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Abstract

Reliable spectrum sensing is a key functionality of a cognitive radio network. Cooperative spectrum

sensing improves the detection reliability of a cognitive radio system but also increases the system energy

consumption which is a critical factor particularly for low-power wireless technologies. A censored

truncated sequential spectrum sensing technique is considered as an energy-saving approach. To design

the underlying sensing parameters, the maximum average energy consumption per sensor is minimized

subject to a lower bounded global probability of detection and an upper bounded false alarm rate. This

way both the interference to the primary user due to miss detection and the network throughput as a result

of a low false alarm rate are controlled. To solve this problem, it is assumed that the cognitive radios and

fusion center are aware of their location and mutual channelproperties. We compare the performance

of the proposed scheme with a fixed sample size censoring scheme under different scenarios and show

that for low-power cognitive radios, censored truncated sequential sensing outperforms censoring. It is

shown that as the sensing energy per sample of the cognitive radios increases, the energy efficiency of

the censored truncated sequential approach grows significantly.
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ciency.
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I. INTRODUCTION

Dynamic spectrum access based on cognitive radios has been proposed in order to opportunistically

use underutilized spectrum portions of the licensed electromagnetic spectrum [1]. Cognitive radios

opportunistically share the spectrum while avoiding any harmful interference to the primary licensed

users. They employ spectrum sensing to detect the empty portions of the radio spectrum, also known as

spectrum holes. Upon detection of such a spectrum hole, cognitive radios dynamically share this hole.

However, as soon as a primary user appears in the corresponding band, the cognitive radios have to vacate

the band. As such, reliable spectrum sensing becomes a key functionality of a cognitive radio network.

The hidden terminal problem and fading effects have been shown to limit the reliability of spec-

trum sensing. Distributed cooperative detection has therefore been proposed to improve the detection

performance of a cognitive radio network [2], [3]. Due to itssimplicity and small delay, a parallel

detection configuration [4], is considered in this paper where each secondary radio continuously senses

the spectrum in periodic sensing slots. A local decision is then made at the radios and sent to the fusion

center (FC), which makes a global decision about the presence (or absence) of the primary user and feeds

it back to the cognitive radios. Several fusion schemes havebeen proposed in the literature which can be

categorized under soft and hard fusion strategies [4], [5].Hard schemes are more energy efficient than soft

schemes, and thus a hard fusion scheme is adopted in this paper. More specifically, two popular choices

are employed due to their simple implementation: the OR and the AND rule. The OR rule dictates the

primary user presence to be announced by the FC when at least one cognitive radio reports the presence

of a primary user to the FC. On the other hand, the AND rule asksthe FC to vote for the absence of

the primary user if at least one cognitive radio announces the absence of the primary user. In this paper,

energy detection is employed for channel sensing which is a common approach to detect unknown signals

[5], [6], and which leads to a comparable detection performance for hard and soft fusion schemes [3].

Energy consumption is another critical issue. The maximum energy consumption of a low-power radio

is limited by its battery. As a result, energy efficient spectrum sensing limiting the maximum energy

consumption of a cognitive radio in a cooperative sensing framework is the focus of this paper.

A. Contributions

The spectrum sensing module consumes energy in both the sensing and transmission stages. To achieve

an energy-efficient spectrum sensing scheme the following contributions are presented in this paper.

• A combination of censoring and truncated sequential sensing is proposed to save energy. The sensors

sequentially sense the spectrum before reaching a truncation point,N , where they are forced to stop
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sensing. If the accumulated energy of the collected sample observations is in a certain region (above

an upper threshold,a, or below a lower threshold,b) before the truncation point, a decision is sent

to the FC. Else, a censoring policy is used by the sensor, and no bits will be sent. This way, a large

amount of energy is saved for both sensing and transmission.In our paper, it is assumed that the

cognitive radios and fusion center are aware of their location and mutual channel properties.

• Our goal is to minimize the maximum average energy consumption per sensor subject to a specific

detection performance constraint which is defined by a lowerbound on the global probability of

detection and an upper bound on the global probability of false alarm. In terms of cognitive radio

system design, the probability of detection limits the harmful interference to the primary user and

the false alarm rate controls the loss in spectrum utilization. The ideal case yields no interference

and full spectrum utilization, but it is practically impossible to reach this point. Hence, current

standards determine a bound on the detection performance toachieve an acceptable interference and

utilization level [7]. To the best of our knowledge such a min-max optimization problem considering

the average energy consumption per sensor has not yet been considered in literature.

• Analytical expressions for the underlying parameters are derived and it is shown that the problem

can be solved by a two-dimensional search for both the OR and AND rule.

• To reduce the computational complexity for the OR rule, a single-threshold truncated sequential test

is proposed where each cognitive radio sends a decision to the FC upon the detection of the primary

user.

• To make a fair comparison of the proposed technique with current energy efficient approaches, a fixed

sample size censoring scheme is considered as a benchmark (it is simply called the censoring scheme

throughout the rest of the paper) where each sensor employs acensoring policy after collecting a

fixed number of samples. The censoring policy in this case works based on a lower threshold,λ1

and an upper threshold,λ2. The decision is only being made if the accumulated energy isnot in

(λ1, λ2). For this approach, it is shown that a single-threshold censoring policy is optimal in terms of

energy consumption for both the OR and AND rule. Moreover, a solution of the underlying problem

is given for the OR and AND rule.

B. Related work to censoring

Censoring has been thoroughly investigated in wireless sensor networks and cognitive radios [8]–[13].

It has been shown that censoring is very effective in terms ofenergy efficiency. In the early works, [8]–

[11], the design of censoring parameters including lower and upper thresholds has been considered and
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mainly two problem formulations have been studied. In the Neyman-Pearson (NP) case, the miss-detection

probability is minimized subject to a constraint on the probability of false alarm and average network

energy consumption [9]–[11]. In the Bayesian case, on the other hand, the detection error probability is

minimized subject to a constraint on the average network energy consumption. Censoring for cognitive

radios is considered in [12], [13]. In [12], a censoring rulesimilar to the one in this paper is considered in

order to limit the bandwidth occupancy of the cognitive radio network. Our fixed sample size censoring

scheme is different in two ways. First, in [12], only the OR rule is considered and the FC makes no

decision in case it does not receive any decision from the cognitive radios which is ambiguous, since the

FC has to make a final decision, while in our paper, the FC reports the absence (for the OR rule) or the

presence (for the AND rule) of the primary user, if no local decision is received at the FC. Second, we

give a clear optimization problem and expression for the solution while this is not presented in [12]. A

combined sleeping and censoring scheme is considered in [13]. The censoring scheme in this paper is

different in some ways. The optimization problem in the current paper is defined as the minimization of

the maximum average energy consumption per sensor while in [13], the total network energy consumption

is minimized. For low-power radios, the problem in this paper makes more sense since the energy of

individual radios is generally limited. In this paper, the received SNRs by the cognitive radios are assumed

to be different while in [13], the SNRs are the same. Finally note that the sleeping policy of [13] can be

easily incorporated in our proposed censored truncated sequential sensing leading to even higher energy

savings.

C. Related work to sequential sensing

Sequential detection as an approach to reduce the average number of sensors required to reach a

decision is also studied comprehensively during the past decades [14]–[19]. In [14], [15], each sensor

collects a sequence of observations, constructs a summary message and passes it on to the FC and all

other sensors. A Bayesian problem formulation comprising the minimization of the average error detection

probability and sampling time cost over all admissible decision policies at the FC and all possible local

decision functions at each sensor is then considered to determine the optimal stopping and decision rule.

Further, algorithms to solve the optimization problem for both infinite and finite horizon are given. In

[16], an infinite horizon sequential detection scheme basedon the sequential probability ratio test (SPRT)

at both the sensors and the FC is considered. Wald’s analysisof error probability, [20], is employed to

determine the thresholds at the sensors and the FC. A combination of sequential detection and censoring

is considered in [17]. Each sensor computes the LLR of the received sample and sends it to the FC,
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if it is deemed to be in a certain region. The FC then collects the received LLRs and as soon as their

sum is larger than an upper threshold or smaller than a lower threshold, the decision is made and the

sensors can stop sensing. The LLRs are transmitted in such a way that the larger LLRs are sent sooner. It

is shown that the number of transmissions considerably reduces and particularly when the transmission

energy is high, this approach performs very well. However, our paper employs a hard fusion scheme

at the FC, our sequential scheme is finite horizon, and further a clear optimization problem is given to

optimize the energy consumption. Since we employ the OR (or the AND) rule in our paper, the FC can

decide for the presence (or absence) of the primary user by only receiving a single one (or zero). Hence,

ordered transmission can be easily incorporated in our paper by stopping the sensing and transmission

procedure as soon as one cognitive radio sends a one (or zero)to the FC. [18] proposes a sequential

censoring scheme where an SPRT is employed by the FC and soft or hard local decisions are sent to

the FC according to a censoring policy. It is depicted that the number of transmissions decreases but on

the other hand the average sample number (ASN) increases. Therefore, [18] ignores the effect of sensing

on the energy consumption and focuses only on the transmission energy which for current low-power

radios is comparable to the sensing energy. A truncated sequential sensing technique is employed in

[19] to reduce the sensing time of a cognitive radio system. The thresholds are determined such that a

certain probability of false alarm and detection are obtained. In this paper, we are employing a similar

technique, except that in [19], after the truncation point,a single threshold scheme is used to make a final

decision, while in our paper, the sensor decision is censored if no decision is made before the truncation

point. Further, [19] considers a single sensor detection scheme while we employ a distributed cooperative

sensing system and finally, in our paper an explicit optimization problem is given to find the sensing

parameters.

The remainder of the paper is organized as follows. In Section II, the fixed size censoring scheme for

the OR rule is described, including the optimization problem and the algorithm to solve it. The sequential

censoring scheme for the OR rule is presented in Section III.Analytical expressions for the underlying

system parameters are derived and the optimization problemis analyzed. In Section IV, the censoring and

sequential censoring schemes are presented and analyzed for the AND rule. We discuss some numerical

results in Section V. Conclusions and ideas for further workare finally posed in Section VI.

II. F IXED SIZE CENSORINGPROBLEM FORMULATION

A fixed size censoring scheme is discussed in this section as abenchmark for the main contribution

of the paper in Section III, which studies a combination of sequential sensing and censoring. A network
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Fig. 1: Distributed spectrum sensing configuration

of M cognitive radios is considered under a cooperative spectrum sensing scheme. A parallel detection

configuration is employed as shown in Fig. 1. Each cognitive radio senses the spectrum and makes a

local decision about the presence or absence of the primary user and informs the FC by employing a

censoring policy. The final decision is then made at the FC by employing the OR rule. The AND rule

will be discussed in Section IV. Denotingrij to be thei-th sample received at thej-th cognitive radio,

each radio solves a binary hypothesis testing problem as follows

H0 : rij = wij, i = 1, ..., N, j = 1, ...,M

H1 : rij = hijsi + wij, i = 1, ..., N, j = 1, ...,M (1)

wherewij is additive white Gaussian noise with zero mean and varianceσ2
w. hij andsi are the channel

gain between the primary user and thej-th cognitive radio and the transmitted primary user signal,

respectively. We assume two models forhij andsi. In the first model,si is assumed to be white Gaussian

with zero mean and varianceσ2
s , and hij is assumed constant during each sensing period and thus

hij = hj , i = 1, . . . , N . In the second model,si is assumed to be deterministic and constant modulus

|si| = s, i = 1, . . . , N, j = 1, . . . ,M andhij is an i.i.d. Gaussian random process with zero mean and

varianceσ2
hj. Note that the second model actually represents a fast fading scenario. Although each model

requires a different type of channel estimation, since the received signal is still a zero mean Gaussian

random process with some variance, namelyσ2
j = hjσ

2
s +σ2

w for the former model andσ2
j = sσ2

hj +σ2
w

for the latter model, the analyses which are given in the following sections are valid for both models. The

SNR of the received primary user signal at thej-th cognitive radio isγj = |hj |
2σ2

s/σ
2
w under the first

model andγj = s2σ2
hj/σ

2
w under the second model. Furthermore,hijsi andwij are assumed statistically

independent.

An energy detector is employed by each cognitive sensor which calculates the accumulated energy over
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N observation samples. Note that under our system model parameters, the energy detector is equivalent

to the optimal LLR detector [5]. The received energy collected over theN observation samples at the

j-th radio is given by

Ej =

N∑

i=1

|rij |
2

σ2
w

. (2)

When the accumulated energy of the observation samples is calculated, a censoring policy is employed

at each radio where the local decisions are sent to the FC onlyif they are deemed to be informative

[13]. Censoring thresholdsλ1 andλ2 are applied at each of the radios, where the rangeλ1 < Ej < λ2

is called the censoring region. At thej-th radio, the local censoring decision rule is given by






send 1, declaringH1 if Ej ≥ λ2,

no decision ifλ1 < Ej < λ2,

send 0, declaringH0 if Ej ≤ λ1.

(3)

It is well known [5] that under such a model,Ej follows a central chi-square distribution with2N

degrees of freedom underH0 andH1. Therefore, the local probabilities of false alarm and detection can

be respectively written as

Pfj = Pr(Ej ≥ λ2|H0) =
Γ(N, λ2

2 )

Γ(N)
, (4)

Pdj = Pr(Ej ≥ λ2|H1) =
Γ(N, λ2

2(1+γj)
)

Γ(N)
, (5)

whereΓ(a, x) is the incomplete gamma function given byΓ(a, x) =
∫∞
x ta−1e−tdt, with Γ(a, 0) = Γ(a).

