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ABSTRACT

Dictionary learning algorithms are typically derived for deal-
ing with one or two dimensional signals using vector-matrix
operations. Little attention has been paid to the problem of
dictionary learning over high dimensional tensor data. We
propose a new algorithm for dictionary learning based on ten-
sor factorization using a TUCKER model. In this algorithm,
sparseness constraints are applied to the core tensor, of which
the n-mode factors are learned from the input data in an al-
ternate minimization manner using gradient descent. Simu-
lations are provided to show the convergence and the recon-
struction performance of the proposed algorithm. We also
apply our algorithm to the speaker identification problem and
compare the discriminative ability of the dictionaries learned
with those of TUCKER and K-SVD algorithms. The results
show that the classification performance of the dictionaries
learned by our proposed algorithm is considerably better as
compared to the two state of the art algorithms.

Index Terms— Tensor Factorization, Sparse Representa-
tions, Classification, Dictionary Learning

1. INTRODUCTION

Learning the features and structures of a signal is important
for obtaining a succinct representation that can be used for
various applications such as source separation and signal
classification. Dictionary learning algorithms emerging from
sparse representations have recently been used for learning
such representations as given in [1]. However, these algo-
rithms are mostly limited to one or two dimensional signals.
With content-rich applications emerging nowadays, signal
dimensionality is constantly increasing e.g. in video sig-
nals. Moreover, a low-dimensional signal such as an audio
signal can be cast in a higher dimensional space, e.g. in a
space-time-frequency domain. This preserves the structure
of the signal which may otherwise be lost when used in a
low dimensional form. Hence, it becomes highly desirable
for those algorithms to be able to learn signal features from
higher dimensional data, such as tensor data.

Tensor factorization and decomposition have recently
attracted attention in the signal processing community, for
processing high dimensional signals. PARAFAC [2] and
TUCKER [3] decompositions are two such classical algo-
rithms. PARAFAC decomposes the tensor as a sum of k
rank-1 tensors while the TUCKER method computes the or-
thonormal subspaces corresponding to each mode of the ten-
sor. This can be treated as higher order principal component
analysis. However, these methods do not explicitly enforce
signal sparsity despite its benefits in signal representations
for various applications.

Recent effort has therefore been on extending these two
algorithms by introducing additional constraints to the models
with the aim of learning sparse representations of the tensors.
Both non-negativity and sparsity have been used to achieve
this. Inspired by the non-negative matrix factorization (NMF)
techniques due to Lee and Seung [4], the authors of [5] and
[6] introduced non-negative PARAFAC decomposition with
multiplicative updates and applied it to various signal and im-
age processing applications. Similarly, non-negative versions
of TUCKER decomposition have also been proposed in [7]
and [8].

Sparse representations of PARAFAC and TUCKER mod-
els have also been derived. In the case of TUCKER model,
which is the focus of our discussion in this paper, sparse
TUCKER decomposition methods have been proposed in [7]
and [9]. In [7], smoothing matrices are used for each mode
of the tensor to make the core tensor as well as the TUCKER
factors sparse, while in [9], sparsity is introduced by penal-
izing its core tensor with l1 norm and claim that this penalty
can also be applied to any of the other factors of TUCKER
decomposition. In both of these works, sparsity has been
applied in case of non-negative TUCKER decomposition.
Hence the factors of TUCKER decomposition are learned by
NMF techniques with multiplicative updates as presented in
[4].

In this paper, we propose a tensor dictionary learning
algorithm based on the TUCKER model with sparsity con-
straints over its core tensor. Unlike [7] and [9], the sparsity
over the core tensor is applied here in a greedy fashion. The
sparse core tensor is calculated by a tensor extended version
of the greedy algorithm, Tensor Orthogonal Matching Pursuit



(TOMP) [10]. Two main reasons for introducing sparsity in
the core tensor are as follows:

• Unlike the standard TUCKER representation, the spar-
sity of the core tensor compresses the data by consider-
ing only non-zero values of the core tensor. Moreover,
the input signal is represented by only those columns
of mode-n dictionaries which correspond to those non-
zero elements of the core tensor.

