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Abstract—This paper deals with channel estimation over flat
fading Rayleigh channel with Jakes’ Doppler Spectrum. Many
estimation algorithms exploit the time-domain correlation of the
channel by employing a Kalman filter based on a first-order
(or sometimes second-order) approximation of the time-varying
channel with a criterion based on correlation matching (CM),
or on the Minimization of Asymptotic Variance (MAV). In this
paper, we first consider a reduced complexity approach based
on Least Mean Square (LMS) algorithm, for which we provide
closed-form expressions of the optimal step-size coefficient versus
the channel state statistic (additive noise power and Doppler
frequency) and of corresponding asymptotic mean-squared-error
(MSE). However, the optimal tuning of the step-size coefficient
requires knowledge of the channel’s statistic. This knowledge
was also a requirement for the aforementioned Kalman-based
methods. As a second contribution, we propose a self-adaptive
estimation method based on a stochastic gradient which does not
need a priori knowledge. We show that the asymptotic MSE of
the self-adaptive algorithm is almost the same as the first order
Kalman filter optimized with the MAV criterion and is better
than the latter optimized with the conventional CM criterion.
We finally improve the speed and reactivity of the algorithm by
computing an adaptive speed process leading to a fast algorithm
with very good asymptotic performance.

Index Terms—Channel estimation, Rayleigh flat fading chan-
nel, Jakes’ spectrum, Adaptive LMS.

I. INTRODUCTION

Channel estimation is a fundamental task for a wireless
communication receiver and Kalman filter (KF) has been
mostly used in the past years, concerning a large and various
range of systems from MIMO [1] to OFDM systems [2]–[4].
A classical model for wireless communication is the Rayleigh
channel with Jakes’ Doppler spectrum also called Clarke’s
model [5], [6]. In the perspective of designing a recursive
algorithm, an often used approximation of the channel consists
of a first order auto-regressive model (AR1) (as in [1], [2], [7],
[8]), combined with a correlation matching (CM) criterion to
set the AR1 coefficient. Thus for a given normalized Doppler
frequency fdT , this coefficient is equal to the standard Bessel
AR1 coefficient J0(2πfdT ) (see section III), and the perfor-
mance of this algorithm is quasi-optimal for high mobility
case (see [4]). But, for most conventional Doppler frequencies,
where channel variation within one symbol duration can be
neglected, (ie fdT < 10−2) the performance of this estimator
is relatively poor compared to less complex algorithms (see
[9]), and is far from the Bayesian Cramer-Rao Bound. The

analytical analysis of this poor performance is proved and ex-
plained in [10] and [11], where a more suitable criterion based
on the minimisation of the asymptotic variance (MAV) is also
proposed. On the other hand, other adaptive algorithms can be
obtained in using constant coefficients (versus time-varying
Kalman gain in Kalman filter) if an a priori model of the
dynamic of time-varying parameters is available ( [12], [13]).
However, all these methods require a priori knowledge of the
statistics of the channel (Doppler frequency and observation
noise variance), at least in their optimized versions.
The goal of this paper is to address the aforementioned issues.
We develop and analyse self-adaptive estimation methods for
Rayleigh flat fading channel, with almost same asymptotic
performance than the Kalman of the literature based on the
MAV criterion, considered as an a priori algorithm (algorithm
which works with a priori knowledge of the channel statistics).
This paper is organized as follows. We give the system model
in section II. In section III, we give a brief view of the
Kalman approach with two different criteria. In section IV,
we present the stochastic approach with analytic analysis
and proposition of two self-adaptive algorithms. Section V
validates our method by means of simulations results.

II. MODEL AND ESTIMATION OBJECTIVE

We consider the estimation of a flat Rayleigh fading chan-
nel. The normalized Doppler frequency of this channel is fdT ,
where T is the symbol period. The discrete time observation
is:

yk = αk · sk +Nk (1)

Where k is the symbol index, αk is the random complex
gain of the channel with unit variance (σ2

α = 1), sk is the
data symbol and Nk is a zero mean additive white circular
Gaussian noise with variance σ2

N .
In this work, we concentrate on the performance of the

channel estimator. So we treat a simplified case assuming the
symbols are known (pilot-aided scenario) or perfectly decided
(decision-directed scenario), thus we assume sk = 1. Note that
in practice, our channel estimator can easily be coupled with
a detector in order to perform joint channel estimation and
decision tasks, for example via the Expectation-Maximization
algorithm framework (see [3]), or can be used to track the
channel gain at pilot frequencies in an OFDM system as in
[2].