Denoting Csj and Cti to be the energy consumed by thej-th radio in sensing per sample and

transmission per bit, respectively, the average energy consumed for distributed sensing per user is given

by,

Cj = NCsj + (1− ρj)Ctj , (6)

whereρj = Pr(λ1 < Ej < λ2) is denoted to be the average censoring rate. Note thatCsj is fixed and only

depends on the sampling rate and power consumption of the sensing module whileCtj depends on the

distance to the FC at the time of the transmission. Therefore, in this paper, it is assumed that the cognitive

radio is aware of its location and the location of the FC as well as their mutual channel properties or

at least can estimate them. Definingπ0 = Pr(H0), π1 = Pr(H1), δ0j = Pr(λ1 < Ej < λ2|H0) and

δ1j = Pr(λ1 < Ej < λ2|H1), ρj is given by

ρj = π0δ0j + π1δ1j , (7)

September 3, 2018 DRAFT



8

with

δ0j =
Γ(N, λ1

2 )

Γ(N)
−

Γ(N, λ2

2 )

Γ(N)
, (8)

δ1j =
Γ(N, λ1

2(1+γj)
)

Γ(N)
−

Γ(N, λ2

2(1+γj )
)

Γ(N)
. (9)

DenotingQc
F andQc

D to be the respective global probability of false alarm and detection, the target

detection performance is then quantified byQc
F ≤ α and Qc

D ≥ β, whereα and β are pre-specified

detection design parameters. Our goal is to determine the optimum censoring thresholdsλ1 andλ2 such

that the maximum average energy consumption per sensor, i.e., maxj Cj, is minimized subject to the

constraintsQc
F ≤ α andQc

D ≥ β. Hence, our optimization problem can be formulated as

min
λ1,λ2

max
j

Cj

s.t.Qc
F ≤ α, Qc

D ≥ β. (10)

In this section, the FC employs an OR rule to make the final decision which is denoted byDFC , i.e.,

DFC = 1 if the FC receives at least one local decision declaring 1, elseDFC = 0. This way, the global

probability of false alarm and detection can be derived as

Qc
F = Pr(DFC = 1|H0) = 1−

M∏

j=1

(1− Pfj), (11)

Qc
D = Pr(DFC = 1|H1) = 1−

M∏

j=1

(1− Pdj). (12)

Note that since all the cognitive radios employ the same upper thresholdλ2, we can state thatPfj = Pf

defined in (4). As a result, (11) becomes

Qc
F = 1− (1− Pf )

M . (13)

Since the FC decides about the presence of the primary user only by receiving 1s (receiving no decision

from all the sensors is considered as absence of the primary user) and the sensing time does not depend

on λ1, it is a waste of energy to send zeros to the FC and thus, the optimal solution of (10) is obtained

by λ1 = 0. Note that this is only the case for fixed-size censoring, because the energy consumption of

each sensor only varies by the transmission energy while thesensing energy is constant. This way (8)

and (9) can be simplified toδ0j = 1−Pf andδ1j = 1−Pdj , and we only need to derive the optimalλ2.

Since there is a one-to-one relationship betweenPf andλ2, by finding the optimalPf , λ2 can also be

easily derived asλ2 = 2Γ−1[N,Γ(N)Pf ] (whereΓ−1 is defined over the second argument). Considering
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this result and definingQc
D = H(Pf ), the optimal solution of (10) is given byPf = H−1(β) as is shown

in Appendix A.

In the following section, a combination of censoring and sequential sensing approaches is presented

which optimizes both the sensing and the transmission energy.

III. SEQUENTIAL CENSORINGPROBLEM FORMULATION

A. System Model

Unlike Section II, where each user collects a specific numberof samples, in this section, each cognitive

radio sequentially senses the spectrum and upon reaching a decision about the presence or absence of

the primary user, it sends the result to the FC by employing a censoring policy as introduced in Section

II. The final decision is then made at the FC by employing the ORrule. Here, a censored truncated

sequential sensing scheme is employed where each cognitiveradio carries on sensing until it reaches

a decision while not passing a limit ofN samples. We defineζnj =
∑n

i=1 |rij |
2/σ2

w =
∑n

i=1 xij and

ai = 0, i = 1, . . . , p, ai = ā + iΛ̄, i = p + 1, ..., N and bi = b̄ + iΛ̄, i = 1, ..., N , whereā = a/σ2
w,

b̄ = b/σ2
w, 1 < Λ̄ < 1 + γj is a predetermined constant,a < 0, b > 0 and p = ⌊−a/σ2

wΛ̄⌋ [19]. We

assume that the SNRγj is known or can be estimated. This way, the local decision rule in order to make

a final decision is as follows






send 1, declaringH1 if ζnj ≥ bn andn ∈ [1, N ],

continue sensing ifζnj ∈ (an, bn) andn ∈ [1, N),

no decision ifζnj ∈ (an, bn) andn = N,

send 0, declaringH0 if ζnj ≤ an andn ∈ [1, N ].

(14)

The probability density function ofxij = |rij |
2/σ2

w underH0 andH1 is a chi-square distribution with

2n degrees of freedom. Thus,xij becomes exponentially distributed under bothH0 andH1. Henceforth,

we obtain

Pr(xij |H0) =
1

2
e−xij/2I{xij≥0}, (15)

Pr(xij |H1) =
1

2(1 + γj)
e−xij/2(1+γj)I{xij≥0}, (16)

whereI{xij≥0} is the indicator function.

Defining ζ0j = 0, the local probability of false alarm at thej-th cognitive radio,Pfj , can be written

as

Pfj =

N∑

n=1

Pr(ζ0j ∈ (a0, b0), ..., ζn−1j ∈ (an−1, bn−1), ζnj ≥ bn|H0), (17)
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whereas the local probability of detection,Pdj , is obtained as follows

Pdj =

N∑

n=1

Pr(ζ0j ∈ (a0, b0), ..., ζn−1j ∈ (an−1, bn−1), ζnj ≥ bn|H1). (18)

Denotingρj to be the average censoring rate at thej-th cognitive radio, andδ0j and δ1j to be the

respective average censoring rate underH0 andH1, we have

ρj = π0δ0j + π1δ1j , (19)

where

δ0j = Pr(ζ1j ∈ (a1, b1), ..., ζNj ∈ (aN , bN )|H0), (20)

δ1j = Pr(ζ1j ∈ (a1, b1), ..., ζNj ∈ (aN , bN )|H1). (21)

The other parameter that is important in any sequential detection scheme is the average sample number

(ASN) required to reach a decision. DenotingNj to be a random variable representing the number of

samples required to announce the presence or absence of the primary user, the ASN for thej-th cognitive

radio, denoted as̄Nj=E(Nj), can be defined as

N̄j = π0E(Nj |H0) + π1E(Nj |H1), (22)

where

E(Nj |H0) =

N∑

n=1

nPr(Nj = n|H0)

=

N−1∑

n=1

n[Pr(ζ0j ∈ (a0, b0), ..., ζn−1j ∈ (an−1, bn−1)|H0)

− Pr(ζ0j ∈ (a0, b0), ..., ζnj ∈ (an, bn)|H0)]

+ NPr(ζ0j ∈ (a0, b0), ..., ζN−1j ∈ (aN−1, bN−1)|H0), (23)

and

E(Nj |H1) =

N∑

n=1

nPr(Nj = n|H1)

=

N−1∑

n=1

n[Pr(ζ0j ∈ (a0, b0), ..., ζnj ∈ (an−1, bn−1)|H1)

− Pr(ζ0j ∈ (a0, b0), ..., ζnj ∈ (an, bn)|H1)]

+ NPr(ζ0j ∈ (a0, b0), ..., ζN−1j ∈ (aN−1, bN−1)|H1). (24)
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Denoting againCsj to be the sensing energy of one sample andCtj to be the transmission energy of a

decision bit at thej-th cognitive radio, the total average energy consumption at the j-th cognitive radio

now becomes

Cj = N̄jCsj + (1− ρj)Ctj . (25)

DenotingQcs
F andQcs

D to be the respective global probabilities of false alarm anddetection for the

censored truncated sequential approach, we define our problem as the minimization of the maximum

average energy consumption per sensor subject to a constraint on the global probabilities of false alarm

and detection as follows

min
ā,b̄

max
j

Cj

s.t.Qcs
F ≤ α, Qcs

D ≥ β. (26)

As in (11) and (12), under the OR rule that is assumed in this section, the global probability of false

alarm is

Qcs
F = Pr(DFC = 1|H0) = 1−

M∏

j=1

(1− Pfj), (27)

and the global probability of detection is

Qcs
D = Pr(DFC = 1|H1) = 1−

M∏

j=1

(1− Pdj). (28)

Note that sincePf1 = · · · = PfM , it is again assumed thatPfj = Pf in this section.

In the following subsection, analytical expressions for the probability of false alarm and detection as

well as the censoring rate and ASN are extracted.

B. Parameter and Problem Analysis

Looking at (17), (18), (19) and (22), we can see that the jointprobability distribution function of

p(ζ1j , ..., ζnj) is the foundation of all the equations. Sincexij = ζij − ζi−1j for i = 1, ..., N , we have,

p(ζ1j, ..., ζnj) = p(xnj)p(xn−1j)...p(x1j). (29)

Therefore, the joint probability distribution function underH0 andH1 becomes

p(ζ1j , ..., ζnj |H0) =
1

2n
e−ζnj/2I{0≤ζ1j≤ζ2j ...≤ζnj}, (30)

p(ζ1j , ..., ζnj |H1) =
1

[2(1 + γj)]n
e−ζnj/2(1+γj)I{0≤ζ1j≤ζ2j ...≤ζnj}, (31)

whereI{0≤ζ1j≤ζ2j ...≤ζnj} is again the indicator function.
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The derivation of the local probability of false alarm and the ASN underH0 in this work are similar to

the ones considered in [19] and [21]. The difference is that in [19], if the cognitive radio does not reach

a decision afterN samples, it employs a single threshold decision policy to give a final decision about

the presence or absence of the cognitive radio, while in our work, no decision is sent in case none of the

upper and lower thresholds are crossed. Hence, to avoid introducing a cumbersome detailed derivation of

each parameter, we can use the results in [19] for our analysis with a small modification. However, note

that the problem formulation in this work is essentially different from the one in [19]. Further, since in

our work the distribution ofxij underH1 is exponential like the one underH0, unlike [19], we can also

use the same approach to derive analytical expressions for the local probability of detection, the ASN

underH1, and the censoring rate.

DenotingEn to be the event whereai < ζij < bi, i = 1, ..., n − 1 andζnj ≥ bn, (17) becomes

Pfj =

N∑

n=1

Pr(En|H0). (32)

where the analytical expression forPr(En|H0) is derived in Appendix B.

Similarly for the local probability of detection, we have

Pdj =

N∑

n=1

Pr(En|H1), (33)

where the analytical expression forPr(En|H1) is derived in Appendix C.

DefiningRnj = {ζij |ζij ∈ (ai, bi), i = 1, ..., n}, Pr(Rnj|H0) andPr(Rnj |H1) are obtained as follows

Pr(Rnj|H0) =
1

2n
J
(n)
an,bn

(1/2), n = 1, ..., N, (34)

Pr(Rnj|H1) =
1

[2(1 + γj)]n
J
(n)
an,bn

(1/2(1 + γj)), n = 1, ..., N, (35)

whereJ (n)
an,bn

(θ) is presented in Appendix D and (23) and (24) become

E(Nj |H0) =

N−1∑

n=1

n(Pr(Rn−1j|H0)−Pr(Rnj|H0))+NPr(RN−1j |H0) = 1+

N−1∑

n=1

Pr(Rnj|H0), (36)

E(Nj |H1) =

N∑

n=1

n(Pr(Rn−1j|H1)− Pr(Rnj|H1)) +NPr(RN−1j|H1) = 1 +

N−1∑

n=1

Pr(Rnj|H1). (37)

With (36) and (37), we can calculate (22). This way, (20) and (21) can be derived as follows

δ0j = Pr(RNj|H0) =
1

2N
J
(N)
aN ,bN

(1/2), (38)

δ1j = Pr(RNj|H1) =
1

[2(1 + γj)]N
J
(N)
aN ,bN

(1/2(1 + γj)). (39)
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We can show that the problem (26) is not convex. Therefore, the standard systematic optimization

algorithms do not give the global optimum forā and b̄. However, as is shown in the following lines,

ā and b̄ are bounded and therefore, a two-dimensional exhaustive search is possible to find the global

optimum. First of all, we havea < 0 andā < 0. On the other hand, if̄a has to play a role in the sensing

system, at least oneaN should be positive, i.e.,aN = ā+N∆ ≥ 0 which givesā ≥ −N∆. Hence, we

obtain−N∆ ≤ ā < 0. Furthermore, definingQcs
F = F(ā, b̄) andQcs

D = G(ā, b̄), for a givenā, it is easy

to show thatG−1(ā, β) ≤ b̄ ≤ F−1(ā, α) (whereF−1 andG−1 are defined over the second argument).

Before introducing a suboptimal problem, the following theorem is presented.

Theorem 1. For a given local probability of detection and false alarm (Pd andPf ) andN , the censoring

rate of the optimal censored truncated sequential sensing (ρcs) is less than the one of the censoring scheme

(ρc).

Proof. The proof is provided in Appendix E.

We should note that, in censored truncated sequential sensing, a large amount of energy is to be saved

on sensing. Therefore, as is shown in Section V, as the sensing energy of each sensor increases, censored

truncated sequential sensing outperforms censoring in terms of energy efficiency. However, in case that

the transmission energy is much higher than the sensing energy, it may happen that censoring outperforms

censored truncated sequential sensing, because of a highercensoring rate (ρcs > ρc). Hence, one corollary

of Theorem 1 is that although the optimal solution of (10) fora specificN , i.e., Pd = 1 − (1 − β)1/M

andPf = H−1(β), is in the feasible set of (26) for a resulting ASN less thanN , it does not necessarily

guarantee that the resulting average energy consumption per sensor of the censored truncated sequential

sensing approach is less than the one of the censoring scheme, particularly when the transmission energy

is much higher than the sensing energy per sample.

Solving (26) is complex in terms of the number of computations, and thus a two-dimensional exhaustive

search is not always a good solution. Therefore, in order to reach a good solution in a reasonable time,

we seta < −N∆ in order to obtaina1 = · · · = aN = 0. This way, we can relax one of the arguments

of (26) and only solve the following suboptimal problem

min
b̄

max
j

Cj

s.t.Qcs
F ≤ α, Qcs

D ≥ β. (40)

Note that unlike Section II, here the zero lower threshold isnot necessarily optimal. The reason is that

although the maximum censoring rate is achieved with the lowest ā, the minimum ASN is achieved with

the highest̄a, and thus there is an inherent trade-off between a high censoring rate and a low ASN and a
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zeroai is not necessarily the optimal solution. Since the analytical expressions provided earlier are very

complex, we now try to provide a new set of analytical expressions for different parameters based on

the fact thata1 = · · · = aN = 0.

To find an analytical expression forPfj , we can deriveA(n) for the new paradigm as follows

A(n) =

∫

...

∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j
. (41)

Since0 ≤ ζ1j ≤ ζ2j ... ≤ ζn−1j anda1 = · · · = aN = 0, the lower bound for each integral isζi−1 and

the upper bound isbi, wherei = 1, ..., n − 1. Thus we obtain

A(n) =

∫ b1

ζ0j

∫ b2

ζ1j

...

