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Abstract—This paper addresses the application of missing data
recovery via matrix completion for audio sensor networks. We
propose a method based on Euclidean distance matrix completion
for ad-hoc microphone array location calibration. This method
can calibrate a full network from partial connectivity informa-
tion. The pairwise distances of microphones in close proximity
are estimated using the coherence model of the diffuse noise field.
The distance matrix of the ad-hoc network is constructed where
the distances of the microphones above a threshold are missing.
We exploit the low-rank property of the squared distance matrix
and apply a matrix completion method to recover the missing
entries. In order to constrain the Euclidean space geometry, we
propose the additional use of the Cadzow algorithm for matrix
completion. The applicability of the proposed method is evaluated
on real data recordings where a significant improvement over the
state-of-the-art is achieved.

Index Terms—Ad-hoc microphone calibration, Diffuse noise
coherence, Matrix completion, Cadzow algorithm

I. INTRODUCTION

Speech is one of the richest and most ubiquitous modali-
ties of communication to enable human machine interaction.
Microphone arrays provide a hands-free acquisition interface
for the state-of-the-art technologies [1] and they have been
applied in a broad range of applications including distant
speech recognition [2, 3, 4], speaker localization [5] and
speech separation [6, 7]. Recent advances in mobile computing
and communication technologies suggest using cell phones,
PDA’s or tablets as a flexible acquisition set-up providing
an ad-hoc network of microphones. However, the unknown
prior information on relative locations of microphones is
the first bottleneck to achieve high quality data processing.
Microphone array calibration techniques aim to determine
the geometry of the array. In the following, we overview
previous approaches for calibration of the ad-hoc microphones
to identify the practical challenges.

We can broadly group the prior art in three categories. The
first group relies on transmitting a known signal to perform
microphone calibration. Sachar et al. [8] presented an experi-
mental setup using a pulsed acoustic excitation generated by
five domed tweeters. The transmit times between speakers
and microphones are used to find the relative geometry. In
an alternative set-up, Raykar et al. [9] use a maximum length
sequence or chirp signal in a distributed computing platform.
The time difference of arrival of microphone signals are then
computed by cross-correlation and used for estimating the

microphone locations. Since the original signal is known, these
techniques are robust to noise and reverberation.

The second category enables using an unknown signal and
the microphone calibration is usually integrated with source
localization. Flanagan and Bell [10] propose a method using
the Weiss-Friedlander technique where the sensor location and
direction of arrival of the sources are estimated alternately
until the algorithm is converged. Another approach is proposed
in [11] by introducing an energy-based method for joint
microphone-calibration and speaker-localization. The energy
of the signal is computed and a nonlinear optimization problem
is formulated to perform maximum likelihood estimation of
the source-sensor positions. This method requires several
active sources for accurate localization and calibration.

Recently, a third approach is proposed by McCowan and
Lincoln [12] using the characteristics of a diffuse noise field
model. A diffuse noise field is characterized by noise signals
that propagate with equal probability in all locations and its
coherence is defined by the sinc function of the distance of
the two microphones. They propose to compute the distances
by fitting the computed noise coherence with the sinc function
in the least square sense. To increase the robustness, the noise
frames are extracted and classified using k-means clustering.

The state-of-the-art techniques are usually applicable for
conventional microphone arrays and estimation of the pair-
wise distances becomes noisy and unreliable as the distances
between the microphones are increased. Thereby, some ap-
proaches are proposed to calibrate the full network of ad-
hoc microphones given only partial information about the
pairwise distances (e.g. MDS-MAP [13]). It has been shown
that such methods can estimate the relative geometry of
the ad-hoc microphone array even in the case that some of
the pairwise distances are missing. However, most of these
methods provide coarse approximations of the array geometry
and their applicability is very limited.

