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Abstract—Acoustic vector sensor (AVS) based convolutive
blind source separation problem has been recently addressed
under the framework of probabilistic time-frequency (T-F)
masking, where both the DOA and the mixing vector cues are
modelled by Gaussian distributions. In this paper, we show that
the distributions of these cues vary with room acoustics, such
as reverberation. Motivated by this observation, we propose a
mixed model of Laplacian and Gaussian distributions to provide
a better fit for these cues. The parameters of the mixed model are
estimated and refined iteratively by an expectation-maximization
(EM) algorithm. Experiments performed on the speech mixtures
in simulated room environments show that the mixed model
offers an average of about 0.68 dB and 1.18 dB improvements
in signal-to-distotion (SDR) over the Gaussian and Laplacian
model, respectively.

Index Terms—Acoustic vector sensor, mixed model, direction
of arrival, EM algorithm, blind source separation.

I. INTRODUCTION

Blind source separation (BSS) aims to estimate the individ-
ual sound signals in the presence of interferences. Direction
of arrival (DOA) information was exploited in the source
separation problem by using a beamforming technique [1].
However, the spatial selectivity of such beamformers is not
sufficient for good separation due to the limited number of
microphones, especially under the reverberant environment.
Recently, a technique that relies on the use of a compact
coincident microphone array, called acoustic vector sensor
(AVS), was reported to provide highly accurate estimation of
source directions [2], especially under 2-dimension geometries
and small numbers of sensors. In [3], the DOA (based on
AVS) and the mixing vector cues (as in [4]) were combined
to achieve separation in reverberant environments, where these
cues are modelled by (complex) Gaussian distributions. In
anechoic situations, however, a Laplacian distribution has been
shown to perform well for modelling the mixing vectors [5].

It can be noticed from these works that the distribution of
both the DOA and mixing vectors varies from Laplacian to
Gaussian depending on the level of reverberation, but it is not
solely Laplacian or Gaussian under different environments.

In this paper, a weighted Gaussian-Laplacian distribution
is proposed for statistically modelling the DOA and the
mixing vector cues at each time-frequency (T-F) point of
speech mixtures under both the anechoic and the reverberant
environments. The weighted distribution is able to adapt to
the room reverberation and to fit these two kinds of cues in a
more accurate way. The model parameters and the assigned
T-F regions of the speech mixtures are refined iteratively
using the EM algorithm. In the E-step, the mixed probability
distribution functions are applied to calculate the likelihood
in each spectrogram point. In the M-step, the parameters
of each source model are re-estimated according to the T-F
regions of the mixtures that are most likely to be dominated
by that source. It is noticed from [6] that the EM algorithm is
sensitive to the initialization value because of the non-convex
characteristics of the total log likelihood, so the accurate DOA
information obtained by AVS which is used as the initialization
value in the EM algorithm has the potential to improve the
separation performance. Moreover, the mixed model proposed
in this paper shows benefits for fit the data distribution in
a more reliable way and hence achieves better performance
under different room environments.

The remainder of this paper is organized as follows. Section
II shows a brief summary of estimating the DOAs and the
mixing vector from the mixtures that are acquired by an AVS
in the T-F domain. The distribution of these two kinds of
cues are tested under diverse situations in Section III. Section
IV explains firstly the mixed model employed for the DOAs
and the mixing vector, then, the EM algorithm to maximize
the combined log likelihood and to estimate the mixed model
parameters of these two cues. The experimental results which
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Fig. 1. The histogram of DOAs under (a) anechoic and (b) reverberant
(T60 = 0.3 s) environments. Two speech sources are located at 0◦ and 70◦

respectively.

include the comparisons with Gaussian- and Laplacian-model
based methods respectively are shown in Section V, and finally
Section VI gives the conclusions.

II. AVS SPATIAL CUES FOR SOURCE SEPARATION

As mentioned earlier, the DOA information of the sources
which is carried by the data collected from the AVS can be
employed to separate the speech signals [3]. Due to the sparse
nature of an audio signal in the T-F domain, the clustering can
also be performed on the mixtures using the information on
the filter coefficients, which is known as the mixing vectors
in BSS methods [4]. However, both the DOA and the mixing
vector cues show increasing ambiguities as the increase of the
reverberation. Therefore, a method which combines these two
cues was proposed in [3] to improve the performance of source
separation.

