+ 1

n—i—1

- n— n—1—"0i41 7 21+
Bn) = § i (uon) = Tzy S5 88— 2004+ ) e Pr(BunHa)], n=p 2+ 1.

£8P buy) — T S0 001+ Pr(Bial )], n=q 42,0 N

(70)
APPENDIXD
ANALYTICAL EXPRESSION FORJéZ?bn(H)
Underf >0, n > 1and0 < (5 < ... < (pj, Gij € (ai,bs), i =1,...,n, the functionJC(:)bn(e) is
defined as[[19]
n n—2
n —i[ p(n—i —0Oa,, n—i —0b,, k
T 0) = >0 [f an)e = (0]~ sy o0, 0), (7D)

i=1 k=0
where using the notations of AppendiX B, we havel [19]

1K) [Hk_”e_eb’““ -y k _Zf(" k= (d)e_ed], c<by, ke0,n—2]

bk+11n k—1i
g = 4 IO o[ e e ff;;; Yd)e), c> b, kelos—1],  (72)
1) [Hk_”e_eb’““ — > kg—i b(::]];n )k Z(d)e_ed], c>by, kels,n—2]

with 7©© =1 and

(n) n—2 (bn—=bis1)""" 7(4)
) _ far (bn) = Itn>0y D200 S (v IV, ne [1,q]' 73)

5 (ba) - S0 f““( b) I, n € g+ 1,00)
APPENDIX E

PROOF OFTHEOREM 1

Assume that’; and P; are the respective given local probability of false alarrd datection. Denoting
p¢ as the censoring rate for the optimal censoring schéme \@&pbtainl — p¢ = mo Py + m P4, and
denotingp®® as the censoring rate for the optimal censored truncategeséigl sensing (26), based on
what we have discussed in Sectioh II, we obtair p° = m(P; + Lo(a,b)) + m1(Py + L1(a,b)).
Note thatLy(a,b), k = 0,1, represents the probability that < a,, n = 1,..., N underH; which is

non-negative. Hence, we can conclude that p© > 1 — p¢ and thusp® > p°©s.
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APPENDIXF

OPTIMAL SOLUTION OF (55)

Since the optimah; — oo, (53) and [G#) can be simplified ©F anp = 657 and Qf anp = ]_[j]‘i1 91

and so[(5b) becomes,

H;L\in max [ NC’Sj + (71'0(1 - 50) + 7T1(1 — 51j))0tj]
1 J

M
st.of <a, [[oy =8 (74)

j=1
Since there is a one-to-one relationship betwaerand d, i.e., \; = 2I' 1[NV, T'(V)&] (WhereI'~!

is defined over the second argumerif)] (74) can be formulad@za p.130],

min max,; | NCs; + (mo(1 — &g) + m1(1 — 015))Cy;
i i [ NCsj + (mo(1 = do) +m1(1 — 615))Cy] 75)

st.ol <a, TIL, 615 > 8.

(N, T(N,505) .
(F(st) and d1; = Ganpj(M) = —ys, We can writed,; asdi; =

Ganp,j(F~1(dp)). Calculating the derivative of’; with respect tay,, we find that

Defining dp = Fanp (A1) =

g?; _ 8[Ctj<7ro<1—6gzs 0+ m=0)] 6(18—50513») <0, 76)
where we use the fact that
96y, —avrwy 20 N D)8 Ve NI 2009) Fiop iy vy, 200
%y —ﬁ(mﬂ—lw,F(N)éO]N—leZF“[N,F(N)éo]/ZI{zp,l[NI(N)(;O}ZO}
— 2T VTN (1/2(1+7;)-1/2) > . (77)
Therefore, we can simplify (T5) as
0 79
s.t. 8} <a, vail 015 > f.
Since Q5 ap IS @ monotonically increasing function ofy, i.e., Qoo = Hanp(do) =
[T (Ganpj (Fano (60))) and thus™&ee —  2bme 90u — 120 (5,)%% > 0, we can further
simplify the constraints in(78) a& < «!/* anddy; > H~!(53). Thus, we obtain
e (79)

S.t.dy < Oél/M, 51j > H_l(ﬁ)

Therefore, if the feasible set df (79) is not empty, then theneal solution is given by, = o'/ ().

September 3, 2018 DRAFT



29

REFERENCES

[1] Q. Zhao and B. M. Sadler, “A Survey of Dynamic Spectrum 8ss,”IEEE Signal Processing Magazinpp 79-89, May
2007.

[2] C.R.C.daSilva, B. Choi and K. Kim, “Cooperative Sensaigong Cognitive Radios|hformation Theory and Applications
Workshop pp 120-123, 2007.

[3] S. M. Mishra, A. Sahai and R. W. Brodersen, “Cooperatieasng among Cognitive Radio$2EE International Conference
on Communicationspp 1658-1663, June 2006.

[4] P. K. Varshney, “Distributed Detection and Data Fusiogpringer 1996.

[5] S. M. Kay, “Fundamentals of Statistical Signal ProcegsiVolume 2: Detection TheoryRPrentice Hall 1998.

[6] D. Cabric, S. M. Mishra and R. W. Brodersen, “Implemeiaiatissues in spectrum sensing for cognitive radidssflomar
Conference on Signals, Systems and Compupgrs’72-776, Nov 2004.

[7] C. R. Stevenson, C. Cordeiro, E. Sofer, and G. Chouird&ainctional requirements for the 802.22 WRAN standard EEE
Tech. Rep. 802.22-05/0007r46, Sept. 2005.

[8] S. Appadwedula, V. V. Veeravalli and D. L. Jones, “Decalized Detection With Censoring SensorkEE Transactions
on Signal Processingpp 1362-1373, Apr 2008.

[9] S. Appadwedula, V. V. Veeravalli and D. L. Jones, “Enegfficient detection in sensor network$ZEE Journal on Selected
Areas in Communicationpp 693-702, Apr 2005.

[10] S. Appadwedula, V. V. Veeravalli and D. L. Jones, “Rabasd locally-optimum decentralized detection with cemspr
sensors,lEEE Information Fusion2002.

[11] C. Rago, P. Willett and Y. Bar-Shalom, “Censoring seasa low-communication-rate scheme for distributed deaia¢
IEEE Transactions on Aerospace and Electronic Syst@p$54-568, Apr 1996.

[12] C. Sun, W. Zhang and K. B. Letaief, “Cooperative Spetir@ensing for Cognitive Radios under Bandwidth Constrdints
IEEE Wireless Communications and Networking ConfereMarch 2007.

[13] S. Maleki, A. Pandharipande and G. Leus, “Energy-EfitiDistributed Spectrum Sensing for Cognitive Sensor Nekts”
IEEE Sensors Journalol.11, no.3, pp.565-573, March 2011.

[14] V. V. Veeravalli, “Sequential decision fusion: theoand applications”Journal of The Franklin Institutevol. 336, issue.
2, pp-301-322, March 1999.

[15] V. V. Veeravalli, T. Basar, H. V. Poor, “Decentralizedcgiential detection with a fusion center performing theusetjal
test,” IEEE Transactions on Information Thegmyol.39, no.2, pp.433-442, Mar 1993.

[16] A. M. Hussain, “Multisensor distributed sequentiatelgion,” IEEE Transactions on Aerospace and Electronic Systems,
vol.30, no.3, pp.698-708, Jul 1994.

[17] R. S. Blum, B. M. Sadler, “Energy Efficient Signal Detiect in Sensor Networks Using Ordered TransmissiotiSEE
Transactions on Signal Processinggl.56, no.7, pp.3229-3235, July 2008.

[18] P. Addesso, S. Marano, and V. Matta, “Sequential Sargpiih Sensor Networks for Detection With Censoring Nodes,”
IEEE Transactions on Signal Processingl.55, no.11, pp.5497-5505, Nov. 2007.

[19] Y. Xin, H. Zhang, “A Simple Sequential Spectrum Sens8zheme for Cognitive Radiossubmitted to IEEE Transactions
on Signal Processingavailable on http://arxiv.org/P$ache/arxiv/pdf/0905/0905.4684v1.pdf.