This paper proposes to incorporate matrix completion con-
strained on Euclidean space properties for microphone array
calibration. Matrix completion is a generic tool for estimating
the unknown entries of a matrix from partial random infor-
mation given prior knowledge about the (low) rank of the
completed matrix. We first estimate the pairwise distances of
the microphones in close proximity using the coherence char-
acteristics of the signals of the two microphones in a diffuse
noise field by an improved version of the method proposed
in [12]; this approach implies a local connectivity constraint



as the pairwise distances of the further microphones can not
be estimated. We show that a simple averaging among the
noise frames yields more accurate estimates and speeds up the
algorithm. We construct a matrix of all pairwise distances with
missing entries corresponding to the unknown distances. We
exploit the low-rank characteristics of the square of this matrix
to enable estimation of the full-map geometry from a few
known pairwise distances using matrix completion. To increase
the accuracy, we incorporate properties of Euclidean Distance
Matrices (EDM) in the matrix completion algorithm. We show
that imposing EDM characteristics on matrix completion using
the Cadzow algorithm improves the robustness and accuracy
of extracting the ad-hoc microphone geometry.

The rest of the paper is organized as follows. In Section II,
we explain how pairwise distances of the microphones are
estimated using the coherence model of the diffuse noise
field and how the proposed averaging method contributes to
the accuracy of the method. In Section III, we describe the
geometry estimation procedure from partial pairwise distances.
The Euclidean matrix completion and the state-of-the-art s-
stress method are compared and analyzed in Section IV. The
conclusions are drawn in Section V.

II. PAIRWISE DISTANCE ESTIMATION

We use the method proposed in [12] due to the practical
assumptions of a diffuse noise model for audio applications
[14] and no requirement for activating specific signals.

A. Coherence of Distant Signals in a Diffuse Noise Field

We consider a scenario in which N microphones record
a diffuse noise signal. Suppose that n; and n; represent the
signal in time domain at microphones % and [ respectively. The
cross spectral density between n; and n; is

P (w) = ni(w)ng (w),
where w denotes the frequency and * stands for conjugate
transpose operator. 7;(w) and 7;(w) are Fourier transforms of
noise signals n; and n; respectively. The coherence between
noise signals is defined as

i (w)
q)ii(w)(b”(W)
For the diffuse noise field at each frequency component we

have p
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where d;; is the distance between the two microphones [15]
and c is the speed of sound. Based on this model, estimation of
distance between each two microphones is possible by fitting
a sinc function on the coherence of their signal.

B. Single-frame Distance Estimation

The following objective measure is proposed by McCowan
and Lincoln [12] to fit a sinc function for a broadband
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Fig. 1: Fitting a sinc function on one frame diffuse noise
coherence; the correct distance is 20 cm and the estimated
distance is 19.3 cm

Coherence

3000 4000 5000 6000 7000

Frequency [Hz]

0 1000 2000

Fig. 2: Fitting a sinc function on average of 100 frames of
diffuse noise coherence; The correct distance is 20 cm and
the estimated distance is 19.8 cm

spectrum and estimate the pairwise distance. Fig. 1 represents
an example of the coherence and fitted sinc function.

Wmazx

07 (d) Z R (w

where w4, 1S chosen from the noise spectrum and is less than
or equal to half of the sampling frequency, i.e., 27 f; /2 where
j is the frame index. Minimizing 67, (d) over d, we obtain d,
estimation per frame as
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Pairwise distance can be estimated from each frame of the
noise signal.

C. Averaging for Multi-frame Distance Estimation

Fig. 1, shows that it is difficult to find the relation between
coherence of one frame and the sinc function. Hence, classifi-
cation algorithms are proposed in [12] to remove the incorrect
estimates and improve the performance by incorporating mul-
tiple frames. the classification stage is costly and requires long
data segments to enable accurate classification.

We propose to average the coherence of multiple frames
prior to fitting the sinc function. Fig. 2 demonstrates how
averaging enables a more accurate least square regression. This
method requires fewer number of frames than the classification



approach and it is very effective to improve the pairwise
distance estimation performance.

To state it more precisely, we consider J frames to extract
the distance between two microphones ¢ and [. The averaging
method is obtained via
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III. GEOMETRY ESTIMATION FROM PAIRWISE DISTANCES

In real scenarios, the estimated distances are noisy and in
many situations computing them is impossible. For example,
for the method explained in Section II-A, when the distance
between two microphones is above a specific threshold (R), the
accuracy is very low. Thus, the distance matrix is noisy and is
missing some of its entries. We propose to exploit the recently
emerged matrix completion method [16, 17] for finding the
missing entries of the distance matrix. In the following section,
we focus on the matrix completion method and propose an
additional variant for the particular application of microphone
calibration.