∫ bn−1

ζn−2j

dζ1jdζ2j...dζn−1j , (42)

which according to [21] is

A(n) =
b1b

n−2
n

(n− 1)!
, n = 1, ..., N. (43)

Hence, we have

Pfj =

N∑

n=1

pnA(n), (44)

andpn = e−bn/2

2n−1 . Similarly, for Pdj , we obtain

B(n) =

∫ b1

ζ0j

∫ b2

ζ1j

...

∫ bn−1

ζn−2j

dζ1jdζ2j ...dζn−1j

=
b1b

n−2
n

(n− 1)!
, n = 1, ..., N, (45)

and thus

Pdj =

N∑

n=1

qnB(n), (46)

whereqn = e−bn/2(1+γj )

[2(1+γj)]n−1 . Furthermore, we note that fora1 = · · · = aN = 0, A(n) = B(n) = b1bn−2
n

(n−1)! , n =

1, ..., N .

It is easy to see thatRnj occurs underH0, if no false alarm happens until then-th sample. Therefore,

the analytical expression forPr(Rnj|H0) is given by

Pr(Rnj|H0) = 1−

n∑

i=1

piA(i), (47)

and in the same way, forPr(Rnj|H1), we obtain

Pr(Rnj |H1) = 1−

n∑

i=1

qiA(i). (48)
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Putting (47) and (48) in (36) and (37), we obtain

E(Nj |H0) = 1 +

N−1∑

n=1

{

1−

n∑

i=1

piA(i)

}

, (49)

E(Nj |H1) = 1 +

N−1∑

n=1

{

1−

n∑

i=1

qiA(i)

}

, (50)

and inserting (49) and (50) in (22), we obtain

N̄j = π0

(

1 +

N−1∑

n=1

{

1−

n∑

i=1

piA(i)

})

+ π1

(

1 +

N−1∑

n=1

{

1−

n∑

i=1

qiA(i)

})

. (51)

Finally, from (47) and (48), the censoring rate can be easilyobtained as

ρj = π0

(

1−

N∑

i=1

piA(i)

)

+ π1

(

1−

N∑

i=1

qiA(i)

)

. (52)

Having the analytical expressions for (40), we can easily find the optimal maximum average energy

consumption per sensor by a line search overb̄. Similar to the censoring problem formulation, here the

sensing threshold is also bounded byQcs
F

−1(α) ≤ b̄ ≤ Qcs
D

−1(β). As we will see in Section V, censored

truncated sequential sensing performs better than censored spectrum sensing in terms of energy efficiency

for low-power radios.

IV. EXTENSION TO THE AND RULE

So far, we have mainly focused on the OR rule. However, another rule which is also simple in terms

of implementation is the AND rule. According to the AND rule,DFC = 0, if at least one cognitive

radio reports a zero, elseDFC = 1. This way the global probabilities of false alarm and detection, can

be written respectively as

Qc
F,AND = Qcs

F,AND = Pr(DFC = 1|H0) =

M∏

j=1

(δ0j + Pfj), (53)

Qc
D,AND = Qcs

D,AND = Pr(DFC = 1|H1) =

M∏

j=1

(δ1j + Pdj). (54)

Note that (53) and (54) hold for both the sequential censoring and censoring schemes. Similar to the case

for the OR rule, the problem is defined so as to minimize the maximum average energy consumption

per sensor subject to a lower bound on the global probabilityof detection and an upper bound on the

global probability of false alarm. In the following two subsections, we are going to analyze the problem

for censoring and sequential censoring.
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A. AND rule for fixed-sample size censoring

The optimization problem for the censoring scheme considering the AND rule at the FC, becomes

min
λ1,λ2

max
j

Cj

s.t.Qc
F,AND ≤ α, Qc

D,AND ≥ β. (55)

whereCj is defined in (6). Since the FC decides for the absence of the primary user by receiving at least

one zero and the fact that the sensing energy per sample is constant, the optimal upper thresholdλ2 is

λ2 → ∞. This way, cognitive radios censor all the results for whichEj > λ1, and as a result (53) and

(54) become

Qc
F,AND = Pr(DFC = 1|H0) =

M∏

j=1

δ0j , (56)

Qc
D,AND = Pr(DFC = 1|H1) =

M∏

j=1

δ1j . (57)

whereδ0j = Pr(Ej > λ1|H0) andδ1j = Pr(Ej > λ1|H1). Since the thresholds are the same among the

cognitive radios, we haveδ01 = δ02 = · · · = δ0M = δ0. Since there is a one-to-one relationship between

λ1 and δ0, by finding the optimalδ0, the optimalλ1 can be easily derived. As shown in Appendix F,

we can derive the optimalδ0 asδ0 = α1/M . This result is very important in the sense that as far as the

feasible set of (55) is not empty, the optimal solution of (55) is independent from the SNR. Note that

the maximum average energy consumption per sensor still depends on the SNR viaδ1j and is reducing

as the SNR grows.

B. AND rule for censored truncated sequential sensing

The optimization problem for the censored truncated sequential sensing scheme with the AND rule,

becomes

min
ā,b̄

max
j

Cj

s.t.Qcs
F,AND ≤ α, Qcs

D,AND ≥ β. (58)

whereCj is defined in (25). Similar to the OR rule, we have−N∆ ≤ ā < 0. Defining Qcs
F,AND =

FAND(ā, b̄) andQcs
D,AND = GAND(ā, b̄), for a givenā, we can show thatG−1

AND(ā, β) ≤ b̄ ≤ F−1
AND(ā, α)

(whereF−1
AND andG−1

AND are defined over the second argument). Therefore, the optimal ā and b̄ can again

be derived by a bounded two-dimensional search, in a similarway as for the OR rule.

September 3, 2018 DRAFT



17

V. NUMERICAL RESULTS

A network of cognitive radios is considered for the numerical results. In some of the scenarios, for

the sake of simplicity, it is assumed that all the sensors experience the same SNR. This way, it is

easier to show how the main performance indicators including the optimal maximum average energy

consumption per sensor, ASN and censoring rate changes whenone of the underlying parameter of the

system changes. However, to comply with the general idea of the paper, which is based on different

received SNRs by cognitive radios, in other scenarios, the different cognitive radios experience different

SNRs. Unless otherwise mentioned, the results are based on the single-threshold strategy for censored

truncated sequential sensing in case of the OR rule.

Fig. 2a depicts the optimal maximum average energy consumption per sensor versus the number of

cognitive radios for the OR rule. The SNR is assumed to be0 dB, N = 10, Cs = 1 and Ct = 10.

Furthermore, the probability of false alarm and detection constraints are assumed to beα = 0.1 and

β = 0.9 as determined by the IEEE 802.15.4 standard for cognitive radios [7]. It is shown for both high

and low values ofπ0 that censored sequential sensing outperforms the censoring scheme. Looking at

Fig. 2b and Fig. 2c, where the respective optimal censoring rate and optimal ASN are shown versus the

number of cognitive radios, we can deduce that the lower ASN is playing a key role in a lower energy

consumption of the censored sequential sensing. Fig. 2a also shows that as the number of cooperating

cognitive radios increases, the optimal maximum average energy consumption per sensor decreases and

saturates, while as shown in Fig. 2b and Fig. 2c, the optimal censoring rate and optimal ASN increase.

This way, the energy consumption tends to increase as a result of ASN growth and on the other hand

inclines to decrease due to the censoring rate growth and that is the reason for saturation after a number of

cognitive radios. Therefore, we can see that as the number ofcognitive radios increases, a higher energy

efficiency per sensor can be achieved. However, after a number of cognitive radios, the maximum average

energy consumption per sensor remains almost at a constant level and by adding more cognitive radios

no significant energy saving per sensor can be achieved whilethe total network energy consumption also

increases.

Figures 3a, 3b and 3c consider a scenario whereM = 5, N = 30, Csj = 1, Ctj = 10, α = 0.1,

β = 0.9 andπ0 can take a value of0.2 or 0.8. The performance of the system versus SNR is analyzed

in this scenario for the OR rule. The maximum average energy consumption per sensor is depicted in

Fig. 3a. As for the earlier scenario, censored sequential sensing gives a higher energy efficiency compared

to censoring. While the optimal energy variation for the censoring scheme is almost the same for all
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Fig. 2: a) Optimal maximum average energy consumption per sensor versus number of cognitive

radios, b) Optimal censoring rate versus number of cognitive radios, c) Optimal ASN versus number

of cognitive radios for the OR rule

the considered SNRs, the censored sequential scheme’s average energy consumption per sensor reduces

significantly as the SNR increases. The reason is that as the SNR increases, the optimal ASN dramatically

decreases (almost50% for γ = 2 dB andπ0 = 0.2). This shows that as the SNR increases, censored

sequential sensing becomes even more valuable and a significant energy saving per sensor can be achieved

compared with the one that is achieved by censoring. Since the SNR changes with the channel gain (|hj |
2
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Fig. 3: a) Optimal maximum average energy consumption per sensor versus SNR, b) Optimal censoring

rate versus SNR, c) Optimal ASN versus SNR for the OR rule

under the first model orσ2
hj under the second model), from Fig. 3a, the behavior of the system with

varying |hj |
2 or σ2

hj can be derived, if the distribution of|hj |2 or σ2
hj is known.

Figures 4a and 4b compare the performance of the single threshold censored truncated sequential

scheme with the one assuming two thresholds, i.e,ā and b̄ for the OR rule. The idea is to find when the

double threshold scheme with its higher complexity becomesvaluable. In these figures,M = 5, N = 10,

γ = 0 dB, Ct = 10, π0 = 0.2, 0.8, andα = 0.1, while β changes from0.1 to 0.99. The sensing energy
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Fig. 4: Optimal maximum average energy consumption per sensor versus probability of detection

constraint,β, for the OR rule, a)Cs = 1, b) Cs = 3

per sample,Cs in Fig. 4a is assumed1, while in Fig. 4b it is3. It is shown that as the sensing energy

per sample increases, the energy efficiency of the double threshold scheme also increases compared to

the one of the single threshold scheme, particularly whenπ0 is high. The reason is that whenπ0 is high,

a much lower ASN can be achieved by the double threshold scheme compared to the single threshold

one. This gain in performance comes at the cost of a higher computational complexity because of the

two-dimensional search.
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Fig. 5: Optimal maximum average energy consumption per sensor versus number of samples for the OR

rule

Fig. 5 depicts the optimal maximum average energy consumption per sensor versus the number of

samples for the OR rule and for a network ofM = 5 cognitive radios where each radio experiences a

different channel gain and thus a different SNR. Arranging the SNRs in a vectorγ = [γ1, . . . , γ5], we

haveγ =[1dB, 2dB, 3dB, 4dB, 5dB]. The other parameters areCs = 1, Ct = 10, π0 = 0.5, α = 0.1 and

β = 0.9. As shown in Fig. 5, by increasing the number of samples and thus the total sensing energy, the

sequential censoring energy efficiency also increases compared to the censoring scheme. For example,

if we define the efficiency of the censored truncated sequential sensing scheme as the difference of the

optimal maximum average energy consumption per sensor of sequential censoring and censoring divided

by the optimal maximum average energy consumption per sensor of censoring, the efficiency increases

approximately three times from 0.06 (forN = 15) to 0.19 (forN = 30).

In Fig. 6, the sensing energy per sample isCs = 10 while the transmission energyCt changes from 0

to 1000. The goal is to see how the optimal maximum average energy consumption per sensor changes

with Ct for the or rule and for a network ofM = 5 cognitive radios withγ =[1dB, 2dB, 3dB, 4dB,

5dB]. The other parameters of the network areN = 30, π0 = 0.5, α = 0.1 and β = 0.9. The best

saving for sequential censoring is achieved when the transmission energy is zero. Indeed, we can see that

as the transmission energy increases the performance gain of sequential censoring reduces compared to

censoring. However, in low-power radios where the sensing energy per sample and transmission energy

are usually in the same range, sequential censoring performs much better than censoring in terms of
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Fig. 6: Optimal maximum average energy consumption per sensor versus transmission energy for the OR

rule

energy efficiency as we can see in Fig. 6.

Fig. 7 depicts the optimal maximum average energy consumption per sensor versus the sensing energy

per sample for both the AND and OR rule. For the sake of simplicity and tractability, the SNRs are

assumed the same forM = 50 cognitive radios. The other parameters are assumed to beN = 10,

Ct = 10, π0 = 0.5, γ = 0 dB, α = 0.1 andβ = 0.9. For both fusion rules, the double threshold scheme

is employed. We can see that the OR rule performs better for the low values ofCs. However, asCs

increases the AND rule dominates and outperforms the OR rule, particularly for high values ofCs. The

reason that the OR rule performs better than the AND rule at very low values ofCs is that the optimal

censoring rate for the OR rule is higher than the optimal censoring rate for the AND rule. However as

Cs increases, the AND rule dominates the OR rule in terms of energy efficiency due to the lower ASN.

The optimal maximum average energy consumption per sensor versusπ0 is investigated in Fig. 8 for

the AND and the OR rule. The underlying parameters are assumed to beCs = 2, Ct = 10, N = 10,

M = 50, γ = 0 dB, α = 0.1 andβ = 0.9. It is shown that as the probability of the primary user absence

increases, the optimal maximum average energy consumptionper sensor reduces for the OR rule while it

increases for the AND rule. This is mainly due to the fact thatfor the OR rule, we are mainly interested

to receive a ”1” from the cognitive radios. Therefore, asπ0 increases, the probability of receiving a ”1”

decreases, since the optimal censoring rate increases. Theopposite happens for the AND rule, since for

the AND rule, receiving a ”0” from the cognitive radios is considered to be informative.
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Fig. 8: Optimal maximum average energy consumption per sensor versusπ0 for AND and OR rule

VI. SUMMARY AND CONCLUSIONS

We presented two energy efficient techniques for a cognitivesensor network. First, a censoring scheme

has been discussed where each sensor employs a censoring policy to reduce the energy consumption.