[20] A. Wald, “Sequential Analysis"Wiley, 1947

[21] R. C. Woodall, B. M. Kurkjian, “Exact Operating Charadstic for Truncated Sequential Life Tests in the Expoiznt
Case,"The Annals of Mathematical Statisticgol. 33, No. 4, pp. 1403-1412, Dec. 1962.

September 3, 2018 DRAFT


http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.4684v1.pdf

30

[22] S. Boyd and L. Vandenberghe, “Convex Optimizatio@ambridge University Presf004.

Sina Maleki received his B.Sc. degree in electrical engineering froam IUniversity of Science and
Technology, Tehran, Iran, in 2006, and his M.S. degree iotetal engineering from Delft University
of Technology, Delft, The Netherlands, in 2009. From Julp&@o April 2009, he was an intern student
at the Philips Research Center, Eindhoven, The Netherlamaiking on spectrum sensing for cognitive
radio networks. He then joined the Circuits and Systems mtuthe Delft University of Technology,

where he is currently a Ph.D. student. He has served as avesvfer several journals and conferences.

Geert Leuswas born in Leuven, Belgium, in 1973. He received the elegt@ngineering degree and the
PhD degree in applied sciences from the Katholieke Unitatdieuven, Belgium, in June 1996 and May
2000, respectively. He has been a Research Assistant anstdoPtoral Fellow of the Fund for Scientific
Research - Flanders, Belgium, from October 1996 till Sepm?2003. During that period, Geert Leus
was affiliated with the Electrical Engineering Departmehthe Katholieke Universiteit Leuven, Belgium.

Currently, Geert Leus is an Associate Professor at the BaofilElectrical Engineering, Mathematics

and Computer Science of the Delft University of TechnoloBlye Netherlands. His research interests are in the areaodlsi

processing for communications. Geert Leus received a 2BBE ISignal Processing Society Young Author Best Paper Aaadd

a 2005 |IEEE Signal Processing Society Best Paper Award. KeheaChair of the IEEE Signal Processing for Communications

and Networking Technical Committee, and an Associate Edio the IEEE Transactions on Signal Processing, the IEEE

Transactions on Wireless Communications, and the IEEE&BiBrocessing Letters. Currently, he is a member of the IEEE

Sensor Array and Multichannel Technical Committee andeseon the Editorial Board of the EURASIP Journal on Advances

in Signal Processing. Geert Leus has been elevated to IEHE&WFe

September 3, 2018

DRAFT



arxiv:1106.2025v2 [cs.SY] 14 Mar 2013

Censored Truncated Sequential Spectrum Sensing
for Cognitive Radio Networks

Sina Maleki

Abstract—Reliable spectrum sensing is a key functionality of a
cognitive radio network. Cooperative spectrum sensing impves
the detection reliability of a cognitive radio system but ato
increases the system energy consumption which is a criticéctor
particularly for low-power wireless technologies. A censced
truncated sequential spectrum sensing technique is consded
as an energy-saving approach. To design the underlying seng
parameters, the maximum average energy consumption per
sensor is minimized subject to a lower bounded global probaibty
of detection and an upper bounded false alarm rate. This way
both the interference to the primary user due to miss detectin
and the network throughput as a result of a low false alarm
rate are controlled. To solve this problem, it is assumed thiathe
cognitive radios and fusion center are aware of their locatin and
mutual channel properties. We compare the performance of th
proposed scheme with a fixed sample size censoring scheme and
different scenarios and show that for low-power cognitive adios,
censored truncated sequential sensing outperforms censng. It
is shown that as the sensing energy per sample of the cogniiv
radios increases, the energy efficiency of the censored troated
sequential approach grows significantly.

Index Terms—distributed spectrum sensing, sequential sensing,
cognitive radio networks, censoring, energy efficiency.

|. INTRODUCTION

Geert Leus

sent to the fusion center (FC), which makes a global decision
about the presence (or absence) of the primary user and feeds
it back to the cognitive radios. Several fusion schemes have
been proposed in the literature which can be categorizedrund
soft and hard fusion strategiés [4]] [5]. Hard schemes an@mo
energy efficient than soft schemes, and thus a hard fusion
scheme is adopted in this paper. More specifically, two papul
choices are employed due to their simple implementatiaa: th
OR and the AND rule. The OR rule dictates the primary
user presence to be announced by the FC when at least one
cognitive radio reports the presence of a primary user to the
FC. On the other hand, the AND rule asks the FC to vote
for the absence of the primary user if at least one cognitive
radio announces the absence of the primary user. In thig pape
energy detection is employed for channel sensing which is
a common approach to detect unknown signals [5], [6], and
which leads to a comparable detection performance for hard
and soft fusion schemes|[3].

Energy consumption is another critical issue. The maximum
energy consumption of a low-power radio is limited by its
battery. As a result, energy efficient spectrum sensinditigi
the maximum energy consumption of a cognitive radio in a

Dynamic spectrum access based on cognitive radios K@9perative sensing framework is the focus of this paper.

been proposed in order to opportunistically use undezetili

spectrum portions of the licensed electromagnetic spectriy  contributions

[1]. Cognitive radios opportunistically share the spectru
while avoiding any harmful interference to the primary li-
censed users. They employ spectrum sensing to detect
empty portions of the radio spectrum, also known as spectr
holes. Upon detection of such a spectrum hole, cognitiviesad

The spectrum sensing module consumes energy in both
sensing and transmission stages. To achieve an energy-

icient spectrum sensing scheme the following contringi

are presented in this paper.

dynamically share this hole. However, as soon as a primarys A combination of censoring and truncated sequential
user appears in the corresponding band, the cognitivegadio S€nsing IS proposed to save energy. The_ sensors sequen-
have to vacate the band. As such, reliable spectrum sensing fially sense the spectrum before reaching a truncation

becomes a key functionality of a cognitive radio network.

The hidden terminal problem and fading effects have been

shown to limit the reliability of spectrum sensing. Distribd

cooperative detection has therefore been proposed to ir@pro
the detection performance of a cognitive radio netwark [2],

[3]. Due to its simplicity and small delay, a parallel detent

configuration [[4], is considered in this paper where each
secondary radio continuously senses the spectrum in period
sensing slots. A local decision is then made at the radios and
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point, N, where they are forced to stop sensing. If the

accumulated energy of the collected sample observations

is in a certain region (above an upper threshaldor
below a lower thresholdy) before the truncation point,

a decision is sent to the FC. Else, a censoring policy is

used by the sensor, and no bits will be sent. This way,

a large amount of energy is saved for both sensing and

transmission. In our paper, it is assumed that the cognitive

radios and fusion center are aware of their location and
mutual channel properties.

o Our goal is to minimize the maximum average energy
consumption per sensor subject to a specific detection
performance constraint which is defined by a lower
bound on the global probability of detection and an
upper bound on the global probability of false alarm. In
terms of cognitive radio system design, the probability of


http://arxiv.org/abs/1106.2025v2

detection limits the harmful interference to the primarwhile this is not presented i [12]. A combined sleeping and
user and the false alarm rate controls the loss in spectrgensoring scheme is considered(inl[13]. The censoring sehem
utilization. The ideal case yields no interference anid this paper is different in some ways. The optimization
full spectrum utilization, but it is practically impossél problem in the current paper is defined as the minimization of
to reach this point. Hence, current standards determitiee maximum average energy consumption per sensor while
a bound on the detection performance to achieve an[13], the total network energy consumption is minimized.
acceptable interference and utilization level [7]. To thEor low-power radios, the problem in this paper makes more
best of our knowledge such a min-max optimizatiosense since the energy of individual radios is generallitdith
problem considering the average energy consumption perthis paper, the received SNRs by the cognitive radios are
sensor has not yet been considered in literature. assumed to be different while in i3], the SNRs are the same.

« Analytical expressions for the underlying parameters akénally note that the sleeping policy of [13] can be easily
derived and it is shown that the problem can be solvédcorporated in our proposed censored truncated sequentia
by a two-dimensional search for both the OR and ANBensing leading to even higher energy savings.
rule.