We consider a Jakes’ Doppler Spectrum for the channel
gain, also called Clarke’s model given by:

Γα(f) =


σ2
α

πfd

√
1−
(
f
fd

)2
if |f | < fd

0 if |f | > fd

(2)

The autocorrelation coefficient Rα[m] of the stationary
complex gain α is then defined for lag m by:

Rα[m] = E{α(n).α
∗
(n−m)} = σ2

αJ0(2πfdT.m) (3)

where J0 is the zeroth-order Bessel function of the first kind.
Given the observation model (1) and the Doppler spectrum

(2) for the dynamic evolution of the gain, we look for an
estimation â(n) of α(n). The estimation error is defined by

e(n)
def
= α(n) − â(n) (4)

and we will study the asymptotic mean square error (MSE):

σ2
e
def
= E

{
|e(n)|2

}
(5)

III. REVIEW OF THE KALMAN FILTER WITH AR1 MODEL

The first approach widely investigated in the literature
consists in approximating the complex gain evolution by a
first order auto-regressive model [1], [2], [4], [8], [10], [11]
defined by:

αAR1
k = γαAR1

k−1 + bk (6)

where k is the symbol index, 0 < γ < 1 and bk a circular
complex white additive noise with σ2

b = (1− γ2)σ2
α.

The γ coefficient is obtained by [10]:

γ =
RαAR1 [1]

RαAR1 [0]
(7)

From (6), a Kalman filter can be designed [10]:

Kk =
γ2Pk−1+σ

2
b

γ2Pk−1+σ2
b+σ

2
N

(8)

Pk = (1−Kk)(γ2Pk−1 + σ2
b ) (9)

âk = γâk−1 +Kk(yk − γâk−1) (10)

where Kk is the Kalman gain and Pk is the prediction error
variance.
The main issue is to link the algorithm to a value of γ.
A usual choice in literature for an AR1 model is to use
Correlation Matching criterion [1], [2], [4], [7] to match real
autocorrelation function and AR autocorrelation function for
lag 0 and 1: RαAR1 [0] = Rα[0] = σ2

α and RαAR1 [1] = Rα[1].
With (7) and (3) we obtain:

γCM = J0(2πfdT ) (11)

This algorithm is called AR1CM-KF [14]. For conventional
Doppler, its asymptotic performance is not good enough and
[10] and [11] propose to change the CM criterion for the
minimum of asymptotic variance (MAV) criterion. The optimal
γ and its corresponding variance are then [10], [14]:

γMAV =

√√√√1− 4 3

√
(πfdT )4

σ2
N

σ2
α

(12)

σ2
e(AR1MAV ) ' 3

2
(σα2)

1
3
(
πfdTσ

2
N

) 2
3 (13)

The Kalman tuned with this MAV criterion, called AR1MAV-
KF, offers better asymptotic performance than the previous one
(cf [10]).

But it should be noted that the use of Kalman filters
exhibits a certain complexity, and requires the knowledge of
the channel statistics (see (11) or (12)). It is why we propose
alternative methods in the next section.

IV. STOCHASTIC GRADIENT APPROACH

A. LMS approach: O1MAV-F algorithm

In this part we do not consider an AR1 model combined
with a Kalman filter anymore, but a Least Mean Square
approach to get âk, estimate of αk [15]. The chosen cost
function is:

J(â) = E
[
|yk − â|2

]
(14)

A stochastic gradient approach using (14) leads to the
update rule for the estimate:

âk = âk−1 + µ(yk − âk−1) (15)

The algorithm is denoted O1MAV-F.
It can also be regarded as a simplification of the Kalman

estimation (10) in setting γ = 1, which means replacing the
AR1 model (6) by a Brownian model (also called random walk
model) for the evolution of α (an integrated Brownian model
could also be used as in [12], [13] or in [16]-section 4.1). But
here a fixed gain Kk = µ is used as in a steady-state mode of
the time varying Kalman filter. Indeed, it is well known that
the LMS algorithm can be derived as a steady-state version
of a Kalman Filter based on a Brownian model [12]. We get
then in eq. (15) a simple first-order time-invariant filter, such
that in Z-domain:

â(z) = L(z)y(z) (16)

where L is the low pass filter with its cut-off normalized
frequency fcT = µ

2π :

L(z) =
µ

1− (1− µ)z−1
(17)

Using (1) and (4) with (16) and (17), we can express the
estimation error in Z domain as

e(z) = (1− L(z)) · α(z)− L(z) ·N(z) (18)

from which we can derive the asymptotic MSE in frequency
domain as:

σ2
e =

∫ 1
2T

− 1
2T

|1− L(e2jπfT )|2 · Γα(f)df

+ σ2
NT

∫ 1
2T

− 1
2T

|L(e2jπfT )|2df

Using (17), the second term on the right-hand side, only
due to observed white noise, is equal to σ2

N ·
µ
2 . Using (2) and

by assuming that fdT � 1 and that the cut-off frequency is



properly adjusted (2πfdT ≤ µ � 1), the overall estimation
MSE can be approximated by:

σ2
e ≈

1

2
·
(

2πfdT

µ

)2

· σ2
α + σ2

N ·
µ

2
(19)

Minimizing (19) we obtain the expression of the optimal
gain µMAV and the corresponding minimal variance:

µMAV = 2(πfdT )
2
3 ·
(
σ2
α

σ2
N

) 1
3

(20)

σ2
e(O1MAV) =

3

2
(σα2)

1
3 (πfdTσ

2
N )

2
3 (21)

It is noticeable that the expression of the variance in
tracking mode is the same as the AR1MAV-KF (12) reported in
the literature, assuming the same a priori knowledge of the
channel statistics.

B. Self Adaptive algorithm: O1AUTO-F

The three algorithms AR1CM-KF , AR1MAV-KF and O1MAV-F are
called a priori algorithms as they depend on the knowledge
of statistics of the channel (which might require an additional
estimation process). In this part, we focus on a self-adaptive
estimation.
A stochastic descent on (15) is performed. We choose

J2(µ) = lim
k→∞

E
[
|yk − âk|2

]
(22)

as cost function, the gradient descent in the stochastic approx-
imation is :

µk = µk−1 − ε · ∇µJ ′2(µ, k)|k−1
(23)

where J ′2(k, µ) = |yk − âk|2 and the gain update is as follow
(cf appendix A):

µk = µk−1 + 2ε · <
[
(yk − âk)

δâ∗k
δµ

]
|k−1

(24)

with k the symbol index, µk the gain at iteration k, ε a constant
step, ()∗ the conjugate and <() the real part of complex value.
If we denote Gk = ∂âk

∂µ , the Gk coefficient can be obtained
by deriving (15):

Gk = (1− µk−1)Gk−1 + (yk − âk−1) (25)

The stochastic self-adaptive algorithm, called O1AUTO-F, be-
comes:

âk = âk−1 + µk−1(yk − âk−1)

Gk = (1− µk−1)Gk−1 + (yk − âk−1)

µk = µk−1 + ε · <
[
(yk − âk−1)G∗k−1

] (26)

C. Self Adaptive speed algorithm: O1AUTO2-F

One of the drawback with stochastic gradient approach is
that the speed-accuracy compromise for µ is set by ε. If having
a too important value of ε will seriously decrease asymptotic
accuracy, dimensioning a too small value of ε creates two
problems:
• A long transitional regime before convergence,
• A strong inertia: O1AUTO-F will not react to a modification

of statistics of the channel (modification of Doppler
frequency, SNR...).

To ensure a fast and reactive algorithm with less asymptotic
error, we propose to add an adaptive speed to the previous
algorithm (26). The same cost function as previously is used:

J3(ε) = lim
k→∞

E
[
|yk − âk|2

]
(27)

However, it should be noted that the adaptive algorithms
deriving from (22) and (27) will not have the same trajectory,
as we consider only an adaptive gain versus an adaptive gain
and an adaptive speed in the second case. By adding an
other adaptive system, some additional derivative components
appear, all initialized to zero, and we define:

Nk =
δâk
δε

, Mk =
δGk
δε

, Lk =
δµk
δε

(28)

We propose a original update for the speed coefficient to
have a better convergence of the gain µk. This update is a
combination of a multiplicative procedure [17], [18] and the
use of an exponential forgotten factor ζ with ζ < 1 and ζ near
of 1 [19].

εk = εk−1 · (ζ − λ<((yk − âk−1)N∗k−1) (29)

Where λ is a constant step. For convergence reason we
commonly bound ε factor: 0 < εmin ≤ εk ≤ εmax. The
choice of εmin and εmax is discussed in section V. Notice
that in asymptotic mode, the cost function represented by
<((yk − âk−1)N∗k−1) is close to zero, and then the adap-
tive coefficient converges to εmin with a geometric descent
(εk ≈ ζ · εk−1).