Then a censored truncated sequential approach has been proposed based on the combination of censoring

and sequential sensing policies. We defined our problem as the minimization of the maximum average

energy consumption per sensor subject to a global probability of false alarm and detection constraint for
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the AND and the OR rules. The optimal lower threshold is shownto be zero for the censoring scheme in

case of the OR rule while for the AND rule the optimal upper threshold is shown to be infinity. Further,

an explicit expression was given to find the optimal solutionfor the OR rule and in case of the AND rule

a closed for solution is derived. We have further derived theanalytical expressions for the underlying

parameters in the censored sequential scheme and have shownthat although the problem is not convex,

a bounded two-dimensional search is possible for both the ORrule and the AND rule. Further, in case

of the OR rule, we relaxed the lower threshold to obtain a linesearch problem in order to reduce the

computational complexity.

Different scenarios regarding transmission and sensing energy per sample as well as SNR, number

of cognitive radios, number of samples and detection performance constraints were simulated for low

and high values ofπ0 and for both the OR rule and the AND rule. It has been shown thatunder the

practical assumption of low-power radios, sequential censoring outperforms censoring. We conclude that

for high values of the sensing energy per sample, despite itshigh computational complexity, the double

threshold scheme developed for the OR rule becomes more attractive. Further, it is shown that as the

sensing energy per sample increases compared to the transmission energy, the AND rule performs better

than the OR rule, while for very low values of the sensing energy per sample, the OR rule outperforms

the AND rule.

Note that a systematic solution for the censored sequentialproblem formulation was not given in this

paper, and thus it is valuable to investigate a better algorithm to solve the problem. We also did not

consider a combination of the proposed scheme with sleepingas in [13], which can generate further

energy savings. Our analysis was based on the OR rule and the AND rule, and thus extensions to other

hard fusion rules could be interesting.

APPENDIX A

OPTIMAL SOLUTION OF (10)

Since the optimalλ1 = 0, (8) and (9) can be simplified toδ0j = 1 − Pf and δ1j = 1 − Pdj and so

(10) becomes,

min
λ2

max
j

[
NCsj + (π0Pf + π1Pdj)Ctj

]

s.t. 1− (1− Pf )
M ≤ α, 1−

M∏

j=1

(1− Pdj) ≥ β. (59)
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Since there is a one-to-one relationship betweenλ2 andPf , i.e.,λ2 = 2Γ−1[N,Γ(N)Pf ] (whereΓ−1

is defined over the second argument), (59) can be formulated as [22, p.130],

min
Pf

maxj
[
NCsj + (π0Pf + π1Pdj)Ctj

]

s.t. 1− (1− Pf )
M ≤ α, 1−

∏M
j=1(1− Pdj) ≥ β.

(60)

Defining Pf = F (λ2) =
Γ(N,λ2

2
)

Γ(N) and Pdj = Gj(λ2) =
Γ(N,

λ2
2(1+γj )

)

Γ(N) , we can write Pdj as

Pdj = Gj(F
−1(Pf )). Calculating the derivative ofCj with respect toPf , we find that

∂Cj

∂Pf
=

∂
[
Ctj(π0Pf + π1Pdj)

]

∂Pf
= Ctjπ0 +

∂Pdj

∂Pf
≥ 0, (61)

where we use the fact that

∂Pdj

∂Pf
=

− 1
2NΓ(N)2Γ

−1[N,Γ(N)Pf ]
N−1e2Γ

−1[N,Γ(N)Pf ]/2(1+γj)I{2Γ−1[N,Γ(N)Pf ]≥0}

− 1
2NΓ(N)2Γ

−1[N,Γ(N)Pf ]N−1e2Γ−1[N,Γ(N)Pf ]/2I{2Γ−1[N,Γ(N)Pf ]≥0}

= e2Γ
−1[N,Γ(N)Pf ](1/2(1+γj )−1/2) ≥ 0. (62)

Therefore, we can simplify (60) as

min
Pf

Pf

s.t. 1− (1− Pf )
M ≤ α, 1−

∏M
j=1(1− Pdj) ≥ β.

(63)

which can be easily solved by a line search overPf . However, sinceQc
D is a monotonically increasing

function of Pf , i.e., Qc
D = H(Pf ) = 1 −

∏M
j=1(1 − Gj(F

−1(Pf ))) and thus ∂Qc
D

∂Pf
=

∂Qc
D

∂Pdj

∂Pdj

∂Pf
=

∏l=M
l=1,l 6=j(1−Pdl)

∂Pdj

∂Pf
≥ 0, we can further simplify the constraints in (63) asPf ≤ 1− (1− α)1/M and

Pf ≥ H−1(β). Thus, we obtain

min
Pf

Pf

s.t.Pf ≤ 1− (1− α)1/M , Pf ≥ H−1(β).
(64)

Therefore, if the feasible set of (64) is not empty, then the optimal solution is given byPf = H−1(β).

APPENDIX B

DERIVATION OF Pr(En|H0)

IntroducingΓn = {ai < ζij < bi, i = 1, ..., n − 1} andpn = 1
2n−1 e−bn/2, we can write

Pr(En|H0) =

∫

...

∫

Γn

∫ ∞

bn

1

2n
e−ζnj/2I{0≤ζ1j≤ζ2j ...≤ζnj}dζ1j ...dζnj

= pn

∫

...

∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j . (65)
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DenotingA(n) =
∫
...
∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j
, we obtain

A(n) =







b1bn−2
n

(n−1)! , n = 1, ..., p + 1
[
f
(n−1)

an−1
0

(bn−1)− I{n≥3}

∑n−3
i=0

(bn−1−bi+1)n−i−1

(n−i−1)! 2ie
bi+1

2 Pr(Ei+1|H0)
]
, n = p+ 2, ..., q + 1

[
f
(n−1)

an−1
0

(bn−1)−
∑n

i=0 f
(n−1−i)

ψn−1
i,an−1

(bn−1)2
ie

bi+1

2 Pr(Ei+1|H0)
]
, n = q + 2, ..., N

,

(66)

wherean−1
0 = [a0, . . . , an−1]. Denoting q to be the smallest integer for whichaq ≤ b1 < bq, and

c and d to be two non-negative real numbers satisfying0 ≤ c < d, an−1 ≤ c ≤ bn and an ≤ d,

η0 = 0, ηk = [η1, ..., ηk], 0 ≤ η1 ≤ ... ≤ ηk, the functionsf (k)
ηk

(ζ) and the vectorψn
i,c in (66) are as

follows

f
(k)
ηk

(ζ) =
∑k−1

i=0
f (k)
i (ζ−ηi+1)k−i

(k−i)! + f
(k)
k

f
(k)
i = f

(k−1)
i , i = 0, ..., k − 1, k ≥ 1, f

(k)
k = −

∑k−1
i=0

f (k−1)
i

(k−i)! (ηk − ηi+1)
k−i, f

(0)
0 = 1, (67)

ψn
i,c =







[bi+1, ..., bi+1
︸ ︷︷ ︸

q

, aq+i+1, ..., an−1, c
︸ ︷︷ ︸

n−q−i

], i ∈ [0, n − q − 2]

[bi+1, ..., bi+1, c
︸ ︷︷ ︸

n−i

], i ∈ [n− q − 1, s − 1]

bi+11n−i, i ∈ [s, n− 2]

, (68)

with s denoting the integer for whichbs < c ≤ bs+1 andf (0)
ηk

(ζ) = 1.

APPENDIX C

DERIVATION OF Pr(En|H1)

Introducingqn = 1
[2(1+γj)]n−1 e

−bn/2(1+γj ), we can write

Pr(En|H1) =

∫

...

∫

Γn

∫ ∞

bn

1

[2(1 + γj)]n
e−ζnj/2(1+γj )I{0≤ζ1j≤ζ2j ...≤ζnj}dζ1j ...dζnj

= qn

∫

...

∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j . (69)
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DenotingB(n) =
∫
...
∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j
, and using the notations of Appendix B, we obtain

B(n) =







b1bn−2
n

(n−1)! , n = 1, ..., p + 1
[
f
(n−1)

an−1
0

(bn−1)− I{n≥3}

∑n−3
i=0

(bn−1−bi+1)n−i−1

(n−i−1)! [2(1 + γj)]
ie

bi+1

2(1+γj )Pr(Ei+1|H1)
]
, n = p+ 2, ..., q + 1

[
f
(n−1)

an−1
0

(bn−1)−
∑n−3

i=0 f
(n−1−i)

ψn−1
i,an−1

(bn−1)[2(1 + γj)]
ie

bi+1

2(1+γj )Pr(Ei+1|H1)
]
, n = q + 2, ..., N

.

(70)

APPENDIX D

ANALYTICAL EXPRESSION FORJ
(n)
an,bn

(θ)

Under θ > 0, n ≥ 1 and 0 ≤ ζ1j ≤ ... ≤ ζnj, ζij ∈ (ai, bi), i = 1, ..., n, the functionJ (n)
an,bn

(θ) is

defined as [19]

J
(n)
an,bn

(θ) =

n∑

i=1

θ−i
[
f
(n−i)

an−i
0

(an)e
−θan − f

(n−i)

an−i
0

(bn)e
−θbn

]
− I{n≥2}

n−2∑

k=0

g
(k)
an,bn

(θ), (71)

where using the notations of Appendix B, we have [19]

g
(k)
c,d =







I(k)
[
θk−ne−θbk+1 −

∑n−k
i=1 θ−if

(n−k−i)
bk+11n−k−i

(d)e−θd
]
, c ≤ b1, k ∈ [0, n− 2]

I(k)
∑n−k

i=1 θ−i
[
f
(n−k−i)

ψn−i
k,c

(c)e−θc − f
(n−k−i)

ψn−i
k,d

(d)e−θd
]
, c > b1, k ∈ [0, s− 1]

I(k)
[
θk−ne−θbk+1 −

∑n−k
i=1 θ−if

(n−k−i)
bk+11n−k−i

(d)e−θd
]
, c > b1, k ∈ [s, n− 2]

, (72)

with I(0) = 1 and

I(n) =







f
(n)
an

0
(bn)− I{n≥2}

∑n−2
i=0

(bn−bi+1)n−i

(n−i)! I(i), n ∈ [1, q]

f
(n)
an

0
(bn)−

∑n−2
i=0 f

(n−i)
ψn

i,an

(bn)I
(i), n ∈ [q + 1,∞)

. (73)

APPENDIX E

PROOF OFTHEOREM 1

Assume thatPf andPd are the respective given local probability of false alarm and detection. Denoting

ρc as the censoring rate for the optimal censoring scheme (64),we obtain1 − ρc = π0Pf + π1Pd, and

denotingρcs as the censoring rate for the optimal censored truncated sequential sensing (26), based on

what we have discussed in Section II, we obtain1 − ρcs = π0(Pf + L0(ā, b̄)) + π1(Pd + L1(ā, b̄)).

Note thatLk(ā, b̄), k = 0, 1, represents the probability thatζn ≤ an, n = 1, . . . , N underHk which is

non-negative. Hence, we can conclude that1− ρcs ≥ 1− ρc and thusρc ≥ ρcs.
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APPENDIX F

OPTIMAL SOLUTION OF (55)

Since the optimalλ2 → ∞, (53) and (54) can be simplified toQc
F,AND = δM0 andQc

D,AND =
∏M

j=1 δ1j

and so (55) becomes,

min
λ1

max
j

[
NCsj + (π0(1− δ0) + π1(1− δ1j))Ctj

]

s.t. δM0 ≤ α,

M∏

j=1

δ1j ≥ β. (74)

Since there is a one-to-one relationship betweenλ1 and δ0, i.e., λ1 = 2Γ−1[N,Γ(N)δ0] (whereΓ−1

is defined over the second argument), (74) can be formulated as [22, p.130],

min
δ0

maxj
[
NCsj + (π0(1− δ0) + π1(1− δ1j))Ctj

]

s.t. δM0 ≤ α,
∏M

j=1 δ1j ≥ β.
(75)

Defining δ0 = FAND(λ1) =
Γ(N,λ1

2
)

Γ(N) and δ1j = GAND,j(λ1) =
Γ(N,

λ1
2(1+γj)

)

Γ(N) , we can writeδ1j as δ1j =

GAND,j(F
−1(δ0)). Calculating the derivative ofCj with respect toδ0, we find that

∂Cj

∂δ0
=

∂
[
Ctj(π0(1− δ0) + π1(1− δ1j))

]

∂δ0
= −Ctjπ0 +

∂(1− δ1j)

∂δ0
≤ 0, (76)

where we use the fact that

∂δ1j
∂δ0

=
− 1

2NΓ(N)2Γ
−1[N,Γ(N)δ0]

N−1e2Γ
−1[N,Γ(N)δ0]/2(1+γj)I{2Γ−1[N,Γ(N)δ0]≥0}

− 1
2NΓ(N)2Γ

−1[N,Γ(N)δ0]N−1e2Γ−1[N,Γ(N)δ0]/2I{2Γ−1[N,Γ(N)δ0]≥0}

= e2Γ
−1[N,Γ(N)δ0](1/2(1+γj )−1/2) ≥ 0. (77)

Therefore, we can simplify (75) as

max
δ0

δ0

s.t. δM0 ≤ α,
∏M

j=1 δ1j ≥ β.
(78)

Since Qc
D,AND is a monotonically increasing function ofδ0, i.e., Qc

D,AND = HAND(δ0) =
∏M

j=1(GAND,j(F
−1
AND(δ0))) and thus

∂Qc
D,AND

∂δ0
=

∂Qc
D,AND

∂δ1j

∂δ1j
∂δ0

=
∏l=M

l=1,l 6=j(δ1l)
∂δ1j
∂δ0

≥ 0, we can further

simplify the constraints in (78) asδ0 ≤ α1/M andδ1j ≥ H−1(β). Thus, we obtain

max
δ0

δ0

s.t. δ0 ≤ α1/M , δ1j ≥ H−1(β).
(79)

Therefore, if the feasible set of (79) is not empty, then the optimal solution is given byδ0 = α1/M (β).
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Censored Truncated Sequential Spectrum Sensing
for Cognitive Radio Networks

Sina Maleki Geert Leus

Abstract—Reliable spectrum sensing is a key functionality of a
cognitive radio network. Cooperative spectrum sensing improves
the detection reliability of a cognitive radio system but also
increases the system energy consumption which is a criticalfactor
particularly for low-power wireless technologies. A censored
truncated sequential spectrum sensing technique is considered
as an energy-saving approach. To design the underlying sensing
parameters, the maximum average energy consumption per
sensor is minimized subject to a lower bounded global probability
of detection and an upper bounded false alarm rate. This way
both the interference to the primary user due to miss detection
and the network throughput as a result of a low false alarm
rate are controlled. To solve this problem, it is assumed that the
cognitive radios and fusion center are aware of their location and
mutual channel properties. We compare the performance of the
proposed scheme with a fixed sample size censoring scheme under
different scenarios and show that for low-power cognitive radios,
censored truncated sequential sensing outperforms censoring. It
is shown that as the sensing energy per sample of the cognitive
radios increases, the energy efficiency of the censored truncated
sequential approach grows significantly.