« To reduce the computational complexity for the OR rulé&s- Related work to sequential sensing
a single-threshold truncated sequential test is proposedSequential detection as an approach to reduce the average
where each cognitive radio sends a decision to the F@mber of sensors required to reach a decision is also studie
upon the detection of the primary user. comprehensively during the past decades [14]-[19].1n,[14]

« To make a fair comparison of the proposed techniqii&5], each sensor collects a sequence of observations, con-
with current energy efficient approaches, a fixed sampdtructs a summary message and passes it on to the FC and
size censoring scheme is considered as a benchmarla(itother sensors. A Bayesian problem formulation compgisi
is simply called the censoring scheme throughout the rébe minimization of the average error detection probapilit
of the paper) where each sensor employs a censoremgd sampling time cost over all admissible decision pdlicie
policy after collecting a fixed number of samples. That the FC and all possible local decision functions at each
censoring policy in this case works based on a lowsensor is then considered to determine the optimal stopping
threshold,\; and an upper thresholdy,. The decision and decision rule. Further, algorithms to solve the optatidan
is only being made if the accumulated energy is not iproblem for both infinite and finite horizon are given. In1[16]
(A1, \2). For this approach, it is shown that a singlean infinite horizon sequential detection scheme based on the
threshold censoring policy is optimal in terms of energgequential probability ratio test (SPRT) at both the sexaod
consumption for both the OR and AND rule. Moreovelthe FC is considered. Wald’s analysis of error probabi],

a solution of the underlying problem is given for the ORs employed to determine the thresholds at the sensors and

and AND rule. the FC. A combination of sequential detection and censoring
is considered in[[17]. Each sensor computes the LLR of the
received sample and sends it to the FC, if it is deemed to be
in a certain region. The FC then collects the received LLRs

Censoring has been thoroughly investigated in wireless semd as soon as their sum is larger than an upper threshold or
sor networks and cognitive radids [€]=[13]. It has been shovemaller than a lower threshold, the decision is made and the

that censoring is very effective in terms of energy efficiemic  sensors can stop sensing. The LLRs are transmitted in such a

the early works,[[8]-H[1/1], the design of censoring paramseteway that the larger LLRs are sent sooner. It is shown that the

including lower and upper thresholds has been consider@d amumber of transmissions considerably reduces and paatlgul
mainly two problem formulations have been studied. In thehen the transmission energy is high, this approach pegorm

Neyman-Pearson (NP) case, the miss-detection probalslityvery well. However, our paper employs a hard fusion scheme

minimized subject to a constraint on the probability of éalsat the FC, our sequential scheme is finite horizon, and furthe

alarm and average network energy consumption [9]-[11]. &nclear optimization problem is given to optimize the energy
the Bayesian case, on the other hand, the detection eronsumption. Since we employ the OR (or the AND) rule
probability is minimized subject to a constraint on the ager in our paper, the FC can decide for the presence (or absence)
network energy consumption. Censoring for cognitive rado of the primary user by only receiving a single one (or zero).

considered in[[12]/T13]. In[12], a censoring rule similarthe Hence, ordered transmission can be easily incorporatedrin o

one in this paper is considered in order to limit the bandwidpaper by stopping the sensing and transmission procedure as

occupancy of the cognitive radio network. Our fixed sampkoon as one cognitive radio sends a one (or zero) to the FC.
size censoring scheme is different in two ways. First[ir],[12[18] proposes a sequential censoring scheme where an SPRT
only the OR rule is considered and the FC makes no decisisremployed by the FC and soft or hard local decisions are sent
in case it does not receive any decision from the cognitite the FC according to a censoring policy. It is depicted that

radios which is ambiguous, since the FC has to make a fitlhé number of transmissions decreases but on the other hand

decision, while in our paper, the FC reports the absence (the average sample number (ASN) increases. Therefore, [18]

the OR rule) or the presence (for the AND rule) of the primarignores the effect of sensing on the energy consumption and

user, if no local decision is received at the FC. Second, we gifocuses only on the transmission energy which for curremt lo

a clear optimization problem and expression for the safutigpower radios is comparable to the sensing energy. A trudcate

B. Related work to censoring



sequential sensing technique is employed[in [19] to reducey.| cognitive radio1

the sensing time of a cognitive radio system. The thresholds \

are determined such that a certain probability of falsenalar o

and detection are obtained. In this paper, we are employing-as| cosnitive Radio 2 - Corer

similar technigque, except that in [19], after the truncafoint,
a single threshold scheme is used to make a final decision,
while in our paper, the sensor decision is censored if no
decision is made before the truncation point. Further] [19]
considers a single sensor detection scheme while we employ-2-
distributed cooperative sensing system and finally, in @yoep
an explicit optimization problem is given to find the sensing  Fig. 1: Distributed spectrum sensing configuration
parameters.

The remainder of the paper is organized as follows. In
Section[]l, the fixed size censoring scheme for the OR rufghich are given in the following sections are valid for both
is described, including the optimization problem and th@odels. The SNR of the received primary user signal at the
algorithm to solve it. The sequential censoring schemetfer tj-th cogn|t|ve radio isy; = |h;|*c2 /o7, under the first model
OR rule is presented in Sectignllll. Analytical expressior®d~; = s°07; /o2, under the second model. Furthermore,
for the underlying system parameters are derived and thgs: andw;; are assumed statistically independent.
optimization problem is analyzed. In Sect[or IV, the ceitapr ~ An energy detector is employed by each cognitive sensor
and sequential censoring schemes are presented and ahalygich calculates the accumulated energy a¥epbservation
for the AND rule. We discuss some numerical results ifamples. Note that under our system model parameters, the
Sectio Y. Conclusions and ideas for further work are finalgnergy detector is equivalent to the optimal LLR detectr [5
posed in Sectiof V. The received energy collected over tNeobservation samples

at thej-th radio is given by

Cognitive Radio M

II. FIXED SIZE CENSORINGPROBLEM FORMULATION

—_ . - R ZN: ”7|2. )
A fixed size censoring scheme is discussed in this section as

a benchmark for the main contribution of the paper in Section =t
M which studies a combination of sequential sensing and WWhen the accumulated energy of the observation samples is
censoring. A network of\/ cognitive radios is consideredcalculated, a censoring policy is employed at each radiaevhe
under a cooperative spectrum sensing scheme. A para“éfr local decisions are sent to the FC only if they are deemed
detection configuration is employed as shown in Elg. 1. Eaéh be informative [[1B]. Censoring thresholds and A, are
cognitive radio senses the spectrum and makes a local decigiPplied at each of the radios, where the range< &; < A;
about the presence or absence of the primary user and infoffn§alled the censoring region. At theth radio, the local
the FC by employing a censoring policy. The final decision gensoring decision rule is given by

then made at the FC by employing the OR rule. The AND rule send 1, declaring{; if £ > Ao,
will be discussed in Sectidn 1V. Denoting; to be thei-th no decision it < & <o, A3)
sample received at thgth cognitive radio, each radio solves send 0, declaring{o if g'j <\

a binary hypothesis testing problem as follows ]
It is well known [5] that under such a modei; follows

Ho : rij =wyy, i=1,..,N, j=1,..M a central chi-square distribution withV degrees of freedom
Hy: iy =hijsi+wig, i=1,..,N, j=1,...,M (1) under#, and H,. Therefore, the local probabilities of false

alarm and detection can be respectively written as
wherew;; is additive white Gaussian noise with zero mean

2 [(N, 22
ar!d variancer;,. hi; qnd si are t_he chqnnel gain between the Py = Pr(€; > o|Ho) = NV, 5 )’ 4)
primary user and thg-th cognitive radio and the transmitted I'(N)
primary user signal, respectively. We assume two models r(]\@ﬁ)
[ Sl N VA

for h;; and s;. In the first model,s; is assumed to be Py = Pr(&; > Xo|Ha) = T , %)
. . . : (N)

white Gaussian with zero mean and variancg and hij

is assumed constant during each sensing period and thdere I'(a, I) is the incomplete gamma function given by

hij = hj, i =1,...,N. In the second modek, is assumed I'(a,z) = [ t*~te~'dt, with T'(a,0) = I'(a).