It was assumed in [3] that the sources and the sensors are
strictly located at a 2-D (x−y) space as they are all located at 0
degrees in elevation. Acoustic vector sensor is constructed by
three microphones for the measurement of acoustic pressure
and the calculation of pressure gradient. The received mixtures
from the source signals si(t), i = 1, ...I , in both anechoic and
reverberant conditions can thus be expressed as p0(t)

px(t)
py(t)

 =

I∑
i=1

 hi0(t)
hix(t)
hiy(t)

⊗ si(t) (1)

where I is the number of sources, t is the discrete time index,
⊗ denotes convolution, and p0(t), px(t) and py(t) are the
acoustic pressure signal received from the sensors located at
the origin, x-coordinate and y-coordinate respectively. hi0(t),
hix(t) and hiy(t) represent the corresponding room impulse
response (RIR) from the ith source.

The pressure gradient can then be obtained from the acoustic
pressure as

g(t) =

[
gx(t)
gy(t)

]
=

[
px(t)− p0(t)
py(t)− p0(t)

]
(2)

where gx(t) and gy(t) is the pressure gradient corresponding
to the x- and y- coordinates, respectively. The general form
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Fig. 2. The PDF (a,c) and CDF (b,d) of DOA distributions from a single
source which is located at 0◦ and then modelled by the Gaussian and
Laplacian distribution when T60 = 0.3 s (a) and 0.5 s (c).

of the speech mixtures at the output of a single AVS can thus
be constructed as [p0(t),g(t)T ]T .

The resulting direction can thus be obtained by

θ(ω, k) = arctan

[
<{P ∗

0 (ω, k)Gy(ω, k)}
<{P ∗

0 (ω, k)Gx(ω, k)}

]
(3)

where the superscript ∗ is the conjugate, <{·} means taking
the real part of its argument, ω and k are the frequency
bins and time frame indices, P0(ω, k), Gx(ω, k), Gy(ω, k) are
the short-time Fourier transforms (STFT) of p0(t), px(t), py(t)
respectively.

Assuming the audio signals are sparse, which means only
one source is dominant at each T-F unit. The STFT of the
observations can be represented in a vector form as

m(ω, k) =

I∑
i=1

ĥi(ω)si(ω, k)

≈ ĥi?(ω)si?(ω, k),∀i ∈ [1, . . . , I] (4)

where m(ω, k) = [Gx(ω, k), Gy(ω, k)]T , ĥi(ω) = [Hi
x(ω) −

Hi
0(ω), Hi

y(ω)−Hi
0(ω)]T , and Hi

0(ω), Hi
x(ω), Hi

y(ω) are the
STFTs of the hi0(t), hix(t), hiy(t) respectively. The i? is the
index of the most dominant source for each T-F point. To avoid
the effect of the source amplitude, the mixtures are normalized
in the T-F domain to have a unit norm.

III. DISTRIBUTION OF THE DOA AND MIXING VECTOR
CUES UNDER DIFFERENT REVERBERATION

In order to quantify the effects of reverberation on the
distribution of DOA and mixing vector cues, the Kolmogorov-
Smirnov (KS) distance test [7] is employed to compare
the real distribution with both the Gaussian and Laplacian
distributions, respectively. The KS distance is based on the
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Fig. 3. The histogram (a) and CDF (b) of the mixing vector and then
modelled by a multivariate Gaussian (c,d) and Laplacian distribution (e,f)
when T60 = 0.1 s.

calculation of maximum distance T between the cumulative
density function (CDF) of real data FX and the proposed
theoretical distribution F , which implies how close it is
between the true value and the theoretical model.

T = max|FX − F | (5)

To evaluate the distribution of the DOA and the mixing
vector cues in the T-F domain, the data of single source
which is located at 0◦ is simulated using the same method
as described in Section V, and these two cues are then tested
under different reverberation conditions.

From eq. (3), the probability density function (PDF) of DOA
cues can be obtained as the histogram of the θ(ω, k), as shown
in Fig. 1. With the assumption that the speech signals are
sparse in the T-F domain, the directions estimated in each T-F
point will correspond to a unique source. However, the DOA
information will be blurred and the shape of DOA distribution
will change due to the room reverberation. In Fig. 2, the PDF
of DOA is estimated and then fitted by Gaussian and Laplacian
distribution with the same mean and variance for T60 = 0.3 s
and 0.5 s, respectively. The CDF is then calculated to estimate
the KS distance with each distribution.

Since the mixing vector is complex-valued in the T-F
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Fig. 4. KS distance test for the DOAs (a) and the mixing vectors (b) with
the Gaussian and Laplacian distribution, respectively (T60 = 0 : 0.5 s).

domain, in this section, the absolute values of the RIRs at x−
and y− coordinates are used to show the distribution of the
mixing vector. In Fig. 3, the histogram of the mixing vector (a)
is estimated and then modelled by a multivariate Gaussian (c)
and Laplacian distribution (e) when T60 = 0.1 s, (b, d, f) are
the corresponding CDF of each distribution. After a paired-
sample KS test [8], it is observed that |Hx(ω)| and |Hy(ω)|
arise from the same distribution, therefore a one dimensional
KS distance test is proposed for the mixing vector in the same
way as for DOAs.