• The core tensor establishes the relationship between
the elements of the dictionaries for describing the in-
put data model. Non-sparse core tensor makes this
relationship ambiguous specially in decision based ap-
plications such as classification. The sparsity of the
core tensor reduces this ambiguity and clarifies the
relationship between the dictionaries.

To learn tensor dictionaries of TUCKER model along each
mode, we propose a gradient descent algorithm that updates
the mode-n dictionaries iteratively in an alternating manner.
The proposed tensor dictionary algorithm, similar to standard
dictionary learning algorithms, is a two-stage iterative pro-
cess: sparse coding and dictionary update. First, given initial
TUCKER factors considered as dictionaries, the TOMP al-
gorithm is used to find the sparse core tensor. Then in the
second stage, the dictionaries (factors) corresponding to each
mode are updated, using the gradient descent method.

The organization of the whole paper is as follows: Section
2 formulates an objective function for tensor dictionary learn-
ing problem. Section 3 presents the Tensor OMP algorithm.
Section 4 describes the proposed dictionary learning method
for high dimensional data, GradTensor. Section 5 shows ex-
periments along with their results and section 6 concludes the
paper.

2. PROBLEM FORMULATION AND
OPTIMIZATION CRITERION

A signal of a high dimension is considered as a tensor. Here
for simplicity, we consider Y as a tensor of three dimensions
e.g. Y ∈ RI1×I2×I3 , where In(n = 1, 2, 3) are the dimen-
sions of each mode. However, the following discussion can be
readily extended to the signals with a dimension greater than
three. A three dimensional tensor is also called as a three-way
signal. A matrix is a form of two-way signal and a vector is
considered as a one-way signal. A tensor can be unfolded to
a mode-n matrix form and represented as Y(n). For a three-
way tensor, the mode-n matrix can be extracted by changing
all the indices in the tensor except the n-th index. Hence a
three-way tensor can be unfolded into any of its mode-n ma-
trices. For example, the mode-1 unfolded matrix of tensor Y,
i.e. Y(1), has a dimension RI1×I2I3 . Similarly the mode-2
unfolded matrix Y(2) has a dimension RI2×I1I3 . Tensor de-

composition for the TUCKER model is formulated as:

Y = X ×1 A ×2 B ×3 C (1)

=

M1∑
m1=1

M2∑
m2=1

M3∑
m3=1

xm1m2m3am1 ◦ bm2 ◦ cm3

where ◦ is the outer product between the vectors. A ∈
RI1×M1 , B ∈ RI2×M2 and C ∈ RI3×M3 are orthogonal
factor matrices composed of a, b and c vectors and can
be considered as principal components along each mode of
the tensor. X ∈ RM1×M2×M3 is a core tensor. This form
of decomposition was suggested by [3], hence it is called
TUCKER decomposition. It can be represented element-wise
as

yi1i2i3 =

M1∑
m1=1

M2∑
m2=1

M3∑
m3=1

xm1m2m3 ai1m1 bi2m2 ci3m3 (2)

for in = 1, . . . , In, n = (1, 2, 3)

If the core tensor X is super-diagonal and M1 = M2 = M3,
then this can be considered as PARAFAC decomposition in-
troduced by [2].

To learn tensor dictionaries with a sparsity constraint on
the core tensor X , our objective function for model (1) takes
the form:

F(X, A, B, C) = min
X,A,B,C

‖ Y − X ×1 A ×2 B ×3 C ‖2F

s.t. xm1m2m3 = 0 ∀ (m1,m2,m3) /∈ M1 ×M2 ×M3 (3)

where ‖ · ‖F is the Frobenius norm, Mn = [m1
n, . . . ,m

sn
n ]

denotes the subset of indices of non-zero values in the core
tensor for mode n (n = 1, 2, 3), and sn represents the mode-
n sparsity, showing the number of selected columns of each
dictionary required for the TUCKER representation. In this
way, the sparsity structure of the core tensor is block-sparse
and the total sparsity (i.e. the number of non-zeros) of the
three way core tensor is denoted by s = s1 × s2 × s3. Here
we assume that the size of the core tensor X is larger than or
equal to the size of Y (Mn ≥ In).