to be deterministic and constant modulis| = s, i = Denoting Cs; and Cy; to be the energy consumed by

N, j=1,...,M andh;; is an i.i.d. Gaussian randomthe j-th radio in sensing per sample and transmission per

process with zero mean and variange. Note that the second bit, respectively, the average energy consumed for digtb

model actually represents a fast fading scenario. Althaagih Sensing per user is given by,

mod_el requires a dlﬁgrent type of channel e;ﬂmaﬂon,esthe C; = NCy; + (1 - p;)Cly, ©6)

received signal is still a zero mean Gaussmn random process

with some vanance namehy2 = h;o? + o2 for the former wherep; = Pr(A1 < & < A2) is denoted to be the average

model anda2 = scr,” +02 for the Iatter model, the analysescensoring rate. Note tha].‘s7 is fixed and only depends on the



sampling rate and power consumption of the sensing modible easily derived as, = 2I' '[N, T'(N)Ps] (whereI'~! is
while C;; depends on the distance to the FC at the time of tidefined over the second argument). Considering this resdlt a
transmission. Therefore, in this paper, it is assumed that defining Qg = H(Py), the optimal solution of[{10) is given
cognitive radio is aware of its location and the locationtef t by Py = H—1(3) as is shown in AppendiXIA.

FC as well as their mutual channel properties or at least carin the following section, a combination of censoring and
estimate them. Definingy = Pr(#Ho), m = Pr(#1), do; = sequential sensing approaches is presented which optmize
Pr(A < & < Xao|Ho) anddy; = Pr(d < & < X2|H1), p; both the sensing and the transmission energy.

is given by

p; = mobo; + m101;, (7)  |ll. SEQUENTIAL CENSORINGPROBLEM FORMULATION
with A. System Model
T(N,2)  T(N,2%) Unlike Section[1l, where each user collects a specific
Soj = L2 L 27 (8) number of samples, in this section, each cognitive radio
L'(N) \ L(N) \ sequentially senses the spectrum and upon reaching aatecisi
(N, M) L(N, Q(T"’%.)) about the presence or absence of the primary user, it seads th
015 = I'(N) - I'(N) : ©) result to the FC by employing a censoring policy as introduce

DenotingOs and 0% to be the respective alobal probabilit in Section[D). The final decision is then made at the FC by
IngC2p Qb . pective giobal p Ilyemploying the OR rule. Here, a censored truncated sequentia
of false alarm and detection, the target detection perfooma

is then quantified byQg < a and Q% > 4, wherea and 3 sensing scheme is employed where each cognitive radi@sarri

are pre-specified detection design parameters. Our goal isOF sensing until it reaches a decision while not passing & lim
” ) . ' of N samples. We defing,; = > 7. |rii|?/02 =S 2y
determine the optimum censoring thresholdsand )\, such P . G Zle |.r1-7| ./Uw D i1 %ij
that the maximum average energy consumption per sensor Fnd a; =0, 1 =1,...,p,a, =a+iA\, i=p+1.,N
aximum average energy pton p O WRdb; = b+iA, i = 1,...,N, wherea = a/o2, b = b/o2,
max; €, is minimized subject to the constrairs < « and

. N 1 < A < 1++; is a predetermined constant< 0, b > 0 and
Qg > /. Hence, our optimization problem can be formulateg — |~a/o2A| [19]. We assume that the SNR is known

as or can be estimated. This way, the local decision rule inorde
min max C; to make a final decision is as follows
A2 g
c c send 1, declaring{, if ¢,; > b, andn € [1, N]
LQE < > . 10 ) . : ny =T o
st@psa G2/ (10) continue sensing i€,,; € (an,b,) andn € [1,N),

In this section, the FC employs an OR rule to make the final] no decision if¢,; € (an,b,) andn = N,
decision which is denoted b g, i.e., Drc = 1 if the FC send 0, declaring{, if (n; <a, andn € [1,N].
receives at least one local decision declaring 1, Elgse = 0. N _ _ (14)
This way, the global probability of false alarm and detettio The probability density function af;; = |r;;|?/o7, under
can be derived as Ho and H; is a chi-square distribution wit@n degrees of

M freedom. Thus;z;; becomes exponentially distributed under
Q¢ = Pr(Dpc = 1|Ho) = 1 — H(l — Pyj), (11) both #, and#,. Henceforth, we obtain

=1 .

"o Pr(zij|Ho) = Fe 2] S0y (15)
QBZPT(DFC:1|H1):1_H(1_Pd7')' (12) 1 —x45/2(1+7;)

j=1 Pr(zij|Hi) = me K I{WUZO}’ (16)

Note that since all the cognitive radios employ the same UpREhere 1

. : (z;;>0 IS the indicator function.
threshold\,, we can state thaky; = Py defined in[(#). Asa  pefining ¢y, = 0, the local probability of false alarm at the
result, [I1) becomes

j-th cognitive radio,P;, can be written as
Qf=1-(1—-Pp™. (13)

N

Since the FC decides about the presence of the prima@iﬂ’ - ZPT(COJ’ € (a0,0), -+, Gn—15 € (n—1,bn-1): Gnj = bn [ HET)
user only by receiving 1s (receiving no decision from all the n=t
sensors is considered as absence of the primary user) andhereas the local probability of detectioRy;, is obtained as
sensing time does not depend anp, it is a waste of energy follows
to send zeros to the FC and thus, the optimal solutiofi_df (10) N
is obtained byA; = 0. Note that this is only the case forp,; = ZPr(Coj € (a0, b0), s Cr—1j € (Gn—1,bn-1),Cnj > bn|KL8)
fixed-size censoring, because the energy consumption of eac n=1
sensor only varies by the transmission energy while theisgns

energy is constant. This way1(8) arld (9) can be simplified,qitive radio, andi,; andé,; to be the respective average

0 do; = 1 — Py anddy; = 1 — Py;, and we only need 10 ¢ongoring rate undek, and#,, we have
derive the optimal\.. Since there is a one-to-one relationship

betweenP; and )., by finding the optimalPy, A, can also p; = modo; + m1 015, (19)

Denoting p; to be the average censoring rate at jhth



where Note that sinceP;; = --- = Py, it is again assumed that
Pr; = Py in this section.

0oj = Pr(Cuy € (ar,b1), . Cny € (an, bn)Ho), (20) i the following subsection, analytical expressions fog th

615 = Pr(Ciy € (a1,01),....Cnj € (an,bn)|H1).  (21)  probability of false alarm and detection as well as the censo

The other parameter that is important in any sequential dad rate and ASN are exiracted.

tection scheme is the average sample number (ASN) required )

to reach a decision. Denotiny; to be a random variable =" Parameter and Problem Analysis

representing the number of samples required to announce theooking at [1¥), [(IB),[(19) and_(22), we can see that the
presence or absence of the primary user, the ASN foythe joint probability distribution function of(¢1j, ..., (,;) is the
cognitive radio, denoted a¥,;=E(N;), can be defined as  foundation of all the equations. Sinag; = (;; — ¢;—1; for
i=1,..., N, we have,