Index Terms—distributed spectrum sensing, sequential sensing,
cognitive radio networks, censoring, energy efficiency.

I. I NTRODUCTION

Dynamic spectrum access based on cognitive radios has
been proposed in order to opportunistically use underutilized
spectrum portions of the licensed electromagnetic spectrum
[1]. Cognitive radios opportunistically share the spectrum
while avoiding any harmful interference to the primary li-
censed users. They employ spectrum sensing to detect the
empty portions of the radio spectrum, also known as spectrum
holes. Upon detection of such a spectrum hole, cognitive radios
dynamically share this hole. However, as soon as a primary
user appears in the corresponding band, the cognitive radios
have to vacate the band. As such, reliable spectrum sensing
becomes a key functionality of a cognitive radio network.

The hidden terminal problem and fading effects have been
shown to limit the reliability of spectrum sensing. Distributed
cooperative detection has therefore been proposed to improve
the detection performance of a cognitive radio network [2],
[3]. Due to its simplicity and small delay, a parallel detection
configuration [4], is considered in this paper where each
secondary radio continuously senses the spectrum in periodic
sensing slots. A local decision is then made at the radios and
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Mathematics and Computer Science, Delft University of Technology, 2628
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sent to the fusion center (FC), which makes a global decision
about the presence (or absence) of the primary user and feeds
it back to the cognitive radios. Several fusion schemes have
been proposed in the literature which can be categorized under
soft and hard fusion strategies [4], [5]. Hard schemes are more
energy efficient than soft schemes, and thus a hard fusion
scheme is adopted in this paper. More specifically, two popular
choices are employed due to their simple implementation: the
OR and the AND rule. The OR rule dictates the primary
user presence to be announced by the FC when at least one
cognitive radio reports the presence of a primary user to the
FC. On the other hand, the AND rule asks the FC to vote
for the absence of the primary user if at least one cognitive
radio announces the absence of the primary user. In this paper,
energy detection is employed for channel sensing which is
a common approach to detect unknown signals [5], [6], and
which leads to a comparable detection performance for hard
and soft fusion schemes [3].

Energy consumption is another critical issue. The maximum
energy consumption of a low-power radio is limited by its
battery. As a result, energy efficient spectrum sensing limiting
the maximum energy consumption of a cognitive radio in a
cooperative sensing framework is the focus of this paper.

A. Contributions

The spectrum sensing module consumes energy in both
the sensing and transmission stages. To achieve an energy-
efficient spectrum sensing scheme the following contributions
are presented in this paper.

• A combination of censoring and truncated sequential
sensing is proposed to save energy. The sensors sequen-
tially sense the spectrum before reaching a truncation
point, N , where they are forced to stop sensing. If the
accumulated energy of the collected sample observations
is in a certain region (above an upper threshold,a, or
below a lower threshold,b) before the truncation point,
a decision is sent to the FC. Else, a censoring policy is
used by the sensor, and no bits will be sent. This way,
a large amount of energy is saved for both sensing and
transmission. In our paper, it is assumed that the cognitive
radios and fusion center are aware of their location and
mutual channel properties.

• Our goal is to minimize the maximum average energy
consumption per sensor subject to a specific detection
performance constraint which is defined by a lower
bound on the global probability of detection and an
upper bound on the global probability of false alarm. In
terms of cognitive radio system design, the probability of
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detection limits the harmful interference to the primary
user and the false alarm rate controls the loss in spectrum
utilization. The ideal case yields no interference and
full spectrum utilization, but it is practically impossible
to reach this point. Hence, current standards determine
a bound on the detection performance to achieve an
acceptable interference and utilization level [7]. To the
best of our knowledge such a min-max optimization
problem considering the average energy consumption per
sensor has not yet been considered in literature.

• Analytical expressions for the underlying parameters are
derived and it is shown that the problem can be solved
by a two-dimensional search for both the OR and AND
rule.

• To reduce the computational complexity for the OR rule,
a single-threshold truncated sequential test is proposed
where each cognitive radio sends a decision to the FC
upon the detection of the primary user.

• To make a fair comparison of the proposed technique
with current energy efficient approaches, a fixed sample
size censoring scheme is considered as a benchmark (it
is simply called the censoring scheme throughout the rest
of the paper) where each sensor employs a censoring
policy after collecting a fixed number of samples. The
censoring policy in this case works based on a lower
threshold,λ1 and an upper threshold,λ2. The decision
is only being made if the accumulated energy is not in
(λ1, λ2). For this approach, it is shown that a single-
threshold censoring policy is optimal in terms of energy
consumption for both the OR and AND rule. Moreover,
a solution of the underlying problem is given for the OR
and AND rule.

B. Related work to censoring

Censoring has been thoroughly investigated in wireless sen-
sor networks and cognitive radios [8]–[13]. It has been shown
that censoring is very effective in terms of energy efficiency. In
the early works, [8]–[11], the design of censoring parameters
including lower and upper thresholds has been considered and
mainly two problem formulations have been studied. In the
Neyman-Pearson (NP) case, the miss-detection probabilityis
minimized subject to a constraint on the probability of false
alarm and average network energy consumption [9]–[11]. In
the Bayesian case, on the other hand, the detection error
probability is minimized subject to a constraint on the average
network energy consumption. Censoring for cognitive radios is
considered in [12], [13]. In [12], a censoring rule similar to the
one in this paper is considered in order to limit the bandwidth
occupancy of the cognitive radio network. Our fixed sample
size censoring scheme is different in two ways. First, in [12],
only the OR rule is considered and the FC makes no decision
in case it does not receive any decision from the cognitive
radios which is ambiguous, since the FC has to make a final
decision, while in our paper, the FC reports the absence (for
the OR rule) or the presence (for the AND rule) of the primary
user, if no local decision is received at the FC. Second, we give
a clear optimization problem and expression for the solution

while this is not presented in [12]. A combined sleeping and
censoring scheme is considered in [13]. The censoring scheme
in this paper is different in some ways. The optimization
problem in the current paper is defined as the minimization of
the maximum average energy consumption per sensor while
in [13], the total network energy consumption is minimized.
For low-power radios, the problem in this paper makes more
sense since the energy of individual radios is generally limited.
In this paper, the received SNRs by the cognitive radios are
assumed to be different while in [13], the SNRs are the same.
Finally note that the sleeping policy of [13] can be easily
incorporated in our proposed censored truncated sequential
sensing leading to even higher energy savings.

C. Related work to sequential sensing

Sequential detection as an approach to reduce the average
number of sensors required to reach a decision is also studied
comprehensively during the past decades [14]–[19]. In [14],
[15], each sensor collects a sequence of observations, con-
structs a summary message and passes it on to the FC and
all other sensors. A Bayesian problem formulation comprising
the minimization of the average error detection probability
and sampling time cost over all admissible decision policies
at the FC and all possible local decision functions at each
sensor is then considered to determine the optimal stopping
and decision rule. Further, algorithms to solve the optimization
problem for both infinite and finite horizon are given. In [16],
an infinite horizon sequential detection scheme based on the
sequential probability ratio test (SPRT) at both the sensors and
the FC is considered. Wald’s analysis of error probability,[20],
is employed to determine the thresholds at the sensors and
the FC. A combination of sequential detection and censoring
is considered in [17]. Each sensor computes the LLR of the
received sample and sends it to the FC, if it is deemed to be
in a certain region. The FC then collects the received LLRs
and as soon as their sum is larger than an upper threshold or
smaller than a lower threshold, the decision is made and the
sensors can stop sensing. The LLRs are transmitted in such a
way that the larger LLRs are sent sooner. It is shown that the
number of transmissions considerably reduces and particularly
when the transmission energy is high, this approach performs
very well. However, our paper employs a hard fusion scheme
at the FC, our sequential scheme is finite horizon, and further
a clear optimization problem is given to optimize the energy
consumption. Since we employ the OR (or the AND) rule
in our paper, the FC can decide for the presence (or absence)
of the primary user by only receiving a single one (or zero).
Hence, ordered transmission can be easily incorporated in our
paper by stopping the sensing and transmission procedure as
soon as one cognitive radio sends a one (or zero) to the FC.
[18] proposes a sequential censoring scheme where an SPRT
is employed by the FC and soft or hard local decisions are sent
to the FC according to a censoring policy. It is depicted that
the number of transmissions decreases but on the other hand
the average sample number (ASN) increases. Therefore, [18]
ignores the effect of sensing on the energy consumption and
focuses only on the transmission energy which for current low-
power radios is comparable to the sensing energy. A truncated
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sequential sensing technique is employed in [19] to reduce
the sensing time of a cognitive radio system. The thresholds
are determined such that a certain probability of false alarm
and detection are obtained. In this paper, we are employing a
similar technique, except that in [19], after the truncation point,
a single threshold scheme is used to make a final decision,
while in our paper, the sensor decision is censored if no
decision is made before the truncation point. Further, [19]
considers a single sensor detection scheme while we employ a
distributed cooperative sensing system and finally, in our paper
an explicit optimization problem is given to find the sensing
parameters.

The remainder of the paper is organized as follows. In
Section II, the fixed size censoring scheme for the OR rule
is described, including the optimization problem and the
algorithm to solve it. The sequential censoring scheme for the
OR rule is presented in Section III. Analytical expressions
for the underlying system parameters are derived and the
optimization problem is analyzed. In Section IV, the censoring
and sequential censoring schemes are presented and analyzed
for the AND rule. We discuss some numerical results in
Section V. Conclusions and ideas for further work are finally
posed in Section VI.

II. F IXED SIZE CENSORINGPROBLEM FORMULATION

A fixed size censoring scheme is discussed in this section as
a benchmark for the main contribution of the paper in Section
III, which studies a combination of sequential sensing and
censoring. A network ofM cognitive radios is considered
under a cooperative spectrum sensing scheme. A parallel
detection configuration is employed as shown in Fig. 1. Each
cognitive radio senses the spectrum and makes a local decision
about the presence or absence of the primary user and informs
the FC by employing a censoring policy. The final decision is
then made at the FC by employing the OR rule. The AND rule
will be discussed in Section IV. Denotingrij to be thei-th
sample received at thej-th cognitive radio, each radio solves
a binary hypothesis testing problem as follows

H0 : rij = wij , i = 1, ..., N, j = 1, ...,M

H1 : rij = hijsi + wij , i = 1, ..., N, j = 1, ...,M (1)

wherewij is additive white Gaussian noise with zero mean
and varianceσ2

w. hij andsi are the channel gain between the
primary user and thej-th cognitive radio and the transmitted
primary user signal, respectively. We assume two models
for hij and si. In the first model,si is assumed to be
white Gaussian with zero mean and varianceσ2

s , and hij

is assumed constant during each sensing period and thus
hij = hj , i = 1, . . . , N . In the second model,si is assumed
to be deterministic and constant modulus|si| = s, i =
1, . . . , N, j = 1, . . . ,M andhij is an i.i.d. Gaussian random
process with zero mean and varianceσ2

hj . Note that the second
model actually represents a fast fading scenario. Althougheach
model requires a different type of channel estimation, since the
received signal is still a zero mean Gaussian random process
with some variance, namelyσ2

j = hjσ
2
s + σ2

w for the former
model andσ2

j = sσ2
hj + σ2

w for the latter model, the analyses

(FC)

.

.

.

Cognitive Radio 1

Cognitive Radio 2

Cognitive Radio M

Fusion

Center

.

.

.

Fig. 1: Distributed spectrum sensing configuration

which are given in the following sections are valid for both
models. The SNR of the received primary user signal at the
j-th cognitive radio isγj = |hj |

2σ2
s/σ

2
w under the first model

and γj = s2σ2
hj/σ

2
w under the second model. Furthermore,

hijsi andwij are assumed statistically independent.
An energy detector is employed by each cognitive sensor

which calculates the accumulated energy overN observation
samples. Note that under our system model parameters, the
energy detector is equivalent to the optimal LLR detector [5].
The received energy collected over theN observation samples
at thej-th radio is given by

Ej =

N∑

i=1

|rij |
2

σ2
w

. (2)

When the accumulated energy of the observation samples is
calculated, a censoring policy is employed at each radio where
the local decisions are sent to the FC only if they are deemed
to be informative [13]. Censoring thresholdsλ1 and λ2 are
applied at each of the radios, where the rangeλ1 < Ej < λ2

is called the censoring region. At thej-th radio, the local
censoring decision rule is given by







send 1, declaringH1 if Ej ≥ λ2,
no decision ifλ1 < Ej < λ2,
send 0, declaringH0 if Ej ≤ λ1.