3. TENSOR OMP

Tensor OMP (TOMP) [10] is based on the equivalence of
equation (1) to the vectorized version of the tensor represen-
tation in terms of Kronecker dictionaries, i.e.

vec(Y) = (C ⊗ B ⊗ A)vec(X) (4)
y = (C ⊗ B ⊗ A)x (5)

where ⊗ is the Kronecker product. vec(·) is obtained by
stacking all the columns of mode-1 tensor Y(1) in a single
vector y ∈ RI1I2I3 . Equation (5) is similar to the conven-
tional linear (matrix) sparse representation formulation where



x is a sparse vector with s number of non-zero elements. This
is one of the reasons for assuming Mn ≥ In because sparse
signal model is formulated with an overcomplete dictionary.
The TOMP algorithm is given in Algorithm 1.

Algorithm 1: Tensor-OMP

Require: Dictionaries A ∈ RI1×M1 , B ∈ RI2×M2 and C
∈ RI3×M3 , input signal Y, maximum number of non-zeros
coefficients tmax ≤ s, tolerance ε.
Output: X(M1,M2,M3) = E, {M1,M2,M3}.
Ensure: Sparse representation Y = X ×1 A ×2 B ×3 C with
xm1m2m3 = 0 ∀ (m1,m2,m3) /∈ M1 ×M2 ×M3.
(X(M1,M2,M3)) = E.

1. Mn = [∅](n = 1, 2, 3), R = Y, X = 0, t = 1;

2. while |M1||M2||M3| < tmax and ||R||F > ε do

3. [mt
1m

t
2m

t
3] = arg max[m1m2m3]|R ×1 AT (:

,m1)×2 BT (:,m2)×3 CT (:,m3)|;

4. Mn = Mn ∪ [[mt
n](n = 1, 2, 3), D1 = A(:

,M1), D2 = B(:,M2), D3 = C(:,M3);

5. e = arg min u||(D3 ⊗ D2 ⊗ D1)u − y||22;

6. R = Y − E ×1 D1 ×2 D2 ×3 D3;

7. t = t+ 1;

8. end while

9. return {M1,M2,M3} , E;

4. PROPOSED METHOD: GRADTENSOR

The tensor dictionaries and the core tensor are computed in
a two-step process. In the first step, the sparse core tensor
is computed using TOMP with tensor dictionaries initialized
by Mn left leading singular vectors of the mode-n matrices
of input tensor Y . Once the sparse core tensor is obtained,
the tensor dictionaries are computed iteratively by gradient
descent in an alternating manner.

Mathematically, equation (1) can be represented in an un-
folded form as

Y(1) = AX(1)(C ⊗ B)T

Y(2) = BX(2)(C ⊗ A)T (6)

Y(3) = CX(3)(B ⊗ A)T

To calculate mode-1 dictionary A in the unfolded form,
the minimization of equation (3) can be written as

min
A

‖ Y(1) − AX(1)(C ⊗ B)T ‖2F (7)

From (7), the gradient of the error norm with respect to A can
be calculated by

∇FA = (Y(1) − AX(1)(C ⊗ B))
{

X(1)(C ⊗ B)T
}†

(8)

where † is the pseudo-inverse of the matrix. Similarly, the
gradients of the objective function with respect to B and C
can be calculated as

∇FB = (Y(2) − BX(2)(C ⊗ A))
{

X(2)(C ⊗ A)
}† (9)