Nj =7T0E(Nj|7‘[o)+7T1E(Nj|H1), (22)
where P(C1js -+ Cng) = P(@nj)P(Tn—15)--p(215)- (29)
N Therefore, the joint probability distribution function der
E(N;[Ho) = ZnPr(Nj = n|Ho) Ho and H; becomes1
o P(C1js - Cnjl Ho) = 2_n€7€nj/21{0§C11SCzijCw‘}’ (30)
= Z n[Pr(Coj € (a0,00)s s Gn—1j € (@n—1,bn—1)Hq) , _ L 204
— ﬁ%é?w ey Gng[H1) 201 + 7)) e I{OSCU SCzj---Sé(;J;')
= Pr(Goj € (a0, bo), -, Cnj € (an, bn)|Ho)] wherel o<¢, ,<c,,..<c,;} IS again the indicator function.
+ NPr(Coj € (a0,bo), ..., Cn—1j € (an—1,bn—1)|Ho(23e derivation of the local probability of false alarm and th
and ASN under#, in this work are similar to the ones considered
in [19] and [21]. The difference is that in [19], if the cogmé
radio does not reach a decision afférsamples, it employs
E(NJ|H1) = nPT(Nj :n|7-[1)

a single threshold decision policy to give a final decision
about the presence or absence of the cognitive radio, while
jn,our work, no decision is sent in case none of the upper and
/ nlPr(Coj € (0,00, s Cnj € (a”’l’b”’l)w&ver thresholds are crossed. Hence, to avoid introducing a
cumbersome detailed derivation of each parameter, we @n us
— Pr(Coj € (a0,b0); -+, Cnj € (A, bn)|H1)] : oreach p At
the results in[[I9] for our analysis with a small modification
+ NPr(Coj € (a0, b0), -+ (n-15 € (an-1,0n-1) | ¥8wever, note that the problem formulation in this work is
andCy; to be the transmission energy of a decision bit at tH¥ork the distribution ofz;; under?, is exponential like the

j-th cognitive radio, the total average energy consumptton @€ undefio, unlike [19], we can also use the same approach

#114-
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the j-th cognitive radio now becomes to derive analytical expressions for the local probabitty
B detection, the ASN undek,, and the censoring rate.
Cj = N;jCysj + (1 — p;j)Cyj. (25) Denoting F,, to be the event where; < ¢;; < b;, i =

DenotingQ§® andQg’ to be the respective global probabil-l’ 7= 1 and(u; > by, (IH) becomes

ities of false alarm and detection for the censored trumcate N

sequential approach, we define our problem as the minimiza- Ppj = Pr(Ey|Ho). (32)
tion of the maximum average energy consumption per sensor n=1

subject to a constraint on the global probabilities of falsem where the analytical expression fév(E,|H,) is derived in
and detection as follows AppendixB.

. Similarly for the local probability of detection, we have
min max Cj
a,b J

N
SLOZ <a, QF > B. (26) Py =Y Pr(E,|Hy), (33)
n=1

As in (I3) and[[IR), under the OR rule that is assumed here the analytical expression fét-

E, is derived i
this section, the global probability of false alarm is (En[H1) s derived in

Appendix[C.

M Defining an = {Q‘jKij € (ai,bi), i = 1, ...,n},
£ = Pr(Dec =1|Ho) = 1 — [ (1 = Py,), (27)  Pr(R,j|Ho) and Pr(R,,;|H,) are obtained as follows
j=1 1
: — = gm _
and the global probability of detection is Pr(Ry;|Ho) = on Jan,bn(1/2)’ n=1..,N, (34)

M 1 (n)

Pr(Rnj[H1) = =————J" (1/2(14;)), n=1,..., N,

(Rui H1) = o, (1/20047))

o =Pr(Dec=1/H1) =1~ Jl;[l(l — Pyj)- (28) (35)



WhereJSZ?bn (9) is presented in AppendixID and {23) andl(24)he arguments of (26) and only solve the following suboptima

become problem
Nl V=1 min max C;
E(Nj|Ho) = Y n(Pr(Ry—1j|Ho)—=Pr(Ru;[Ho))+NPr(Ry—1;[Ho) = 1+ Y PB(Ry;{Ho),
ot ) =1 stLQE < a, QY > B. (40)

Note that urfike Sectiof]ll, here the zero lower threshold
n(Pr(Rn—1;[H1)—Pr(R,;|H1))+N Pr(Ry_is; |[at) Heéésgillj’réﬁwﬁ&hﬁhe reason is that although the
1 37) maximum cevrsbringhratedis aﬁhiﬁvehd ;vith the(zj I%Wést]he
, : inimum ASN is achieved with the highest and thus there

Wwith (38) and m) we can calcula@g{22). This wdyl (ZOE an inherent trade-off between a high censoring rate and
and [21) can be derived as follows . X .
a low ASN and a zeraz; is not necessarily the optimal
o _ R ) solution. Since the analytical expressions provided eadre
%0; = Pr(Bn;[Ho) = 2_NJ“N’Z’N(1/2)’ (38) very complex, we now try to provide a new set of analytical
1 ™) expressions for different parameters based on the fact that
615 = Pr(Rnj|H1) = mJaN,bN(l/z(l +7%) a1 =---=axn =0.
K (39) To find an analytical expression fét;;, we can derived(n)
We can show that the problefai{26) is not convex. Therefof@! the new paradigm as follows
the standard systematic optimization algorithms do noe giv
the global optimum fom andb. However, as is shown in the An) = / /I{OSQJ'§<2j~~~§Cn—1j}d<1j~"d<n*1]" (41)
following lines, @ and b are bounded and therefore, a two- Ty,
dimensional exhaustive search is possible to find the globalSince( < C1j < Cojore < Cporyj anday = -+ = ay = 0,
optimum. First of all, we have < 0 anda < 0. On the other the lower bound for each integral{s_, and the upper bound
hand, ifa has to play a role in the sensing system, at least oRgp,, wherei = 1, ...,n — 1. Thus we obtain
ay should be positive, i.eqy = a + NA > 0 which gives bi b b1
a > —NA. Hence, we obtain-NA < a < 0. Furthermore, A(n) :/ / / d¢jdCoj...dCn_1j, (42)
defining Q¢° = F(a,b) and Q§° = G(a,b), for a givena, it Coj /<1y ¢
is easy to show thag~'(a, 8) < b < F'(a,) (WhereF~'  which according to[[21] is
andG~! are defined over the second argument).

M=

E(Nj[H1) =

n

n—2j

n—2

Before introducing a suboptimal problem, the following A(n) = bibr ,n=1,...,N. (43)
theorem is presented. (n—1)!

Theorem 1 For a given local probability of detection andHence, we have
false alarm £; and P;) and N, the censoring rate of the o N A
optimal censored truncated sequential sensifij) (s less than Prj = an (), (44)
the one of the censoring scheme)( n=t

Proof. The proof is provided in AppendXIE. andp, = e;:—,fz Similarly, for P;;, we obtain

We should note that, in censored truncated sequential sens- b pbo -
ing, a large amount of energy is to be saved on sensing. B(n) = / / / d¢yjdCaj...dCn—1j
Therefore, as is shown in Sectibd V, as the sensing energy Coj /G ¢
of each sensor increases, censored truncated sequensaige b2

L . = ,n=1,..,N, (45)
outperforms censoring in terms of energy efficiency. Howeve (n —1)!
in case that the transmission energy is much higher than g}?d thus
sensing energy, it may happen that censoring outperforms N
censored truncated sequential sensing, because of a higher Py = anB(n), (46)
censoring rateg®® > p©). Hence, one corollary of Theorem 1 n=1
is that although the optimal solution 10) for a specifi e~tn/20475)
N, ie., P; = ?_ (1 . 2)1/1\4 and Pf :d];ﬂ/_l()ﬂ), is in ’:he = RO T Furthebrrggze, we note that far =
feasible set of[(26) for a resulting ASN less thah it does - =an =0, A(n) = B(n) = 257, n=1,...,N.
not necessarily guarantee that the resulting average energlt is easy to see thak,; occurs undert,, if no false
consumption per sensor of the censored truncated sequerdiarm happens until the-th sample. Therefore, the analytical
sensing approach is less than the one of the censoring sche@fgression fot’r(R,,;|Ho) is given by
particularly when the transmission energy is much highanth n
the sensing energy per sample. Pr(Ry;|Ho) =1— ZpiA(i), 47)

Solving [26) is complex in terms of the number of compu- i=1
tations, and thus a two-dimensional exhaustive searchtis a@d in the same way, faPr(R,;|H1), we obtain
always a good solution. Therefore, in order to reach a good "
solution in a reasonable time, we set< —NA in order to Pr(Rp;|Hi) =1— Zin(Z-)_ (48)
obtaina; = --- = ay = 0. This way, we can relax one of P

n—2j

9vhereqn



Putting [4TY) and[{48) in(36) an@(37), we obtain where C; is defined in [(B). Since the FC decides for the
N_1 n absence of the primary user by receiving at least one zero and
E(N;|[Ho) =1+ Z {1 _ ZpiA(i)}, (49) the fact that the sensing energy per sample is constant, the
optimal upper threshold; is A\ — oo. This way, cognitive
radios censor all the results for whi€h > A, and as a result