(3)

It is well known [5] that under such a model,Ej follows
a central chi-square distribution with2N degrees of freedom
underH0 andH1. Therefore, the local probabilities of false
alarm and detection can be respectively written as

Pfj = Pr(Ej ≥ λ2|H0) =
Γ(N, λ2

2 )

Γ(N)
, (4)

Pdj = Pr(Ej ≥ λ2|H1) =
Γ(N, λ2

2(1+γj)
)

Γ(N)
, (5)

where Γ(a, x) is the incomplete gamma function given by
Γ(a, x) =

∫∞

x ta−1e−tdt, with Γ(a, 0) = Γ(a).
Denoting Csj and Cti to be the energy consumed by

the j-th radio in sensing per sample and transmission per
bit, respectively, the average energy consumed for distributed
sensing per user is given by,

Cj = NCsj + (1− ρj)Ctj , (6)

whereρj = Pr(λ1 < Ej < λ2) is denoted to be the average
censoring rate. Note thatCsj is fixed and only depends on the
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sampling rate and power consumption of the sensing module
while Ctj depends on the distance to the FC at the time of the
transmission. Therefore, in this paper, it is assumed that the
cognitive radio is aware of its location and the location of the
FC as well as their mutual channel properties or at least can
estimate them. Definingπ0 = Pr(H0), π1 = Pr(H1), δ0j =
Pr(λ1 < Ej < λ2|H0) and δ1j = Pr(λ1 < Ej < λ2|H1), ρj
is given by

ρj = π0δ0j + π1δ1j , (7)

with

δ0j =
Γ(N, λ1

2 )

Γ(N)
−

Γ(N, λ2

2 )

Γ(N)
, (8)

δ1j =
Γ(N, λ1

2(1+γj)
)

Γ(N)
−

Γ(N, λ2

2(1+γj)
)

Γ(N)
. (9)

DenotingQc
F andQc

D to be the respective global probability
of false alarm and detection, the target detection performance
is then quantified byQc

F ≤ α andQc
D ≥ β, whereα and β

are pre-specified detection design parameters. Our goal is to
determine the optimum censoring thresholdsλ1 andλ2 such
that the maximum average energy consumption per sensor, i.e.,
maxj Cj , is minimized subject to the constraintsQc

F ≤ α and
Qc

D ≥ β. Hence, our optimization problem can be formulated
as

min
λ1,λ2

max
j

Cj

s.t.Qc
F ≤ α, Qc

D ≥ β. (10)

In this section, the FC employs an OR rule to make the final
decision which is denoted byDFC , i.e.,DFC = 1 if the FC
receives at least one local decision declaring 1, elseDFC = 0.
This way, the global probability of false alarm and detection
can be derived as

Qc
F = Pr(DFC = 1|H0) = 1−

M∏

j=1

(1 − Pfj), (11)

Qc
D = Pr(DFC = 1|H1) = 1−

M∏

j=1

(1− Pdj). (12)

Note that since all the cognitive radios employ the same upper
thresholdλ2, we can state thatPfj = Pf defined in (4). As a
result, (11) becomes

Qc
F = 1− (1− Pf )

M . (13)

Since the FC decides about the presence of the primary
user only by receiving 1s (receiving no decision from all the
sensors is considered as absence of the primary user) and the
sensing time does not depend onλ1, it is a waste of energy
to send zeros to the FC and thus, the optimal solution of (10)
is obtained byλ1 = 0. Note that this is only the case for
fixed-size censoring, because the energy consumption of each
sensor only varies by the transmission energy while the sensing
energy is constant. This way (8) and (9) can be simplified
to δ0j = 1 − Pf and δ1j = 1 − Pdj , and we only need to
derive the optimalλ2. Since there is a one-to-one relationship
betweenPf andλ2, by finding the optimalPf , λ2 can also

be easily derived asλ2 = 2Γ−1[N,Γ(N)Pf ] (whereΓ−1 is
defined over the second argument). Considering this result and
definingQc

D = H(Pf ), the optimal solution of (10) is given
by Pf = H−1(β) as is shown in Appendix A.

In the following section, a combination of censoring and
sequential sensing approaches is presented which optimizes
both the sensing and the transmission energy.

III. SEQUENTIAL CENSORINGPROBLEM FORMULATION

A. System Model

Unlike Section II, where each user collects a specific
number of samples, in this section, each cognitive radio
sequentially senses the spectrum and upon reaching a decision
about the presence or absence of the primary user, it sends the
result to the FC by employing a censoring policy as introduced
in Section II. The final decision is then made at the FC by
employing the OR rule. Here, a censored truncated sequential
sensing scheme is employed where each cognitive radio carries
on sensing until it reaches a decision while not passing a limit
of N samples. We defineζnj =

∑n
i=1 |rij |

2/σ2
w =

∑n
i=1 xij

and ai = 0, i = 1, . . . , p, ai = ā + iΛ̄, i = p + 1, ..., N
and bi = b̄ + iΛ̄, i = 1, ..., N , whereā = a/σ2

w, b̄ = b/σ2
w,

1 < Λ̄ < 1+γj is a predetermined constant,a < 0, b > 0 and
p = ⌊−a/σ2

wΛ̄⌋ [19]. We assume that the SNRγj is known
or can be estimated. This way, the local decision rule in order
to make a final decision is as follows






send 1, declaringH1 if ζnj ≥ bn andn ∈ [1, N ],
continue sensing ifζnj ∈ (an, bn) andn ∈ [1, N),
no decision ifζnj ∈ (an, bn) andn = N,
send 0, declaringH0 if ζnj ≤ an andn ∈ [1, N ].

(14)
The probability density function ofxij = |rij |

2/σ2
w under

H0 and H1 is a chi-square distribution with2n degrees of
freedom. Thus,xij becomes exponentially distributed under
bothH0 andH1. Henceforth, we obtain

Pr(xij |H0) =
1

2
e−xij/2I{xij≥0}, (15)

Pr(xij |H1) =
1

2(1 + γj)
e−xij/2(1+γj)I{xij≥0}, (16)

whereI{xij≥0} is the indicator function.
Defining ζ0j = 0, the local probability of false alarm at the

j-th cognitive radio,Pfj , can be written as

Pfj =

N∑

n=1

Pr(ζ0j ∈ (a0, b0), ..., ζn−1j ∈ (an−1, bn−1), ζnj ≥ bn|H0),(17)

whereas the local probability of detection,Pdj , is obtained as
follows

Pdj =

N∑

n=1

Pr(ζ0j ∈ (a0, b0), ..., ζn−1j ∈ (an−1, bn−1), ζnj ≥ bn|H1).(18)

Denoting ρj to be the average censoring rate at thej-th
cognitive radio, andδ0j and δ1j to be the respective average
censoring rate underH0 andH1, we have

ρj = π0δ0j + π1δ1j , (19)
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where

δ0j = Pr(ζ1j ∈ (a1, b1), ..., ζNj ∈ (aN , bN)|H0), (20)

δ1j = Pr(ζ1j ∈ (a1, b1), ..., ζNj ∈ (aN , bN)|H1). (21)

The other parameter that is important in any sequential de-
tection scheme is the average sample number (ASN) required
to reach a decision. DenotingNj to be a random variable
representing the number of samples required to announce the
presence or absence of the primary user, the ASN for thej-th
cognitive radio, denoted as̄Nj=E(Nj), can be defined as

N̄j = π0E(Nj |H0) + π1E(Nj |H1), (22)

where

E(Nj |H0) =
N∑

n=1

nPr(Nj = n|H0)

=

N−1∑

n=1

n[Pr(ζ0j ∈ (a0, b0), ..., ζn−1j ∈ (an−1, bn−1)|H0)

− Pr(ζ0j ∈ (a0, b0), ..., ζnj ∈ (an, bn)|H0)]

+ NPr(ζ0j ∈ (a0, b0), ..., ζN−1j ∈ (aN−1, bN−1)|H0),(23)

and

E(Nj |H1) =

N∑

n=1

nPr(Nj = n|H1)

=

N−1∑

n=1

n[Pr(ζ0j ∈ (a0, b0), ..., ζnj ∈ (an−1, bn−1)|H1)

− Pr(ζ0j ∈ (a0, b0), ..., ζnj ∈ (an, bn)|H1)]

+ NPr(ζ0j ∈ (a0, b0), ..., ζN−1j ∈ (aN−1, bN−1)|H1).(24)

Denoting againCsj to be the sensing energy of one sample
andCtj to be the transmission energy of a decision bit at the
j-th cognitive radio, the total average energy consumption at
the j-th cognitive radio now becomes

Cj = N̄jCsj + (1− ρj)Ctj . (25)

DenotingQcs
F andQcs

D to be the respective global probabil-
ities of false alarm and detection for the censored truncated
sequential approach, we define our problem as the minimiza-
tion of the maximum average energy consumption per sensor
subject to a constraint on the global probabilities of falsealarm
and detection as follows

min
ā,b̄

max
j

Cj

s.t.Qcs
F ≤ α, Qcs

D ≥ β. (26)

As in (11) and (12), under the OR rule that is assumed in
this section, the global probability of false alarm is

Qcs
F = Pr(DFC = 1|H0) = 1−

M∏

j=1

(1− Pfj), (27)

and the global probability of detection is

Qcs
D = Pr(DFC = 1|H1) = 1−

M∏

j=1

(1− Pdj). (28)

Note that sincePf1 = · · · = PfM , it is again assumed that
Pfj = Pf in this section.

In the following subsection, analytical expressions for the
probability of false alarm and detection as well as the censor-
ing rate and ASN are extracted.

B. Parameter and Problem Analysis

Looking at (17), (18), (19) and (22), we can see that the
joint probability distribution function ofp(ζ1j , ..., ζnj) is the
foundation of all the equations. Sincexij = ζij − ζi−1j for
i = 1, ..., N , we have,

p(ζ1j , ..., ζnj) = p(xnj)p(xn−1j)...p(x1j). (29)

Therefore, the joint probability distribution function under
H0 andH1 becomes

p(ζ1j , ..., ζnj |H0) =
1

2n
e−ζnj/2I{0≤ζ1j≤ζ2j ...≤ζnj}, (30)

p(ζ1j , ..., ζnj |H1) =
1

[2(1 + γj)]n
e−ζnj/2(1+γj)I{0≤ζ1j≤ζ2j ...≤ζnj},(31)

whereI{0≤ζ1j≤ζ2j ...≤ζnj} is again the indicator function.
The derivation of the local probability of false alarm and the

ASN underH0 in this work are similar to the ones considered
in [19] and [21]. The difference is that in [19], if the cognitive
radio does not reach a decision afterN samples, it employs
a single threshold decision policy to give a final decision
about the presence or absence of the cognitive radio, while
in our work, no decision is sent in case none of the upper and
lower thresholds are crossed. Hence, to avoid introducing a
cumbersome detailed derivation of each parameter, we can use
the results in [19] for our analysis with a small modification.
However, note that the problem formulation in this work is
essentially different from the one in [19]. Further, since in our
work the distribution ofxij underH1 is exponential like the
one underH0, unlike [19], we can also use the same approach
to derive analytical expressions for the local probabilityof
detection, the ASN underH1, and the censoring rate.

DenotingEn to be the event whereai < ζij < bi, i =
1, ..., n− 1 andζnj ≥ bn, (17) becomes

Pfj =

N∑

n=1

Pr(En|H0). (32)

where the analytical expression forPr(En|H0) is derived in
Appendix B.

Similarly for the local probability of detection, we have

Pdj =
N∑

n=1

Pr(En|H1), (33)

where the analytical expression forPr(En|H1) is derived in
Appendix C.

Defining Rnj = {ζij |ζij ∈ (ai, bi), i = 1, ..., n},
Pr(Rnj |H0) andPr(Rnj |H1) are obtained as follows

Pr(Rnj |H0) =
1

2n
J
(n)
an,bn

(1/2), n = 1, ..., N, (34)

Pr(Rnj |H1) =
1

[2(1 + γj)]n
J
(n)
an,bn

(1/2(1+γj)), n = 1, ..., N,

(35)
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whereJ (n)
an,bn

(θ) is presented in Appendix D and (23) and (24)
become

E(Nj |H0) =
N−1∑

n=1

n(Pr(Rn−1j |H0)−Pr(Rnj |H0))+NPr(RN−1j |H0) = 1+
N−1∑

n=1

Pr(Rnj |H0),

(36)

E(Nj |H1) =

N∑

n=1

n(Pr(Rn−1j |H1)−Pr(Rnj |H1))+NPr(RN−1j |H1) = 1+

N−1∑

n=1

Pr(Rnj |H1).

(37)
With (36) and (37), we can calculate (22). This way, (20)

and (21) can be derived as follows

δ0j = Pr(RNj |H0) =
1

2N
J
(N)
aN ,bN

(1/2), (38)

δ1j = Pr(RNj |H1) =
1

[2(1 + γj)]N
J
(N)
aN ,bN

(1/2(1 + γj)).

(39)
We can show that the problem (26) is not convex. Therefore,

the standard systematic optimization algorithms do not give
the global optimum for̄a and b̄. However, as is shown in the
following lines, ā and b̄ are bounded and therefore, a two-
dimensional exhaustive search is possible to find the global
optimum. First of all, we havea < 0 and ā < 0. On the other
hand, if ā has to play a role in the sensing system, at least one
aN should be positive, i.e.,aN = ā + N∆ ≥ 0 which gives
ā ≥ −N∆. Hence, we obtain−N∆ ≤ ā < 0. Furthermore,
definingQcs

F = F(ā, b̄) andQcs
D = G(ā, b̄), for a givenā, it

is easy to show thatG−1(ā, β) ≤ b̄ ≤ F−1(ā, α) (whereF−1

andG−1 are defined over the second argument).
Before introducing a suboptimal problem, the following

theorem is presented.
Theorem 1. For a given local probability of detection and

false alarm (Pd and Pf ) and N , the censoring rate of the
optimal censored truncated sequential sensing (ρcs) is less than
the one of the censoring scheme (ρc).

Proof. The proof is provided in Appendix E.
We should note that, in censored truncated sequential sens-

ing, a large amount of energy is to be saved on sensing.
Therefore, as is shown in Section V, as the sensing energy
of each sensor increases, censored truncated sequential sensing
outperforms censoring in terms of energy efficiency. However,
in case that the transmission energy is much higher than the
sensing energy, it may happen that censoring outperforms
censored truncated sequential sensing, because of a higher
censoring rate (ρcs > ρc). Hence, one corollary of Theorem 1
is that although the optimal solution of (10) for a specific
N , i.e., Pd = 1 − (1 − β)1/M andPf = H−1(β), is in the
feasible set of (26) for a resulting ASN less thanN , it does
not necessarily guarantee that the resulting average energy
consumption per sensor of the censored truncated sequential
sensing approach is less than the one of the censoring scheme,
particularly when the transmission energy is much higher than
the sensing energy per sample.

Solving (26) is complex in terms of the number of compu-
tations, and thus a two-dimensional exhaustive search is not
always a good solution. Therefore, in order to reach a good
solution in a reasonable time, we seta < −N∆ in order to
obtain a1 = · · · = aN = 0. This way, we can relax one of

the arguments of (26) and only solve the following suboptimal
problem

min
b̄

max
j

Cj

s.t.Qcs
F ≤ α, Qcs

D ≥ β. (40)

Note that unlike Section II, here the zero lower threshold
is not necessarily optimal. The reason is that although the
maximum censoring rate is achieved with the lowestā, the
minimum ASN is achieved with the highestā, and thus there
is an inherent trade-off between a high censoring rate and
a low ASN and a zeroai is not necessarily the optimal
solution. Since the analytical expressions provided earlier are
very complex, we now try to provide a new set of analytical
expressions for different parameters based on the fact that
a1 = · · · = aN = 0.

To find an analytical expression forPfj , we can deriveA(n)
for the new paradigm as follows

A(n) =

∫

...

∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j
. (41)

Since0 ≤ ζ1j ≤ ζ2j ... ≤ ζn−1j and a1 = · · · = aN = 0,
the lower bound for each integral isζi−1 and the upper bound
is bi, wherei = 1, ..., n− 1. Thus we obtain

A(n) =

∫ b1

ζ0j

∫ b2

ζ1j

...

∫ bn−1

ζn−2j

dζ1jdζ2j ...dζn−1j , (42)

which according to [21] is

A(n) =
b1b

n−2
n

(n− 1)!
, n = 1, ..., N. (43)

Hence, we have

Pfj =

N∑

n=1

pnA(n), (44)

andpn = e−bn/2

2n−1 . Similarly, for Pdj , we obtain

B(n) =

∫ b1

ζ0j

∫ b2

ζ1j

...

∫ bn−1

ζn−2j

dζ1jdζ2j ...dζn−1j

=
b1b

n−2
n

(n− 1)!
, n = 1, ..., N, (45)

and thus

Pdj =

N∑

n=1

qnB(n), (46)

whereqn = e−bn/2(1+γj)

[2(1+γj)]n−1 . Furthermore, we note that fora1 =

· · · = aN = 0, A(n) = B(n) =
b1b

n−2
n

(n−1)! , n = 1, ..., N .
It is easy to see thatRnj occurs underH0, if no false

alarm happens until then-th sample. Therefore, the analytical
expression forPr(Rnj |H0) is given by

Pr(Rnj |H0) = 1−

n∑

i=1

piA(i), (47)

and in the same way, forPr(Rnj |H1), we obtain

Pr(Rnj |H1) = 1−

n∑

i=1

qiA(i). (48)
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Putting (47) and (48) in (36) and (37), we obtain

E(Nj |H0) = 1 +

N−1∑

n=1

{

1−

n∑

i=1

piA(i)

}

, (49)

E(Nj |H1) = 1 +

N−1∑

n=1

{

1−

n∑

i=1

qiA(i)

}

, (50)

and inserting (49) and (50) in (22), we obtain

N̄j = π0

(

1+
N−1∑

n=1

{

1−
n∑

i=1

piA(i)

})

+π1

(

1+
N−1∑

n=1

{

1−
n∑

i=1

qiA(i)

})

.

(51)
Finally, from (47) and (48), the censoring rate can be easily

obtained as

ρj = π0

(

1−

N∑

i=1

piA(i)

)

+ π1

(

1−

N∑

i=1

qiA(i)

)

. (52)

Having the analytical expressions for (40), we can easily
find the optimal maximum average energy consumption per
sensor by a line search overb̄. Similar to the censoring problem
formulation, here the sensing threshold is also bounded by
Qcs

F
−1(α) ≤ b̄ ≤ Qcs

D
−1(β). As we will see in Section V,

censored truncated sequential sensing performs better than
censored spectrum sensing in terms of energy efficiency for
low-power radios.

IV. EXTENSION TO THEAND RULE

So far, we have mainly focused on the OR rule. However,
another rule which is also simple in terms of implementation
is the AND rule. According to the AND rule,DFC = 0, if at
least one cognitive radio reports a zero, elseDFC = 1. This
way the global probabilities of false alarm and detection, can
be written respectively as

Qc
F,AND = Qcs

F,AND = Pr(DFC = 1|H0) =

M∏

j=1

(δ0j + Pfj),

(53)

Qc
D,AND = Qcs

D,AND = Pr(DFC = 1|H1) =

M∏

j=1

(δ1j + Pdj).

(54)
Note that (53) and (54) hold for both the sequential censoring
and censoring schemes. Similar to the case for the OR rule, the
problem is defined so as to minimize the maximum average
energy consumption per sensor subject to a lower bound on
the global probability of detection and an upper bound on
the global probability of false alarm. In the following two
subsections, we are going to analyze the problem for censoring
and sequential censoring.

A. AND rule for fixed-sample size censoring

The optimization problem for the censoring scheme consid-
ering the AND rule at the FC, becomes

min
λ1,λ2

max
j

Cj

s.t.Qc
F,AND ≤ α, Qc

D,AND ≥ β. (55)

where Cj is defined in (6). Since the FC decides for the
absence of the primary user by receiving at least one zero and
the fact that the sensing energy per sample is constant, the
optimal upper thresholdλ2 is λ2 → ∞. This way, cognitive
radios censor all the results for whichEj > λ1, and as a result
(53) and (54) become

Qc
F,AND = Pr(DFC = 1|H0) =

M∏

j=1

δ0j , (56)

Qc
D,AND = Pr(DFC = 1|H1) =

M∏

j=1

δ1j . (57)

whereδ0j = Pr(Ej > λ1|H0) and δ1j = Pr(Ej > λ1|H1).
Since the thresholds are the same among the cognitive radios,
we haveδ01 = δ02 = · · · = δ0M = δ0. Since there is a one-to-
one relationship betweenλ1 andδ0, by finding the optimalδ0,
the optimalλ1 can be easily derived. As shown in Appendix F,
we can derive the optimalδ0 asδ0 = α1/M . This result is very
important in the sense that as far as the feasible set of (55) is
not empty, the optimal solution of (55) is independent from
the SNR. Note that the maximum average energy consumption
per sensor still depends on the SNR viaδ1j and is reducing
as the SNR grows.

B. AND rule for censored truncated sequential sensing

The optimization problem for the censored truncated se-
quential sensing scheme with the AND rule, becomes

min
ā,b̄

max
j

Cj

s.t.Qcs
F,AND ≤ α, Qcs

D,AND ≥ β. (58)

whereCj is defined in (25). Similar to the OR rule, we have
−N∆ ≤ ā < 0. DefiningQcs

F,AND = FAND(ā, b̄) andQcs
D,AND =

GAND(ā, b̄), for a given ā, we can show thatG−1
AND(ā, β) ≤

b̄ ≤ F−1
AND(ā, α) (whereF−1

AND andG−1
AND are defined over the

second argument). Therefore, the optimalā and b̄ can again
be derived by a bounded two-dimensional search, in a similar
way as for the OR rule.

V. NUMERICAL RESULTS

A network of cognitive radios is considered for the numeri-
cal results. In some of the scenarios, for the sake of simplicity,
it is assumed that all the sensors experience the same SNR.
This way, it is easier to show how the main performance
indicators including the optimal maximum average energy
consumption per sensor, ASN and censoring rate changes
when one of the underlying parameter of the system changes.
However, to comply with the general idea of the paper, which
is based on different received SNRs by cognitive radios,
in other scenarios, the different cognitive radios experience
different SNRs. Unless otherwise mentioned, the results are
based on the single-threshold strategy for censored truncated
sequential sensing in case of the OR rule.

Fig. 2a depicts the optimal maximum average energy con-
sumption per sensor versus the number of cognitive radios
for the OR rule. The SNR is assumed to be0 dB, N = 10,
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Cs = 1 andCt = 10. Furthermore, the probability of false
alarm and detection constraints are assumed to beα = 0.1
andβ = 0.9 as determined by the IEEE 802.15.4 standard for
cognitive radios [7]. It is shown for both high and low valuesof
π0 that censored sequential sensing outperforms the censoring
scheme. Looking at Fig. 2b and Fig. 2c, where the respective
optimal censoring rate and optimal ASN are shown versus
the number of cognitive radios, we can deduce that the lower
ASN is playing a key role in a lower energy consumption of
the censored sequential sensing. Fig. 2a also shows that as the
number of cooperating cognitive radios increases, the optimal
maximum average energy consumption per sensor decreases
and saturates, while as shown in Fig. 2b and Fig. 2c, the
optimal censoring rate and optimal ASN increase. This way,
the energy consumption tends to increase as a result of ASN
growth and on the other hand inclines to decrease due to the
censoring rate growth and that is the reason for saturation
after a number of cognitive radios. Therefore, we can see that
as the number of cognitive radios increases, a higher energy
efficiency per sensor can be achieved. However, after a number
of cognitive radios, the maximum average energy consumption
per sensor remains almost at a constant level and by adding
more cognitive radios no significant energy saving per sensor
can be achieved while the total network energy consumption
also increases.

Figures 3a, 3b and 3c consider a scenario whereM = 5,
N = 30, Csj = 1, Ctj = 10, α = 0.1, β = 0.9 andπ0 can
take a value of0.2 or 0.8. The performance of the system
versus SNR is analyzed in this scenario for the OR rule. The
maximum average energy consumption per sensor is depicted
in Fig. 3a. As for the earlier scenario, censored sequentialsens-
ing gives a higher energy efficiency compared to censoring.
While the optimal energy variation for the censoring scheme
is almost the same for all the considered SNRs, the censored
sequential scheme’s average energy consumption per sensor
reduces significantly as the SNR increases. The reason is that
as the SNR increases, the optimal ASN dramatically decreases
(almost50% for γ = 2 dB andπ0 = 0.2). This shows that
as the SNR increases, censored sequential sensing becomes
even more valuable and a significant energy saving per sensor
can be achieved compared with the one that is achieved by
censoring. Since the SNR changes with the channel gain (|hj |

2

under the first model orσ2
hj under the second model), from

Fig. 3a, the behavior of the system with varying|hj |
2 or σ2

hj

can be derived, if the distribution of|hj |
2 or σ2

hj is known.
Figures 4a and 4b compare the performance of the single

threshold censored truncated sequential scheme with the one
assuming two thresholds, i.e,ā and b̄ for the OR rule. The
idea is to find when the double threshold scheme with its
higher complexity becomes valuable. In these figures,M = 5,
N = 10, γ = 0 dB, Ct = 10, π0 = 0.2, 0.8, andα = 0.1,
while β changes from0.1 to 0.99. The sensing energy per
sample,Cs in Fig. 4a is assumed1, while in Fig. 4b it is3.
It is shown that as the sensing energy per sample increases,
the energy efficiency of the double threshold scheme also
increases compared to the one of the single threshold scheme,
particularly whenπ0 is high. The reason is that whenπ0 is
high, a much lower ASN can be achieved by the double thresh-
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Fig. 2: a) Optimal maximum average energy consumption per
sensor versus number of cognitive radios, b) Optimal censoring
rate versus number of cognitive radios, c) Optimal ASN versus
number of cognitive radios for the OR rule
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Fig. 3: a) Optimal maximum average energy consumption
per sensor versus SNR, b) Optimal censoring rate versus
SNR, c) Optimal ASN versus SNR for the OR rule
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Fig. 4: Optimal maximum average energy consumption per
sensor versus probability of detection constraint,β, for the
OR rule, a)Cs = 1, b) Cs = 3

old scheme compared to the single threshold one. This gain
in performance comes at the cost of a higher computational
complexity because of the two-dimensional search.

Fig. 5 depicts the optimal maximum average energy con-
sumption per sensor versus the number of samples for the OR
rule and for a network ofM = 5 cognitive radios where each
radio experiences a different channel gain and thus a different
SNR. Arranging the SNRs in a vectorγ = [γ1, . . . , γ5], we
haveγ =[1dB, 2dB, 3dB, 4dB, 5dB]. The other parameters
are Cs = 1, Ct = 10, π0 = 0.5, α = 0.1 and β = 0.9.
As shown in Fig. 5, by increasing the number of samples
and thus the total sensing energy, the sequential censoring
energy efficiency also increases compared to the censoring
scheme. For example, if we define the efficiency of the
censored truncated sequential sensing scheme as the difference
of the optimal maximum average energy consumption per
sensor of sequential censoring and censoring divided by the
optimal maximum average energy consumption per sensor of
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Fig. 5: Optimal maximum average energy consumption per
sensor versus number of samples for the OR rule
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Fig. 6: Optimal maximum average energy consumption per
sensor versus transmission energy for the OR rule

censoring, the efficiency increases approximately three times
from 0.06 (forN = 15) to 0.19 (forN = 30).

In Fig. 6, the sensing energy per sample isCs = 10
while the transmission energyCt changes from 0 to 1000.
The goal is to see how the optimal maximum average energy
consumption per sensor changes withCt for the or rule and
for a network ofM = 5 cognitive radios withγ =[1dB,
2dB, 3dB, 4dB, 5dB]. The other parameters of the network
areN = 30, π0 = 0.5, α = 0.1 andβ = 0.9. The best saving
for sequential censoring is achieved when the transmission
energy is zero. Indeed, we can see that as the transmission
energy increases the performance gain of sequential censoring
reduces compared to censoring. However, in low-power radios
where the sensing energy per sample and transmission energy
are usually in the same range, sequential censoring performs
much better than censoring in terms of energy efficiency as
we can see in Fig. 6.

Fig. 7 depicts the optimal maximum average energy con-
sumption per sensor versus the sensing energy per sample for
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Fig. 7: Optimal maximum average energy consumption per
sensor versus sensing energy per sample for AND and OR
rule

both the AND and OR rule. For the sake of simplicity and
tractability, the SNRs are assumed the same forM = 50
cognitive radios. The other parameters are assumed to be
N = 10, Ct = 10, π0 = 0.5, γ = 0 dB, α = 0.1 and
β = 0.9. For both fusion rules, the double threshold scheme
is employed. We can see that the OR rule performs better for
the low values ofCs. However, asCs increases the AND rule
dominates and outperforms the OR rule, particularly for high
values ofCs. The reason that the OR rule performs better than
the AND rule at very low values ofCs is that the optimal
censoring rate for the OR rule is higher than the optimal
censoring rate for the AND rule. However asCs increases, the
AND rule dominates the OR rule in terms of energy efficiency
due to the lower ASN.

The optimal maximum average energy consumption per
sensor versusπ0 is investigated in Fig. 8 for the AND and the
OR rule. The underlying parameters are assumed to beCs = 2,
Ct = 10, N = 10, M = 50, γ = 0 dB, α = 0.1 andβ = 0.9.
It is shown that as the probability of the primary user absence
increases, the optimal maximum average energy consumption
per sensor reduces for the OR rule while it increases for the
AND rule. This is mainly due to the fact that for the OR rule,
we are mainly interested to receive a ”1” from the cognitive
radios. Therefore, asπ0 increases, the probability of receiving
a ”1” decreases, since the optimal censoring rate increases.
The opposite happens for the AND rule, since for the AND
rule, receiving a ”0” from the cognitive radios is considered
to be informative.