Considering derivation of the three equations of (26), we
obtain the adaptive algorithm with adaptive speed O1AUTO2-F:

Channel estimation
âk = âk−1 + µk−1(yk − âk−1)

Gain estimation
Gk = (1− µk−1)Gk−1 + (yk − âk−1)

µk = µk−1 + εk−1 · <
[
(yk − âk−1)G∗k−1

]
Adaptive speed
Nk = Nk−1 + Lk−1(yk − âk−1)− µk−1Nk−1
Lk = Lk−1 + <((yk − âk−1)G∗k−1)

+ εk−1<((yk − âk−1)M∗k−1)− εk−1<(G∗k−1Nk−1)

Mk = (1− µk−1)Mk−1 − Lk−1Gk−1 −Nk−1
εk =

[
εk−1 · (ζ − λ<((yk − âk−1)N∗k−1)

]εmax
εmin

(30)



Where [ε]
εmax
εmin

means that the ε value is bound between εmin
and εmax. Asymptotically, due to the geometric multiplicative
update of the adaptive speed, εk = εmin, and then the
algorithm described in (30) is equivalent to (26).

The three algorithms (O1MAV-F, O1AUTO-F and O1AUTO2-F) have
the same structure, but only the last two are totally self-
adaptive without a priori knowledge. Besides O1AUTO2-F is an
improvement of O1AUTO-F as the speed adaptivity is an overlay
which aims at increasing the speed and reactivity of the
stochastic algorithm.

V. SIMULATION

In this section the proposed algorithms of the section IV are
compared in terms of asymptotic performance, convergence
speed and convergence accuracy to the algorithms reported
into literature (AR1CM-KF [1]–[4] and AR1MAV-KF [10], [11])
and in section III. For all our simulations, the channel
autocorrelation function is assumed to be given by the widely
accepted Jakes’ model, as stated in section II. Excepted for
the last figure 5, the channel estimator is tested assuming the
knowledge of the data (pilot aided scenario, with sk = 1).

First, for standard SNR (20dB) and normalized frequency
fdT (10−3), fig.1 shows that µ(k) converges to µMAV and that
adaptive speed algorithm is faster and more accurate than the
constant step solutions. The bound of ε can be chosen in a wide
range and εmax is designed to ensure a fast initial convergence
(εmax=1). On the other hand, εmin can be very small to reduce
convergence error, and in the simulation, εmin = 10−5.
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Fig. 1. Step-size µ for SNR= 20dB and fdT = 10−3

Fig.2 gives the comparison between asymptotic MSE versus
SNR for a normalized Doppler frequency fdT = 10−3 and
the Bayesian Cramer Rao Bound (BCRB) ( [20]). It shows
that the MAV -based algorithms have better performance

than the Kalman filter using CM criterion [1], [2] which
corroborates the results of [10], [11] and [16]. It is above all
observed that self-adaptive algorithms have almost the same
asymptotic performance as the a priori algorithms. Thus, using
self-adaptive algorithms without a priori information does
not decrease the method efficiency. Besides, the asymptotic
performance of the optimal step size algorithm O1MAV-F directly
validates the theoretical expressions (20) and (21) as it reaches
the bound of the Kalman-MAV Filter expressed in (13) for
slow normalized Doppler frequency.
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Fig. 2. MSE versus SNR, for fdT = 10−3

Fig.3 compares MSE versus normalized Doppler frequency
fdT for a given SNR of 20dB. As described in [10] and [16],
for low normalized Doppler frequency, the MAV algorithms
have better behaviour than the Kalman filter with CM crite-
rion. Besides, the self-adaptive algorithms maintains the same
asymptotic performance as the a priori algorithm.

We finally consider the transitional Mean Squared Error (in
dB) of the estimate of the channel in Figure 4, for a normalized
Doppler frequency of 10−3 and a 20dB SNR, for the 500 first
samples. The asymptotic performance of the different methods
are almost the same, which is coherent with figure 3 except
for the O1AUTO-F which is still in transitional mode. The Kalman
Filter based on the MAV criterion has best performance in
terms of speed and accuracy, due to its a priori knowledge.
The O1AUTO2-F is very fast at the beginning of the simulation
(faster than the optimal step size algorithm and comparable
to the Kalman Filter) but then reached the asymptotic level
with a slower speed due to the oscillations of the step size
(cf figure 1). The design of the adaptive speed algorithm joins
initial fast speed and good asymptotic mode, and this without
any a priori knowledge.