N-1 n
B(N;[H1) =1+ ) {1 - Zin(,')}, (50) (B3 and[BH) become
n=1 i—1

and inserting[(49) and (50) il (22), we obtain Qfanp = Pr(Drc = 1|Ho) = U 005 (56)
N—1 n N-1 n l
Vi =7 - i A 7T — A7 . M
N; o<1+;1 {1 ;p ( )}>+ 1<1+nz_:1 {1 %; ( )}) Qo = Pr(Drc = 1) = [[ o1, (57)
j=1

Fir_1aIIy, from (47) and[{4B), the censoring rate can be eaSUVherezSoj = Pr(& > M|Ho) anddy; = Pr(€; > M|Ha).
obtained as Since the thresholds are the same among the cognitive radios
we havedg; = g2 = -+ = dos = 0. Since there is a one-to-
pj = o (1 - sz ) +m (1 - Zqz ) (52) ' one relationship betweexy andd,, by finding the optimady,
the optimal)\; can be easily derived. As shown in Appendix F,
Having the analytical expressions f([(40), we can easilye can derive the optimal) asd, = /M. This result is very
find the optimal maximum average energy consumption pienportant in the sense that as far as the feasible séf bf ¢55) i
sensor by a line search overSimilar to the censoring problemnot empty, the optimal solution of (b5) is independent from
formulation, here the sensing threshold is also bounded the SNR. Note that the maximum average energy consumption
QE H(a) < b < Qg '(B). As we will see in SectiofiLV, per sensor still depends on the SNR vig and is reducing
censored truncated sequential sensing performs better tha the SNR grows.
censored spectrum sensing in terms of energy efficiency for

low-power radios. B. AND rule for censored truncated sequential sensing

The optimization problem for the censored truncated se-

IV. EXTENSION TO THEAND RULE . . .
_ guential sensing scheme with the AND rule, becomes
So far, we have mainly focused on the OR rule. However,

anc;]ther rule V\llhiCh is a(;so simp;lle in termT of implem?ntation Izllgl H}?X Cj
is the AND rule. According to the AND ru =0, if at
least one cognitive radio ?eports a zero, £§§: 1. This St QFano < @, Gpano = 6. (58)
way the global probabilities of false alarm and detectiam c whereC; is defined in[[Z5). Similar to the OR rule, we have
be written respectively as —NA < a < 0. Defining Qo = Fano (@, b) anngfAND =
M gAND(a b) for a givena, we can show thag,;ND( ,B) <
QEanp = QFanp = Pr(Drc = 1|Ho) = H (80j + Ptj), b < ]-“AND(a a) (where]—“AND and QAND are defined over the

= second argument). Therefore, the optiraaand b can again
(53)  be derived by a bounded two-dimensional search, in a similar

l way as for the OR rule.

Qbanp = Qoanp = Pr(Drc = 1|H1) = H (01 + Pgj)-
= (54) V. NUMERICAL RESULTS

Note that[(58) and(54) hold for both the sequential cengorin A network of cognitive radios is considered for the numeri-
and censoring schemes. Similar to the case for the OR ree, 8] results. In some of the scenarios, for the sake of siiiylic
problem is defined so as to minimize the maximum averageis assumed that all the sensors experience the same SNR.
energy consumption per sensor subject to a lower bound PRis way, it is easier to show how the main performance
the global probability of detection and an upper bound gRdicators including the optimal maximum average energy
the global probability of false alarm. In the foIIOWing tWOConsumption per sensor, ASN and Censoring rate Changes
subsections, we are going to analyze the problem for cergorivhen one of the underlying parameter of the system changes.

and sequential censoring. However, to comply with the general idea of the paper, which
is based on different received SNRs by cognitive radios,
A. AND rule for fixed-sample size censoring in other scenarios, the different cognitive radios expere

ifferent SNRs. Unless otherwise mentioned, the resukts ar
ased on the single-threshold strategy for censored trehca
sequential sensing in case of the OR rule.

min max C} Fig.[2a depicts the optimal maximum average energy con-
AAz sumption per sensor versus the number of cognitive radios
S.L.QFanp < @ @panp = 5. (35)  for the OR rule. The SNR is assumed to beB, N = 10,

The optimization problem for the censoring scheme cons@
ering the AND rule at the FC, becomes



Cs = 1 and C; = 10. Furthermore, the probability of false
alarm and detection constraints are assumed taevbe 0.1 16
andg = 0.9 as determined by the IEEE 802.15.4 standard for

cognitive radios([[7]. It is shown for both high and low values 150 —A— sequential censoring, 1,208
o that censored sequential sensing outperforms the cegsorin v —eo— censoring, 1,;=0.8
scheme. Looking at Fi§. 2b and Figl] 2c, where the respective ” h\/ +=0- sequential censoring, 1;=0.2
optimal censoring rate and optimal ASN are shown versus . =@~ censoring, 1;=0.2

the number of cognitive radios, we can deduce that the lower
ASN is playing a key role in a lower energy consumption of
the censored sequential sensing. Eig. 2a also shows tHag as t
number of cooperating cognitive radios increases, tharaiti
maximum average energy consumption per sensor decrease
and saturates, while as shown in Figl] 2b and Eid. 2c, the 1
optimal censoring rate and optimal ASN increase. This way,
the energy consumption tends to increase as a result of ASM T 15 18 2
growth and on the other hand inclines to decrease due to the Number of cognitive radios
censoring rate growth and that is the reason for saturation @)
after a number of cognitive radios. Therefore, we can sete tha
as the number of cognitive radios increases, a higher energ)
efficiency per sensor can be achieved. However, after a numbe
of cognitive radios, the maximum average energy consumptio
per sensor remains almost at a constant level and by addiny
more cognitive radios no significant energy saving per senso
can be achieved while the total network energy consumption
also increases.

Figures[3b[3b and Bc consider a scenario whdre= 5,

12

o
©

o
D

Optimal censoring rate
o
~

N =300 =1, C4 =10, a =0.1, 8 =09 andm, can "\ —A— sequential censoring, 1,=0.8
take a value 0f0.2 or 0.8. The performance of the system osl 4 - @ - censoring, 1,208 ]
versus SNR is analyzed in this scenario for the OR rule. The [ ++@ . sequential censoring, 1,=0.2
maximum average energy consumption per sensor is depicte: 0_57_! +=@- censoring, 1,=0.2

in Fig.[3a. As for the earlier scenario, censored sequesiad- ;

ing gives a higher energy efficiency compared to censoring. f

While the optimal energy variation for the censoring scheme 4 s 8 10 12 _12 6 18 2
is almost the same for all the considered SNRs, the censore: Number of cognigve radies

sequential scheme’s average energy consumption per sensor (b)

reduces significantly as the SNR increases. The reasontis tha
as the SNR increases, the optimal ASN dramatically decsease
(almost50% for v = 2 dB andwy = 0.2). This shows that
as the SNR increases, censored sequential sensing becom
even more valuable and a significant energy saving per sensa
can be achieved compared with the one that is achieved by
censoring. Since the SNR changes with the channel gajtt (
under the first model oo ; under the second model), from
Fig.[3a, the behavior of the system with varyiftg|* or o7 ;
can be derived, if the distribution d#;|* or o7 is known.
Figures[4h anfl4b compare the performance of the single !
threshold censored truncated sequential scheme with tee on !
assuming two thresholds, i.e, and b for the OR rule. The B
idea is to find when the double threshold scheme with its
higher complexity becomes valuable. In these figuids= 5, [ EETEEETEEFEEre—re—
N = 10, Y = 0 dB, Ct = 10, T = 02, 0.8, ando = 0.1, Number of cognitive radios
while 8 changes fronD.1 to 0.99. The sensing energy per
sample,C, in Fig.[4a is assumed, while in Fig.[4D it is3. ©
It is shown that as the sensing energy per sample increadds; 2: @) Optimal maximum average energy consumption per
the energy efficiency of the double threshold scheme alsensor versus number of cognitive radios, b) Optimal cémgor
increases compared to the one of the single threshold sgherate versus number of cognitive radios, ¢) Optimal ASN versu
particularly whenm is high. The reason is that when, is number of cognitive radios for the OR rule
high, a much lower ASN can be achieved by the double thresh-

1 — =08

Optimal ASN
~

- r[0:0.2
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Fig. 3: a) Optimal maximum average energy consumpti
per sensor versus SNR, b) Optimal censoring rate ver
SNR, c) Optimal ASN versus SNR for the OR rule
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Fig. 4: Optimal maximum average energy consumption per
sensor versus probability of detection constrajit,for the
OR rule, a)Cs =1,b) Cy =3

old scheme compared to the single threshold one. This gain
in performance comes at the cost of a higher computational
complexity because of the two-dimensional search.