VI. SUMMARY AND CONCLUSIONS

We presented two energy efficient techniques for a cognitive
sensor network. First, a censoring scheme has been discussed
where each sensor employs a censoring policy to reduce the
energy consumption. Then a censored truncated sequential
approach has been proposed based on the combination of
censoring and sequential sensing policies. We defined our
problem as the minimization of the maximum average energy



11

0 0.2 0.4 0.6 0.8 1
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

π
0

E
n

e
rg

y

 

 

sequential censoring, AND
sequential censoring, OR
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consumption per sensor subject to a global probability of
false alarm and detection constraint for the AND and the
OR rules. The optimal lower threshold is shown to be zero
for the censoring scheme in case of the OR rule while for
the AND rule the optimal upper threshold is shown to be
infinity. Further, an explicit expression was given to find the
optimal solution for the OR rule and in case of the AND
rule a closed for solution is derived. We have further derived
the analytical expressions for the underlying parameters in the
censored sequential scheme and have shown that although the
problem is not convex, a bounded two-dimensional search is
possible for both the OR rule and the AND rule. Further, in
case of the OR rule, we relaxed the lower threshold to obtain
a line search problem in order to reduce the computational
complexity.

Different scenarios regarding transmission and sensing en-
ergy per sample as well as SNR, number of cognitive radios,
number of samples and detection performance constraints were
simulated for low and high values ofπ0 and for both the
OR rule and the AND rule. It has been shown that under the
practical assumption of low-power radios, sequential censoring
outperforms censoring. We conclude that for high values of
the sensing energy per sample, despite its high computational
complexity, the double threshold scheme developed for the
OR rule becomes more attractive. Further, it is shown that
as the sensing energy per sample increases compared to the
transmission energy, the AND rule performs better than the
OR rule, while for very low values of the sensing energy per
sample, the OR rule outperforms the AND rule.

Note that a systematic solution for the censored sequential
problem formulation was not given in this paper, and thus it is
valuable to investigate a better algorithm to solve the problem.
We also did not consider a combination of the proposed
scheme with sleeping as in [13], which can generate further
energy savings. Our analysis was based on the OR rule and
the AND rule, and thus extensions to other hard fusion rules
could be interesting.

APPENDIX A
OPTIMAL SOLUTION OF (10)

Since the optimalλ1 = 0, (8) and (9) can be simplified to
δ0j = 1− Pf andδ1j = 1− Pdj and so (10) becomes,

min
λ2

max
j

[
NCsj + (π0Pf + π1Pdj)Ctj

]

s.t. 1− (1− Pf )
M ≤ α, 1−

M∏

j=1

(1− Pdj) ≥ β. (59)

Since there is a one-to-one relationship betweenλ2 andPf ,
i.e., λ2 = 2Γ−1[N,Γ(N)Pf ] (whereΓ−1 is defined over the
second argument), (59) can be formulated as [22, p.130],

min
Pf

maxj
[
NCsj + (π0Pf + π1Pdj)Ctj

]

s.t. 1− (1− Pf )
M ≤ α, 1−

∏M
j=1(1− Pdj) ≥ β.

(60)

Defining Pf = F (λ2) =
Γ(N,

λ2
2 )

Γ(N) and Pdj = Gj(λ2) =
Γ(N,

λ2
2(1+γj)

)

Γ(N) , we can writePdj as Pdj = Gj(F
−1(Pf )).

Calculating the derivative ofCj with respect toPf , we find
that

∂Cj

∂Pf
=

∂
[
Ctj(π0Pf + π1Pdj)

]

∂Pf
= Ctjπ0 +

∂Pdj

∂Pf
≥ 0, (61)

where we use the fact that

∂Pdj

∂Pf
=

− 1
2NΓ(N)2Γ

−1[N,Γ(N)Pf ]
N−1e2Γ

−1[N,Γ(N)Pf ]/2(1+γj)I{2Γ−1[N,Γ(N)Pf ]≥0}

− 1
2NΓ(N)2Γ

−1[N,Γ(N)Pf ]N−1e2Γ
−1[N,Γ(N)Pf ]/2I{2Γ−1[N,Γ(N)Pf ]≥0}

= e2Γ
−1[N,Γ(N)Pf ](1/2(1+γj)−1/2) ≥ 0. (62)

Therefore, we can simplify (60) as

min
Pf

Pf

s.t. 1− (1− Pf )
M ≤ α, 1−

∏M
j=1(1− Pdj) ≥ β.

(63)

which can be easily solved by a line search overPf . However,
sinceQc

D is a monotonically increasing function ofPf , i.e.,
Qc

D = H(Pf ) = 1 −
∏M

j=1(1 − Gj(F
−1(Pf ))) and thus

∂Qc
D

∂Pf
=

∂Qc
D

∂Pdj

∂Pdj

∂Pf
=
∏l=M

l=1,l 6=j(1− Pdl)
∂Pdj

∂Pf
≥ 0, we can fur-

ther simplify the constraints in (63) asPf ≤ 1− (1− α)1/M

andPf ≥ H−1(β). Thus, we obtain

min
Pf

Pf

s.t.Pf ≤ 1− (1 − α)1/M , Pf ≥ H−1(β).
(64)

Therefore, if the feasible set of (64) is not empty, then the
optimal solution is given byPf = H−1(β).

APPENDIX B
DERIVATION OF Pr(En|H0)

IntroducingΓn = {ai < ζij < bi, i = 1, ..., n − 1} and
pn = 1

2n−1 e
−bn/2, we can write

Pr(En|H0) =

∫

...

∫

Γn

∫ ∞

bn

1

2n
e−ζnj/2I{0≤ζ1j≤ζ2j ...≤ζnj}dζ1j ...dζnj

= pn

∫

...

∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j . (65)
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DenotingA(n) =
∫
...
∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j
, we

obtain

A(n) =







b1b
n−2
n

(n−1)! , n = 1, ..., p+ 1
[
f
(n−1)

a
n−1
0

(bn−1)− I{n≥3}

∑n−3
i=0

(bn−1−bi+1)
n−i−1

(n−i−1)! 2ie
bi+1

2 Pr(Ei+1|H0)
]
, n = p+ 2, ..., q + 1

[
f
(n−1)

a
n−1
0

(bn−1)−
∑n

i=0 f
(n−1−i)

ψ
n−1
i,an−1

(bn−1)2
ie

bi+1
2 Pr(Ei+1|H0)

]
, n = q + 2, ..., N

,

(66)

wherean−1
0 = [a0, . . . , an−1]. Denotingq to be the smallest

integer for whichaq ≤ b1 < bq, andc andd to be two non-
negative real numbers satisfying0 ≤ c < d, an−1 ≤ c ≤ bn
andan ≤ d, η0 = 0, ηk = [η1, ..., ηk], 0 ≤ η1 ≤ ... ≤ ηk, the
functionsf (k)

ηk
(ζ) and the vectorψn

i,c in (66) are as follows

f
(k)
ηk

(ζ) =
∑k−1

i=0
f
(k)
i (ζ−ηi+1)

k−i

(k−i)! + f
(k)
k

f
(k)
i = f

(k−1)
i , i = 0, ..., k − 1, k ≥ 1, f

(k)
k = −

∑k−1
i=0

f
(k−1)
i

(k−i)! (ηk − ηi+1)
k−i, f

(0)
0 = 1,(67)

ψ
n
i,c =







[bi+1, ..., bi+1
︸ ︷︷ ︸

q

, aq+i+1, ..., an−1, c
︸ ︷︷ ︸

n−q−i

], i ∈ [0, n− q − 2]

[bi+1, ..., bi+1, c
︸ ︷︷ ︸

n−i

], i ∈ [n− q − 1, s− 1]

bi+11n−i, i ∈ [s, n− 2]

,(68)

with s denoting the integer for whichbs < c ≤ bs+1 and
f
(0)
ηk

(ζ) = 1.

APPENDIX C
DERIVATION OF Pr(En|H1)

Introducingqn = 1
[2(1+γj)]n−1 e

−bn/2(1+γj), we can write

Pr(En|H1) =

∫

...

∫

Γn

∫ ∞

bn

1

[2(1 + γj)]n
e−ζnj/2(1+γj)I{0≤ζ1j≤ζ2j ...≤ζnj}dζ1j ...dζnj

= qn

∫

...

∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j . (69)

DenotingB(n) =
∫
...
∫

Γn

I{0≤ζ1j≤ζ2j ...≤ζn−1j}dζ1j ...dζn−1j
, and

using the notations of Appendix B, we obtain

B(n) =







b1b
n−2
n

(n−1)! , n = 1, ..., p+ 1
[
f
(n−1)

a
n−1
0

(bn−1)− I{n≥3}

∑n−3
i=0

(bn−1−bi+1)
n−i−1

(n−i−1)! [2(1 + γj)]
ie

bi+1
2(1+γj)Pr(Ei+1|H1)

]
, n = p+ 2, ..., q + 1

[
f
(n−1)

a
n−1
0

(bn−1)−
∑n−3

i=0 f
(n−1−i)

ψ
n−1
i,an−1

(bn−1)[2(1 + γj)]
ie

bi+1
2(1+γj )Pr(Ei+1|H1)

]
, n = q + 2, ..., N

.

(70)

APPENDIX D
ANALYTICAL EXPRESSION FORJ

(n)
an,bn

(θ)

Under θ > 0, n ≥ 1 and 0 ≤ ζ1j ≤ ... ≤ ζnj , ζij ∈

(ai, bi), i = 1, ..., n, the functionJ (n)
an,bn

(θ) is defined as [19]

J
(n)
an,bn

(θ) =
n∑

i=1

θ−i
[
f
(n−i)

a
n−i
0

(an)e
−θan−f

(n−i)

a
n−i
0

(bn)e
−θbn

]
−I{n≥2}

n−2∑

k=0

g
(k)
an,bn

(θ),

(71)

where using the notations of Appendix B, we have [19]

g
(k)
c,d =







I(k)
[
θk−ne−θbk+1 −

∑n−k
i=1 θ−if

(n−k−i)
bk+11n−k−i

(d)e−θd
]
, c ≤ b1, k ∈ [0, n− 2]

I(k)
∑n−k

i=1 θ−i
[
f
(n−k−i)

ψ
n−i
k,c

(c)e−θc − f
(n−k−i)

ψ
n−i
k,d

(d)e−θd
]
, c > b1, k ∈ [0, s− 1]

I(k)
[
θk−ne−θbk+1 −

∑n−k
i=1 θ−if

(n−k−i)
bk+11n−k−i

(d)e−θd
]
, c > b1, k ∈ [s, n− 2]

,

(72)
with I(0) = 1 and

I(n) =

{

f
(n)
an

0
(bn)− I{n≥2}

∑n−2
i=0

(bn−bi+1)
n−i

(n−i)! I(i), n ∈ [1, q]

f
(n)
an

0
(bn)−

∑n−2
i=0 f

(n−i)
ψn

i,an

(bn)I
(i), n ∈ [q + 1,∞)

.

(73)

APPENDIX E
PROOF OFTHEOREM 1

Assume thatPf and Pd are the respective given local
probability of false alarm and detection. Denotingρc as the
censoring rate for the optimal censoring scheme (64), we
obtain 1 − ρc = π0Pf + π1Pd, and denotingρcs as the
censoring rate for the optimal censored truncated sequential
sensing (26), based on what we have discussed in Section II,
we obtain1− ρcs = π0(Pf + L0(ā, b̄)) + π1(Pd + L1(ā, b̄)).
Note thatLk(ā, b̄), k = 0, 1, represents the probability that
ζn ≤ an, n = 1, . . . , N underHk which is non-negative.
Hence, we can conclude that1 − ρcs ≥ 1 − ρc and thus
ρc ≥ ρcs.

APPENDIX F
OPTIMAL SOLUTION OF (55)

Since the optimalλ2 → ∞, (53) and (54) can be simplified
to Qc

F,AND = δM0 and Qc
D,AND =

∏M
j=1 δ1j and so (55)

becomes,

min
λ1

max
j

[
NCsj + (π0(1− δ0) + π1(1− δ1j))Ctj

]

s.t. δM0 ≤ α,

M∏

j=1

δ1j ≥ β. (74)

Since there is a one-to-one relationship betweenλ1 andδ0,
i.e., λ1 = 2Γ−1[N,Γ(N)δ0] (whereΓ−1 is defined over the
second argument), (74) can be formulated as [22, p.130],

min
δ0

maxj
[
NCsj + (π0(1 − δ0) + π1(1− δ1j))Ctj

]

s.t. δM0 ≤ α,
∏M

j=1 δ1j ≥ β.
(75)

Defining δ0 = FAND(λ1) =
Γ(N,

λ1
2 )

Γ(N) andδ1j = GAND,j(λ1) =
Γ(N,

λ1
2(1+γj)

)

Γ(N) , we can writeδ1j as δ1j = GAND,j(F
−1(δ0)).

Calculating the derivative ofCj with respect toδ0, we find
that

∂Cj

∂δ0
=

∂
[
Ctj(π0(1− δ0) + π1(1− δ1j))

]

∂δ0
= −Ctjπ0+

∂(1− δ1j)

∂δ0
≤ 0,

(76)
where we use the fact that

∂δ1j
∂δ0

=
− 1

2NΓ(N)
2Γ−1[N,Γ(N)δ0]

N−1e2Γ
−1[N,Γ(N)δ0]/2(1+γj)I{2Γ−1[N,Γ(N)δ0]≥0}

− 1
2NΓ(N)2Γ

−1[N,Γ(N)δ0]N−1e2Γ−1[N,Γ(N)δ0]/2I{2Γ−1[N,Γ(N)δ0]≥0}

= e2Γ
−1[N,Γ(N)δ0](1/2(1+γj)−1/2) ≥ 0. (77)
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Therefore, we can simplify (75) as

max
δ0

δ0

s.t. δM0 ≤ α,
∏M

j=1 δ1j ≥ β.
(78)

SinceQc
D,AND is a monotonically increasing function ofδ0,

i.e., Qc
D,AND = HAND(δ0) =

∏M
j=1(GAND,j(F

−1
AND(δ0))) and

thus
∂Qc

D,AND

∂δ0
=

∂Qc
D,AND

∂δ1j

∂δ1j
∂δ0

=
∏l=M

l=1,l 6=j(δ1l)
∂δ1j
∂δ0

≥ 0, we

can further simplify the constraints in (78) asδ0 ≤ α1/M and
δ1j ≥ H−1(β). Thus, we obtain

max
δ0

δ0

s.t. δ0 ≤ α1/M , δ1j ≥ H−1(β).
(79)

Therefore, if the feasible set of (79) is not empty, then the
optimal solution is given byδ0 = α1/M (β).
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