A. Rank Property of Euclidean Distance Matrices

Consider a distance matrix Dy« consisting of the pair-
wise distances between the N microphones constructed as

D =[di], dij=|zi—=4|, i,je{l,---,N} (6)

where d;; is the distance between microphones 4 and j located
at x; and x; on the plane. The matrix D is symmetric and is
often full rank.

The following lemma shows that a very simple transfor-
mation with saving information in the distance matrix D can
provide a very low rank matrix up to the space dimensionality.

Lemma 1. The squared distance matrix M« constructed
as M;; = [dfj] , has rank at most x + 2 where ~ denotes the
dimension of the space where the microphones are deployed.
For instance, if microphones are distributed on the plane or
on a sphere, M has rank 4 and if they are placed on a circle,
the rank is 3. The proof is stated in [18].

This lemma shows that only partial distance measurements
can characterize the whole matrix, M . In other words, one can
use only a few measurements to reconstruct the full matrix.

B. Euclidean Distance Matrix Completion

1) Matrix Completion: We recall our set-up that a few
microphones are distributed in space with dimension x. The
distance matrix of microphone array is only partially avail-
able. The missing entries correspond to the microphone-pairs
located greater than R meters apart. Our objective is to recover
squared matrix Myxy of rank n = x +2 < N from a
sampling of its entries without having to ascertain all the N2
entries.

The approach proposed by matrix completion relies on the
fact that a low-rank data matrix carries much less information

than number of its elements suggests. Intuitively, as the matrix
M has (2N — n)n degrees of freedom', we need to know at
least nN of the row entries as well as 7N of the column
entries reduced by 1? of the repeated values to recover a full
M .

Let E C [N] x [N] denote the subset of known indices and
M¥ the matrix consisting of the known entries of M while
filled with zeros as the unknown/missing entries.

M,
E _ 2%
M;; = {0

which identifies a sampling set for M. The matrix completion
approach recovers full M through the following optimization:

—

rank(M)
subject to M\ij =M, (i,j)€E.

if (4,5) € £,
otherwise

)

minimize

®)

The matrix completion algorithm has three steps [17]: 1.
Trimming, 2. Projection and 3. Minimizing the residual. In
the trimming step, a row or a column is considered to be
over-represented if it contains more samples than twice the
average number of samples per row or column. These rows
or columns can dominate the spectral characteristics of the
observed matrix M ¥ . Thus, some of their entries are removed
uniformly at random from the observed matrix. Let M be
the resulting matrix of this trimming step. In the second step,
we first compute the singular value decomposition (SVD) of
MPF as

— N —
MP = Zai(ME)uivlT 9)
i=1
where o;(-) denotes the i-th singular value of the matrix. Then,
the rank-n projection (P, (-)) returns the matrix obtained by
setting to O all but the 1 largest singular values as

n

Py(MP) = (N*/|E)) Y oi(MP)uw] = UsSeVy' (10)
i=1

Starting from the initial guess provided by the rank-n projec-

tion P,(MFE), U = U, ,V =V, and S = S, the final

step solves a minimization problem stated as follows. Given

U c RV V € RV with UTU =1 and VIV = 1,

define

F(U,V):Sngn FU,V,S), (11)
cERXn

1
Jf(U,Vﬁ):5 § (M;; —(USVT), ;)? (12)

(i,5)€E

F(U,V) is defined by minimizing the quadratic function F
over S. The matrices U, V will be estimated by minimizing
the function F(U, V') using gradient decent with line search.
This last step tries to find the rank-n matrix which has the
closest values to M on the measurement indices.

I'The degrees of freedom can be estimated by counting the parameters in the
singular value decomposition (the number of degrees of freedom associated
with the description of the singular values and of the left and right singular
vectors). When the rank is small, this is considerably smaller than N 2 [19].



2) Cadzow Projection to the EDM Properties: The classic
matrix completion algorithm as described above recovers a
low-rank matrix which does not correspond to an Euclidean
distance matrix. The Euclidean distance matrix is symmetric
and the diagonal elements are zero. These properties are not
incorporated in matrix completion algorithm. In order to obtain
an Euclidean distance matrix completion, we propose a novel
modification to the aforementioned algorithm in order to have
matrices which are closer to an EDM.