Fig.[3 depicts the optimal maximum average energy con-
sumption per sensor versus the number of samples for the OR
rule and for a network of\/ = 5 cognitive radios where each
radio experiences a different channel gain and thus a difter
SNR. Arranging the SNRs in a vector= [yq,...,7s], we
have~y =[1dB, 2dB, 3dB, 4dB, 5dB]. The other parameters
areCy, =1, Cy = 10, mg = 0.5, = 0.1 and 8 = 0.9.

As shown in Fig[b, by increasing the number of samples
and thus the total sensing energy, the sequential censoring
energy efficiency also increases compared to the censoring
&gheme. For example, if we define the efficiency of the
sored truncated sequential sensing scheme as theddéer
of the optimal maximum average energy consumption per
sensor of sequential censoring and censoring divided by the
optimal maximum average energy consumption per sensor of
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—&— sequential censoring, 1,=0.5 | | —#— sequential censoring, 1,=0.5, AND

—— censoring, =05 —o— sequential censoring, m,=05, OR

201
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Fig. 5: Optimal maximum average energy consumption pEig. 7: Optimal maximum average energy consumption per
sensor versus number of samples for the OR rule sensor versus sensing energy per sample for AND and OR
rule

500

—A— sequential censoring, r[O:O.S

both the AND and OR rule. For the sake of simplicity and

] tractability, the SNRs are assumed the same Kbr= 50
cognitive radios. The other parameters are assumed to be
N =10, C; = 10, mp = 0.5, v = 0 dB, a = 0.1 and
£ = 0.9. For both fusion rules, the double threshold scheme
is employed. We can see that the OR rule performs better for
the low values ofC,. However, ag’, increases the AND rule
dominates and outperforms the OR rule, particularly fohhig
values ofC. The reason that the OR rule performs better than
the AND rule at very low values of’; is that the optimal
censoring rate for the OR rule is higher than the optimal
‘ ‘ ‘ ‘ censoring rate for the AND rule. However @s increases, the
200 400 600 800 1000 AND rule dominates the OR rule in terms of energy efficiency

K due to the lower ASN.

Fig. 6: Optimal maximum average energy consumption per 1h€ optimal maximum average energy consumption per
OR rule. The underlying parameters are assumed to,be 2,

Cy =10, N =10, M =50,y=0dB,a=0.1 andg3 = 0.9.
censoring, the efficiency increases approximately thmeegi !t is shown that as the probability of the primary user absenc
from 0.06 (for N = 15) to 0.19 (for N = 30). increases, the optimal maximum average energy consumption

In Fig. [, the sensing energy per sampleds = 10 Per sensor reduces for the OR rule while it increases for the

450 | | —*— censoring, 1'[0:0.5

while the transmission energy; changes from 0 to 1000, AND rule. This is mainly due to the fact that for the OR rule,
The goal is to see how the optimal maximum average eneff§ are mainly interested to receive a "1" from the cognitive
consumption per sensor changes with for the or rule and radios. Therefore, as, increases, the probability of receiving
for a network of M = 5 cognitive radios withy =[1dB, @ "1" decreases, since the optimal censoring rate increases
2dB, 3dB, 4dB, 5dB]. The other parameters of the network® Opposite happens for the AND rule, since for the AND
are N = 30, m = 0.5, o = 0.1 and 3 = 0.9. The best saving "ule, receiving a "0” from the cognitive radios is considgre
for sequential censoring is achieved when the transmissihbe informative.
energy is zero. Indeed, we can see that as the transmission
energy increases the performance gain of sequential dagsor VI. SUMMARY AND CONCLUSIONS
reduces compared to censoring. However, in low-power gadio We presented two energy efficient techniques for a cognitive
where the sensing energy per sample and transmission enesgysor network. First, a censoring scheme has been discusse
are usually in the same range, sequential censoring pesfonwvhere each sensor employs a censoring policy to reduce the
much better than censoring in terms of energy efficiency asergy consumption. Then a censored truncated sequential
we can see in Fid.]6. approach has been proposed based on the combination of
Fig.[@ depicts the optimal maximum average energy cooensoring and sequential sensing policies. We defined our
sumption per sensor versus the sensing energy per samplepfoblem as the minimization of the maximum average energy
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APPENDIXA
OPTIMAL SOLUTION OF (10)

Since the optimal\; = 0, (@) and [9) can be simplified to
* doj =1 — Py anddy; = 1 — Py and so[(ID) becomes,

—#— sequential censoring, AND | |
—©6— sequential censoring, OR

min max [ NCy; + (mo Py + wlpdj)CtJ]

17.5 A2 J

‘? 17 M

& st1-(1-Po)M<a, 1-JJ0-Py) =8 (59)
16.5 j=1

Since there is a one-to-one relationship betwsgand Py,
i.e., Ao = 2I' '[N, T'(N)Py] (whereI'~! is defined over the
second argument),(569) can be formulated[as [22, p.130],

145} = ” o - ] Hllgifn max; [ NCsj + (w0 Py + m1 Pyj)Cij] (60)
" st1-(1—P)M <a, 1-TM (1 - Py) > 6.
Fig. 8: Optimal maximum average energy consumption per (V.22)
sensor versus, for AND and OR rule Deflnlrlg Py = F(X2) = —rgs~ and Py, = G;(A) =
T(N. 5% 75)

T , we can write Py; as Py = G;(F~'(Py)).
Calculating the derivative of’; with respect ton, we find

consumption per sensor subject to a global probability 8iat

false alarm and detection constraint for the AND and the A1C, (10 Pr + 71 P ,

OR rules. The optimal lower threshold is shown to be zero(E [ Oa;;L 1Py = Cymo + 8de' >0, (61)

for the censoring scheme in case of the OR rule while for ! !

the AND rule the optimal upper threshold is shown to bwhere we use the fact that

|nf|tr_1|tyI Furltht_er afn e?hpllcggxprlessmg was glvenft(t)hflnil;tltg ’ _W(N) [N’F(N)Pf]N—lezrfl[N,F(N)Pf]/2(1+vj)l{21171[]
optimal solution for the rule and in case of the = ———— — NI N TN 13
rule a closed for solution is derived. We have further dafive?’” e 2LV DN) Pyl e W ar-rNr
the analytical expressions for the underlying parametetise — 20 IND(N P (1/2(1495)-1/2) > ), (62)

censored sequential scheme and have shown that although the
problem is not convex, a bounded two-dimensional search is' nerefore, we can simplify_(60) as
possible for both the OR rule and the AND rule. Further, in min Py

case of the OR rule, we relaxed the lower threshold to obtain " o (63)
a line search problem in order to reduce the computational S-t-1— (1 = Pp)™ <a, 1-T[;Z, (1 = FPy) > 5.
complexity. which can be easily solved by a line search ai%er However,