∇FC = (Y(3) − CX(3)(B ⊗ A))
{

X(3)(B ⊗ A)
}†

These gradients are then used to update the tensor dictionar-
ies. The updates are given by

A(k+1) = A(k) − γ∇FA

B(k+1) = B(k) − γ∇FB (10)
C(k+1) = C(k) − γ∇FC

where γ is the step size and k is the current step of the gradi-
ent descent algorithm. These tensor dictionaries are learned
in an alternate minimization manner such that when learn-
ing one dictionary like A, all the other dictionaries and the
core tensor are held fixed. In this way, all the dictionaries
are updated. In the next iteration, these learned dictionaries
are used to find out the sparse core tensor in the sparse coding
stage. This two-stage learning process alternates between ten-
sor dictionaries learning and sparse core tensor update until a
stopping criterion is reached. Algorithm 1 gives the summary
of the whole algorithm.

As these dictionaries are learned by the gradient descent,
the minimization of the objective function may lead to local
minima. To improve convergence, all the dictionaries are ini-
tialized by the left leading factors of the input tensor data.
Though we don’t have an explicit proof for the convergence
of the algorithm, yet the simulations on synthetic data show
the good convergence of the algorithm as confirmed in the
next section.

Algorithm 2: GradTensor
Task: Find mode-n dictionaries A ∈ RI1×M1 , B ∈ RI2×M2

and C ∈ RI3×M3 and sparse core tensor X ∈ RM1×M2×M3

that give sparsest representation of input signal tensor
Y ∈ RI1×I2×I3 with predefined sparsity s = s1 × s2 × s3.

Require: Input signal Y, sparse core tensor X, maximum
sparsity value (total number of non-zeros) s, step size γ,
tolerance ε1 and ε2,
Output: A,B,C.
Initialization: Mode-n dictionaries A, B and C each
initialized by Mn left leading vectors of Yn, where
n = 1, 2, 3 is the index of the modes of a tensor.

Repeat until convergence:( i.e. F ≤ ε2 )

1. Sparse Coding Stage: Use TOMP to find sparse core
tensor X by solving eq (3).
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Fig. 1. Convergence of GradTensor over 100 trials.

2. Dictionary Learning Stage: Learn dictionaries A, B, C
for each mode by the gradient descent.

• Calculate gradient for A, ∇FA. While fixing all
the other dictionaries and sparse core tensor,
update A by (8) and (10) for A until the error
between two consecutive iterations reaches
below or equal to ε1.

• Calculate gradient for B, ∇FB . While fixing all
the other dictionaries and sparse core tensor,
update B by using (9) and (10) for B until the
error between two consecutive iterations reaches
below or equal to ε1.

• Calculate gradient for C, ∇FC . While fixing all
the other dictionaries and sparse core tensor,
update C by using (9) and (10) for C until the
error between two consecutive iterations reaches
below or equal to ε1.

5. EXPERIMENTS AND RESULTS

We perform three different experiments to analyse our algo-
rithm for different applications. Synthetic data is used to ex-
amine the convergence of the algorithm. The second experi-
ment includes image reconstruction by the learned tensor dic-
tionaries with the sparse core tensor and the third experiment
provides the classification performance of the algorithm for
speaker identification in comparison with the TUCKER and
the K-SVD [1] algorithms.

5.1. Simulation based on Synthetic Data

In the first experiment, we test the convergence of our pro-
posed method by applying it on a synthetically generated ten-
sor of size I1×I2×I3 = 100×100×100. The tensor is gen-
erated from the mode dictionaries of size 100 × 100 and the
sparse core tensor of size Mn = 1.5In(n = 1, 2, 3) whose el-
ements are obtained from Gaussian distributions. The sparse

core tensor has a fixed mode sparsity of µ = sn/Mn = 1/6.
The value of the step size γ is 0.3. There are two thresh-
old parameters for stopping the algorithm, ε1 for the gradient
descent and ε2 for the whole algorithm. In the dictionary up-
date stage, when the error between two consecutive iterations
reaches below or equal to ε1, dictionary update stops. In a
similar way, the whole algorithm stops when the error be-
tween the input tensor and the reconstructed one reaches be-
low or equal to ε2. Typically, ε1 and ε2 are chosen as 10−6 and
10−4 respectively. The algorithm convergence curve shown
in Figure 1 is obtained by averaging the curve over 100 inde-
pendent trials (experiments).