To incorporate EDM properties, we apply a Cadzow-like
method. The Cadzow (also known as Papoulis-Gershberg)
algorithm [20] is a method for finding a signal which satisfies a
composite of properties by iteratively projecting the signal into
the property sets. We modify the matrix completion algorithm
by inserting an extra step in the iterations of the algorithm.
Recall that in the classic version of this algorithm a simple
rank-n approximation (n = 4 for the distance matrix of a
two-dimensional microphone array) is used as the starting
point for the iterations using gradient descent on (12). After
each step of the gradient descent, we apply the transformation
¢ : R™*™ — R™*"™ on the new matrix to make sure that the
output satisfies the following properties sequentially:

o It is symmetric.

¢ It has a zero diagonal.

¢ It has only non-negative elements (we set all the negative

elements to zero).

o It is rank-n.

Thus, the modified iteration can be summarized in two steps:

o iteration k + 1/2:

OF(U*, V*)
k+1/2 _ rrk ’
U U" + =5
aF(lﬂe ‘rk)
‘rk+1/2 _ ‘rk )
R

SHH1/2 = arg min F(U*, V¥, 5))
S
e iteration k + 1:
(Uk+l,Vk+1, Sk-‘rl) _ ¢(Uk+1/27vk+1/2’sk+1/2)7 (13)

where p is the step size found using line search.

IV. EXPERIMENTAL ANALYSIS

In this section, we present experimental evaluations of the
proposed theories. The microphone localization evaluation
measure must be robust to rigid transformation. Hence, we
use the distance between the actual locations X and estimated
locations X as [21]

— 1 —
dist(X, X) = | LXX"L ~ LXX"L|,,
L=1Iy—-(1/N)1y1%,

(14)

where ||-||» denotes the Frobenius norm. The 1y € RY is
the gﬂ ones vector and Iy is the N x NN identity matrix and
X, X € RN** The distance measure stated in (14) is useful
to compare the performance of different methods when the
microphone array geometry is fixed.

A. Diffuse Noise Recording Set-up

We use the geometrical setup of the MONC corpus [22].
Twelve microphones are located in a planar area (i.e., two-
dimensional space): eight of them are located on a circle
with diameter 20cm and one microphone is at the center.
There are three additional microphones with 70cm distance
from the central microphone. The microphones are Sennheiser
MKE-2-5-C omnidirectional miniature lapel microphones. The
floor is covered with carpet and surrounded with plaster walls
having two big windows. The enclosure is a 8 x 5.5 x 3.5 m?
rectangular room and is moderately reverberant. It contains a
centrally located 4.8 x 1.2m? rectangular table. The sampling
rate is 48 kHz.

In addition to the real recordings, we simulated the scenario
described above to enable some evaluations in a controlled set-
up. The results on the simulated data indicate the performance
bound of the methods. We consider 32 white Gaussian noise
sources distributed in the room. The room impulse responses
are generated with the image source model [23] using intra-
sample interpolation up to 15" order reflections. The cor-
responding reflection ratio, 8 used by the image model was
calculated via Eyring’s formula:

B =exp(—13.82/[cx (L' + L,  + L7') x T]),  (15)

where L, L, and L, are the room dimensions, c is the speed
of sound in the air and 7' is the room reverberation time. In
our experiments, 7' = 300 ms and the direct-path propagation
is discarded from the impulse response for generating a diffuse
noise field [24].

B. Geometry Estimation on Simulated Data

In order to estimate the pairwise distances, we take two
microphone signals of length 2.14 s and frame them into short
windows of length 1024 samples using a Tukey function
(parameter = 0.25) and apply Fourier transform. For each
frame, we compute the coherence function through (1). The
average of the coherence functions are computed and used for
estimation of the pairwise distance by fitting a sinc function
as stated in (5). This procedure is repeated for all microphone
pairs to construct an estimated distance matrix. The geometry
of the array is extracted using the state-of-the-art s-stress
method by solving the following optimization problem [21]

— 7 2
X = argmin E (||33¢*33jH2*d12j>
b'¢ “
(i,5)€E

(16)

This method is a robust and accurate localization technique
where the search space is constrained to the Euclidean geom-
etry. Fig. 3 illustrates the microphone calibration results; The
reconstruction error is 1.43 as defined in (14). The microphone
calibration error using the baseline method proposed in [12]
is estimated as 4. In addition, our averaging method speeds
up the calibration by a factor 60 compared to [12] since the
k-means clustering is not required to identify the accurate
frames.