Different scenarios regarding transmission and sensing &ince Qf is a monotonically increasing function df;, i.e.,
ergy per sample as well as SNR, number of cognitive radia@g = H(P;) = 1 — H;”l(l -G (F 1(Py))) and thus
number of samples and detection performance constraimes WéQB = 29 9y _ 7i=M Pdl) d] > 0, we can fur-
simulated for low and high values of, and for both the 9 OPy ob; — ~Al=Ll7] 1M
OR rule and the AND rule. It has been shown that under tther simplify the constraints irl_(63) a@f < 1-(-a)

: . ' ; S %dP > H~Y(3). Thus, we obtain
practical assumption of low-power radios, sequential cBng
outperforms censoring. We conclude that for high values of min Py
the sensing energy per sample, despite its high compughtion Fi P, < 1 UM p. > p-1 (64)
complexity, the double threshold scheme developed for the StPp<l=(l—a)/™, P> (B)-
OR rule becomes more attractive. Further, it is shown th&berefore, if the feasible set df (64) is not empty, then the
as the sensing energy per sample increases compared tooptémal solution is given by?; = H—*(53).
transmission energy, the AND rule performs better than the
OR rule, while for very low values of the sensing energy per APPENDIXB
sample, the OR rule outperforms the AND rule. DERIVATION OF Pr(E,|Ho)

Note that a systematic solution for the censored sequentialntroducingT’,, = {a; < (;; < b, @ = 1,...,n — 1} and
problem formulation was not given in this paper, and thus it p,, = zn%le—bnﬂ, we can write
valuable to investigate a better algorithm to solve the |emb

We also did not consider a combination of the proposeer(F, |H,) = / // <m/2]{0<<1j<<2j___<<nj}dg“1j...d§nj
scheme with sleeping as i J13], which can generate further S

energy savings. Our analysis was based on the OR rule and

the AND rule, and thus extensions to other hard fusion rules / /I{0<g1]<g2] <Cno1;}AC15-dCn 15 (65)

could be interesting.
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Denoting A(n) = [ ... [Tjo<¢i,<¢oyo<Cnrybdery...dca—r,» WE  Where using the notations of Appendix B, we havel [19]

Iy

obtain [0 [gh=ne=tbues — Sk gi fnkod) (good) o<y

=1
blbn 2 o
(n 1)! ’ =1,.

i—1 . biyq

s+ 1 ggg: I(k)zn_k [fl(/:; ]f 1)() —GC_f(" k Z)( )e—ed}, ¢> by,

An) =1 [F5” 1)( D) = Iz S Cemtbenl e gie s Pr(By I RQIE he="p+ 2 34 H D, lfbfﬂ’;nlk (d)e=), ¢ > by,

i 72
[f(" Vbn1) = Ko fyid ba)2'e Pr(BigHplh 1 g 2,0 N "

P an 1
©0) [ bn) ~ Iuzay Sy 10, ne Ly
whereay™" = [ag, . ..,an—1]. Denotingg to be the smallest T £, - Sl fw" Vb)), nelg+1,00)
integer for whicha, < b; < by, andc andd to be two non- ’ S (73)

negative real numbers satisfyifig< ¢ < d, a,—1 < ¢ < b,
anda, <d,no =0, n, =1, -snk], 0 <m < ... <1, the
functionsf,(,lz)(g) and the vectorp;’, in (€8) are as follows

-1

APPENDIXE
PROOF OFTHEOREM 1

f(k)(g“) _ Zl_c—l ffk)(cfmﬁl)“ (k) Assume thatP; and P; are the respective given local
=0 (k=2)! e 1)probablhty of false alarm and detection. Denotipgj as the
O = f* Dm0 k=1, k> 1, (P = - {k aréensorning) ?aﬁe 3P t@pptimal censoring schefnd (64), we
obtain 1 — p¢ = mPy + m Py, and denotingp®® as the

[ist, oons ity Agaists s Gno1,], i € [0,n —q — 2 censoring rate for the optimal censored truncated seclenti
sensmgIIZB) based on what we have discussed in Séction I,
n q i n—q—i obtainl — g 7T0(Pf + ﬁo(a b)) =+ T (Pd —+ Ll(a b))
Yie= bit1 b i€n—g-1,5-1] (qy\\égte that Ly (a, b k = 0,1, represents the probability that
n—i Cn < ap, n = 1 .., N under#,; which is non-negative.
biv1ln—i, i € [s,n —2] Hence, we can conclude that— p* > 1 — p¢ and thus
with s denoting the integer for which, < ¢ < b,y and P° =P
e (C) = 1.
APPENDIXF
APPENDIXC OPTIMAL SOLUTION OF (55)
DERIVATION OF Pr(E,|H1) Since the optimah; — oo, (83) and %;Id) can be simplified
Introducingg,, = We*bn“(”%), we can write 10 Qfanp = 0" and Qg anp = [I,2; 015 and so [(Gb)
becomes,
Pr(E,|H:1) = / // 1+% C"J'/Q(””U{ogcugczj...ggi;mﬁé]ax-[-cémsj + (mo(1 = 60) + 1 (1 = 615))Cyy]
M
= qn/"'/I{OSCUSCzj~~~SCn—1j}d<1j"'d<"*1j' S.t. 5(])\4 S OZ(GH 51j Z B (74)
j=1
Since there is a one-to-one relationship betwgemnddg,
DenotingB(n 1 and . . :
g f 0261 <Gy <G Y G0 i.e, \; = 2T '[N, T(N)dy] (whereT'~! is defined over the
using the notatlons of AppendiX B, we obtain second argument)_(FF4) can be formulated as [22, p.130],
min man [ NCSj =+ (7‘1’0(1 — 60) + 7T1(1 — 51j))Ctj}
bn 2 50 M A{ (75)
(n 1),, n=1,..,p+1 s.t. 0 <a H d1; > B.
n 7bi )nfi i =
B(n) = { [f5= ~Tgnza) 2o —tn = 20 petinl 2250*25%1%%# TS Bl ko (1) =
(n 1 )
[ Z f lan . ( 1+7 MZ"WEHGQ}T \ﬁrTe‘éS""%tséﬁ] = Ganp 7( - (50))
(70) Calculatlng the derivative of’; with respect tody, we find
that
APPENDIXD aC;  O[Cy(mo(1 = 60) + w1 (1 — 61;)) (1 = 615)
ANALYTICAL EXPRESSION FORJén)b (0) 8#55 - [Ciy g8 )] = —Cymo+ 7013
Underd > 0, n > 1and0 < ¢ < ... < Cujy Gij € (76)

(ai,bi), i=1,...,n, the functanén? () is defined as[19] Where we use the fact that

Oty 20N L)L T

Tor—11w,

én) ) Ze (n— z) an)e —ban f(:ll 3)( o~ 0bn ]{n>2@§ gam b F(N or-1[N,T(N )50]N7162F*1[N,F(N)éo]/21{2F71[N)F(J\

(71) — 20T HINT(N)S0)(1/2(147;)~1/2) > 0. (77)
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Therefore, we can simplify (T5) as [20] A. Wald, “Sequential Analysis"Wiley, 1947
[21] R. C. Woodall, B. M. Kurkjian, “Exact Operating Charadstic for
max g Truncated Sequential Life Tests in the Exponential CaEk¢ Annals of
%0 M (78) Mathematical StatisticsVol. 33, No. 4, pp. 1403-1412, Dec. 1962.
S.t. 56\4 <a, Hj:1 51j > 0. [22] S. Boyd and L. Vandenberghe, “Convex OptimizatiorCambridge

) ] ) ) ] ) University Press2004.
Since Qf anp 1S @ monotonically increasing function @,

ie., Qfavp = Hano(0) =TT, (Ganp.j (Fanp (d0))) and

0Qbmp _ 9Qbanp 9615 =M 931
thus =52 = 322 55 = [li1,,,0u) 550 = 0, we

can further simplify the constraints in{78) &s < o'/™ and
§1; > H~'(B). Thus, we obtain

n%ax do
0
s.t.dp < al/M, 61; > H1(B).

Therefore, if the feasible set of (79) is not empty, then the

optimal solution is given by, = o'/ (3). Sina Maleki received his B.Sc. degree in electrical
engineering from Iran University of Science and
Technology, Tehran, Iran, in 2006, and his M.S.

(79)
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