Fig. 4 shows the KS distance estimated from the two
theoretical distributions for the direction information (a) and
the mixing vectors (b) under various reverberation times. It
can be observed that the distributions of both the DOAs and
the mixing vector vary from Laplacian to Gaussian with the
increase of reverberation, but the DOA distribution is much
closer to the Laplacian distribution under anechoic and low
reverberation environments, while the mixing vector is more
Gaussian-like when the reverberation exists.

IV. INTENSITY CUE AND MIXING VECTOR MODELLED BY
MIXED DISTRIBUTION WITH AN EM ALGORITHM

Based on the KS distance tests under various reverberant
environments, a mixed Gaussian-Laplacian distribution is em-
ployed to model both the DOA and the mixing vector cues.

A. Mixed distribution model

In the case of I sources, the probability of DOAs in each
T-F point for the ith source can be calculated by

p(θ(ω, k)|λd, µi(ω), δ2
i (ω))

= λd · frG(θ(ω, k)) + (1− λd) · frL(θ(ω, k)) (6)

in which

frG(θ(ω, k)|µi(ω), δ2
i (ω)) =

1√
2πδ2

i (ω)

× exp

(
− (θ(ω, k)− µi(ω))2

2δ2
i (ω)

)
(7)

frL(θ(ω, k)|µi(ω), δ2
i (ω)) =

1√
2δ2

i (ω)

× exp

(
−|θ(ω, k)− µi(ω)|√

δ2
i (ω)/2

)
(8)



where frG and frL are the PDFs of the real-valued Gaussian and
Laplacian distributions, respectively. λd ∈ [0, 1] is a weighting
parameter to control the contribution of each distribution in
the mixed model. µi and δ2

i are the mean and variance of the
DOAs of the i-th source component.

Since the mixtures are transformed to the T-F domain, as
shown in eq. (4), the mixing vectors ĥi are modelled as a
complex mixed probabilities function, and evaluated for each
observation. In this mixed model, the complex Gaussian den-
sity function f cG is calculated in the same way as in [4], then,
following the line orientation idea in [9], a complex Laplacian
density function f cL is employed to form the complex mixed
model.

p(m(ω, k)|λm, ĥi(ω), γ2
i (ω))

= λm · f cG(m(ω, k)) + (1− λm) · f cL(m(ω, k)) (9)

in which

f cG(m(ω, k)|ĥi(ω), γ2
i (ω)) =

1(
πγ2

i (ω)
)2

× exp

(
−||m(ω, k)− (ĥH

i (ω)m(ω, k))ĥi(ω)||2

γ2
i (ω)

)
(10)

f cL(m(ω, k)|ĥi(ω), γ2
i (ω)) =

1

γ2
i (ω)

× exp

(
−||m(ω, k)− (ĥH

i (ω)m(ω, k))ĥi(ω)||
γi(ω)

)
(11)

where ĥi and γ2
i are the mean and variance of the mixing

vector of the i-th component. λm ∈ [0, 1] is a weighting
parameter. When λd = 1 and λm = 1, the mixed model
reduces to the traditional Gaussian mixture model as proposed
in [3].

As mentioned in [10], the permutation ambiguity problems
in bin-wise classification approach should be solved before
estimating the overall probability:

L(Θ̂) = max
Θ

∑
ω,k

log(p(θ(ω, k),m(ω, k)|Θ) (12)

The whole parameter set Θ is given by

Θ = {ψi(ω), λd, µi(ω), δ2
i (ω), λm, ĥi(ω), γ2

i (ω)} (13)

B. EM algorithm

The EM algorithm operates iteratively, and at each it-
eration, the optimal parameters which increase locally the
log-likelihood of the mixture are computed. Since the EM
algorithm can start with the E-step or the M-step, this means
it can be initialized with data from either the mixing vector or
the T-F masks [10]. However, the information of the mixing
filters usually cannot be estimated directly. Similar to [10], we
propose to initialize the masks firstly, then, estimate the initial
values of ĥi(ω) and γi(ω) from the masked spectrogram. In
order to initialize the masks properly, in the first iteration, we
use the histogram of DOAs to initialize the parameters and to

estimate the masks, and let the program run without the BSS
contribution.