To perform evaluations for a scenario having microphones
at long distances, we consider the three additional micro-
phones. The proposed method enables a reasonable esti-
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Fig. 3: Calibration of a 9-element microphone array with
synthetic diffuse noise. The distances are estimated using
averaging method and localization is obtained by the s-stress
algorithm.

mate up to 73cm; we confirm empirically that the dis-
tances beyond that are not reliably estimated so we regard
them as missing. Thereby, the following entries of the Eu-
clidean distance matrix are missing, dio,11, d10,12, 1,10, 7,10,
dg,10,d12,11,ds5,11,d6 11, d7,11,d3,12,d4,12,d5,12 (see Fig. 4).
Microphone calibration is achieved in two steps. In the first
step, s-stress method is used to find 9 close microphones.
These microphones are then used as anchor points. In the
second step, either s-stress or matrix completion method is
used to calibrate the full network. Fig. 4 demonstrates the
results. The estimated error for matrix completion and s-stress
methods are 33 and 65 respectively.

C. Geometry Estimation on Real Data

In the first step, the geometry of the 9 microphones are
estimated. To further improve the performance, we use a
two-dimensional (errors vs. pairwise distances) histogram to
remove the outliers; the resolution of the bins is chosen to
be 2.5 mm. The two-dimensional histogram is very fast and
it outperforms k-means clustering. The green curve in Fig.
5 depicts the results based on our averaging method on 100
frames; the estimated error is 8.04. The blue curve shows the
improved estimates by the hybrid of averaging method and
outlier detection using a 1000 frames where the averaging
method is applied on five frames to estimate the pairwise
distances and construct the two-dimensional histogram; the
estimated error is 5.

To estimate the full network geometry where the pair-
wise distances of far microphones are missing, we apply
the proposed Euclidean distance matrix completion tech-
nique and compare the results with the alternative s-stress
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Fig. 4: Calibration of a 12-element microphone array on
synthetic diffuse noise. First the central microphones are
localized using the s-stress and then either s-stress or matrix
completion is used to calibrate the full network.
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Fig. 5: Calibration of a 9-element microphone array on real
diffuse noise recordings using averaging and a hybrid of aver-
aging and histogram-based clustering. Localization is obtained
by the s-stress method.

method. Fig. 6 demonstrates the results; similar to the pre-
vious test, d1o,11, d10,12, d1,10, d7,10, d8,10,d12,11,d5,11, d6,11,
d711,d3,12,d4,12,ds,12 are missing from the distance matrix.
We observe that the matrix completion method combined with
Cadzow algorithm yields the best results with error 54. The
s-stress and the classic matrix completion methods have error
of 99 and 159 respectively. Table I summarizes results for a



simulated scenario and a real scenario in a large configuration
with 12 microphones. In the simulated scenario in which we
can control diffuseness in the room, the error in estimation of
distances is lower than the real scenario and the final geometry
estimations are more accurate. Furthermore, integration of the
matrix completion and Cadzow method can highly improve
the results of geometry estimation especially in real scenario.
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Fig. 6: Calibration of a 12-element microphones array in real
diffuse noise. The central array is calibrated using the s-stress
method. Then different approaches are used to calibrate the
full network while several pairwise distances are missing.

Methods/Scenarios Simulation  Real data
Matrix completion 33 159
S-Stress 65 99
Matrix completion+cadzow 25 54

TABLE I: Performance comparison of different approaches for
extraction of the microphone array geometry

V. CONCLUSIONS

We studied calibration of an arbitrary-sized microphone ar-
ray using Euclidean distance matrix completion technique. The
partial information about the pairwise distances is obtained
exploiting the coherence model of the diffuse noise field. The
calibration of the full network from partial known entries of
the distance matrix is achieved using the Euclidean distance
matrix completion method where Cadzow algorithm is used
to impose the EDM properties. The evaluations conducted
on real data recordings demonstrate the effectiveness of the
proposed method and it outperforms the standard matrix com-
pletion and s-stress techniques. Although in low noise scenario
(i.e. synthetic data) the standard matrix completion performs
better than s-stress, it is highly sensitive to the noisy entries
that we obtain in real scenarios and the projection on the

Euclidean distance matrix property sets enables a significant
improvement. As a future plan we are interested to extend the
simulated and real scenarios to complete ad-hoc geometry, and
also extract results for other matrix completion methods.
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