Until now, all the performances are dressed in terms of
MSE. Finally, we have a look at the consequences in terms
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F, the constant speed algorithm O1AUTO-F and the adaptive speed algorithm
O1AUTO2-F.

of Bit Error Rate (BER) in figure 5. This figure refers to
a binary PSK (BPSK) transmitted over a Rayleigh fading
channel with fdT = 10−3 versus different values of the SNR.
In order to ensure convergence of the iterative detection and
decoding algorithm, 10 pilot symbols (known at the receiver)

are inserted every 100 transmitted symbols 1. So we use a
semi-blind pilot assisted channel estimation. The BER results
agree with the previous MSE performance2. We show that self
adaptive methods have same BER performance as a priori
methods optimized with the MAV criterion and outperform
the conventional Kalman filter when the latter is based on the
CM criterion.
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Fig. 5. BER in function of SNR for fdT = 10−3 for the different algorithms
: The CM-Kalman Filter AR1CM-KF, The MAV Kalman filter AR1MAV-KF, the
optimal step size algorithm O1MAV-F, the constant speed algorithm O1AUTO-F
and the adaptive speed algorithm O1AUTO2-F.

VI. CONCLUSION

This study focuses on the estimation methods of the com-
plex gain of a flat fading Rayleigh channel with Jakes’
Doppler spectrum based on first order approximation models.
We first have checked that first order auto-regressive Kalman
filter, tuned by the traditional Correlation Matching criterion
(leading to the AR1CM-KF) can be significantly improved for low
normalized Doppler frequency by using a more appropriate
Minimum Asymptotic Variance criterion (AR1MAV-KF). Next, we
showed that a LMS approach can have the same asymptotic
performance than the AR1MAV-KF when the LMS is tuned with
the optimal step-size for which we provide analytical ex-
pression. Besides,we have designed a self-adaptive stochastic
gradient algorithm. This algorithm is recursive and has almost

1To use the KF equations in (8), (9), (10), the O1MAV-F in (15) the O1AUTO-F
in (26) and the O1AUTO-2-F in (30) which are given for known symbols case, i.e.
for sk = 1 in (1), and since we have sk ∈ {1;+1}, the different equations
are modified by substituting yk with yk× ŝ∗

k|k−1
where ŝ∗

k|k−1
= sk if sk

is known (pilot) or ŝ∗
k|k−1

= sgn{<(α∗k−1×yk)} if sk is unknown (data).
In this case, ŝ∗

k|k−1
represents the a priori decision and the final decision

will be ŝk = sgn{<(α̂∗k × yk)}.
2In this semi-blind scenario, we may have error propagation effect, leading

to MSE performance different from formulae established for pilot-aided
scenario.



the same asymptotic performance as the AR1 mboxMAV -KF. As
this solution has a very good asymptotic mode but a low
transitional speed, we add an adaptive speed factor εk to our
algorithm leading to a fast and accurate solution. Thus the
two last algorithms are self-adaptive and work without any
knowledge of the channel statistics.

APPENDIX A
GRADIENT CALCULATION IN (24)

Considering the cost function defined in (22), a gradient
is applied versus a real variable, equal to the step µ which
belongs to R. We use the stochastic approximation [17] (ie we
use the instantaneous value of the estimation error J ′2(µ, k) =
|yk − âk|2 instead of J2(µ) = limk→∞E

[
|yk − âk|2

]
), and

the update of the gain is expressed as :

µk = µk−1 − ε · ∇µJ ′2(µ, k)|k−1

µk = µk−1 − ε · ∇µ
(
|yk − âk|2

)
|k−1

(31)

We denote ∇µ(·) = ∂(·)
∂µ , c(k) = y(k)− â(k), with cI(k) the

real part and cQ(k) the imaginary part of c(k), and we express
the gradient of c(k) respect to µ:

∇µ|c(k)|2 = ∇µc(k) · c(k)∗

= c(k)∇µc(k)∗ + c(k)∗∇µc(k)

= (cI(k) + jcQ(k))∇µ(cI(k)− jcQ(k))

+ (cI(k)− jcQ(k))∗∇µ((cI(k)− jcQ(k))

= 2cI(k)∇µcI(k) + 2cQ(k)∇µcQ(k)

Besides,

2<((c(k)∇µc∗(k)) = 2< ((cI(k) + jcQ(k))∇µ(cI(k)− jcQ(k)))

= 2cI(k)∇µcI(k) + 2cQ(k)∇µcQ(k)

Which leads to the expression of the gradient of a modulus

∇µ|c(k)|2 = 2< (c(k)∇µc∗(k)) (32)

which, in our case as the observation is independent from the
step leads to the iterative expression of the step :

µk = µk−1 + 2ε · <
[
(yk − âk)

δâ∗k
δµ

]
|k−1

(33)
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