In the E-step, the occupation likelihood νi(ω, k) is com-
puted from the observations and Θ̂ which are estimated at the
M-step. The probability at each T-F unit which is dominated
by the source i at DOA θ with the mixed model in eq. (6) and
eq. (9) is calculated as

νi(ω, k) ∝ ψi(ω)M(θ(ω, k)|λd, µi(ω), σ2
i (ω))

×M(m(ω, k)|λm, ĥi(ω), γ2
i (ω)) (14)

where M denotes the mixed probability function.
In the M-step, the DOA parameters are re-estimated

for each source using the observations and the ex-
pectation value νi(ω, k). As mentioned earlier, we set
M(m(ω, k)|ĥi(ω), γ2

i (ω)) = 1 at the first iteration to remove
the effect of the BSS contribution.

After one iteration, the mask Mi(ω, k) ≡ νi is obtained
based on only the information of DOA cues and then the
parameters of the mixing vectors, (ĥi(ω), γ2

i (ω)) can be esti-
mated from the next M-step without the permutation problem
[4].

Ri(ω) =
∑
k

νi(ω, k)m(ω, k)mH(ω, k) (15)

γ2
i (ω) =

∑
k νi(ω, k)||m(ω, k)− (ĥH

i (ω)m(ω, k))ĥi(ω)||2∑
k νi(ω, k)

(16)

ψi(ω) =
1

T

∑
k

νi(ω, k) (17)

where T is the number of the time frames. The ĥi is optimized
as the eigenvector corresponding to the maximum eigenvalue
of Ri. The sources are finally reconstructed by using Mi(ω, k)
and m(ω, k) after the convergence of the EM algorithm.

V. EXPERIMENTS AND RESULTS

The proposed method is tested for two signals collected
with a single AVS under various simulated room environments.
Similar to [3], a shoe-box room with a dimension of 9×5×3
m3 is employed. The AVS is located at the center of the
room with the same height (1.5 m) as the two speech sources.
The microphones of AVS at x− and y− coordinates are 0.5
cm away from the one at the origin. 15 utterances with a
length of 3 s are randomly chosen from the TIMIT dataset
and then shortened to 2.5 s in order to avoid the silence
at the end. Moreover, all the speech signals are normalized
before convolving with the RIRs which are simulated by
using the imaging method [11] with different reverberation
times. 15 pairs of mixtures were chosen randomly from the
15 utterances. In each experimental condition, the target source
was located at 0◦ and the interference signal at 70◦, both of
which are located at 1 m from the microphones.

At each reverberation time, the λd and λm are chosen as the
values which achieve the best separation performance from 0



Fig. 5. The SDR comparison between the proposed method (based on the
mixed Gaussian-Laplacian model) and the methods based respectively on the
Gaussian and Laplacian models at different T60s.

Fig. 6. The PESQ performance comparison between the proposed method
(based on the mixed Gaussian-Laplacian model) and the methods based
respectively on the Gaussian and Laplacian models at different T60s.

to 1 with a step of 0.1, leading to 121 different combinations
of λd and λm for each test, as shown in Table I. The separation
performance was evaluated in terms of the signal-to-distortion
ratio (SDR) [12] and perceptual evaluation of speech quality
(PESQ) [13] which are averaged over all the 15 pairs of
mixtures with T60s from 0 s to 0.5 s with a step of 0.1 s.
As shown in Fig. 5 and Fig. 6, the separation performance
using the mixed model is consistently better than the baseline
methods which only uses either the Gaussian or the Laplacian
model. The improvement of the mixed model over the Gaus-
sian model reduces when the reverberation becomes stronger,
because in the high reverberation situation, both the DOA
and the mixing vector cues show Gaussian-like distribution.
The SDR results show an average of about 0.68 dB and
1.18 dB improvements, compared with the Gaussian- and
Laplacian-model based algorithms, respectively. The PESQ
improvements over the two baseline methods are both about
0.1.

VI. CONCLUSION

We have presented a weighted Gaussian-Laplacian distribu-
tion for modelling the spatial cues in probabilistic T-F masking

TABLE I
WEIGHTING PARAMETERS IN THE PROPOSED METHOD

T60 0.0 0.1 0.2 0.3 0.4 0.5
λd 0.1 0.5 0.7 0.8 0.9 0.9
λm 0.2 0.7 0.9 0.9 1.0 1.0

for AVS based source separation. Simulation results show that
the mixed model offers an improvement in SDR and PESQ
over both the Gaussian and Laplacian based methods. It should
be mentioned that the weighting parameter in this paper is
chosen empirically, future work will concentrate on the method
for calculating the weighting parameter in an analytical way.
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