5.2. Image Reconstruction

Original image

(a)

Reconstructed image 1

(b)

Reconstructed image 2

(c)

Fig. 2. Comparison between the original image and the recon-
structed images using two different sparsity levels of the core
tensor. (a) The original Image. (b) The reconstructed image
with the core tensor sparsity of 31%. (c) The reconstructed
image with the core tensor sparsity of 12%.

For the second experiment, we learn high dimensional
signal features for a 3-D human abdomen image of size I1 ×
I2 × I3 151 × 125 × 141 by our proposed algorithm. This
dataset is given by [11]. Since we are interested in investigat-
ing the effect of the core tensor sparsity on the signal recon-
struction, not its dimensions with respect to the input tensor,
hence we set Mn = 1.5In and the fixed mode sparsity as
µ = 1/2.2 and µ = 1/3 respectively, which is equal to 31%
and 12% of the total sparsity level (number of non-zeros) of
the core tensor, respectively. These sparsity levels compactly
represent the input data even though Mn > In. The 50th
slice of the image is reconstructed by the learned dictionaries
and the sparse core tensor, as shown in Figure 2, where the
original image slice can be compared with the reconstructed
slices using the two different levels of sparsity. It can be ob-
served that the reconstructed image using the atoms learned
by the proposed sparse tensor learning algorithm resembles
the original image very nicely.

5.3. Speaker Identification

To compare the discriminative power of our proposed algo-
rithm, we apply it for the multi-class classification problem



of speaker identification and compare its classification per-
formance with that of the TUCKER algorithm [3] and K-SVD
algorithm [1]. The signal classification is performed by pro-
jecting feature matrix of test signals on to the basis learned by
the learning algorithms. The basis in each case of GradTensor
as well as the TUCKER algorithm is computed by

D = X ×1 A ×2 B (11)

where D is the learned basis tensor. This basis tensor D is
used to classify the test feature matrix and is determined dur-
ing the training phase. By following the equation (6), the
input signal Y can be represented in terms of learned basis
tensor in an unfolded form as

Y(1) = IAD(1)(C ⊗ IB)
T (12)

where IA and IB are the identity matrices of the same size
as A and B. For a 5-class speaker identification problem, the
test feature matrix Y test is projected on to each class basis
tensor learned in the training phase. The class label of the
basis tensor that gives the minimum residual error is the label
of the test signal.

For this classification problem, a subset of the TIMIT cor-
pus is selected for speaker identification of 5 speakers with 10
utterances (sentences) per speaker, resulting in a total of 50
utterances. For different numbers of utterances per speaker,
we perform classification in such a way that the training and
testing examples do not overlap with each other. The class
specific basis which acts as the classifier, is learned in the
training phase on Linear Predictive Coding (LPC) features
of the training signals. The classification performance of
the basis learned by three different algorithms (GradTensor,
TUCKER and K-SVD) is shown in Figure 3. In case of ten-
sors, Mn = In and the fixed mode sparsity in GradTensor is
µ = sn/Mn = 1/10. In the case of K-SVD which learns the
dictionary from two dimensional training features, the size of
the input training signal, dictionary size and sparsity level are
same as those of GradTensor.

This classification example clearly shows the discrimi-
native power of the class basis learned by the GradTensor
over those learned by the TUCKER and the K-SVD. This
also signifies the importance of learning a sparse core ten-
sor. Since the core tensor in TUCKER decomposition estab-
lishes the relationship between decomposition factors along
each mode, sparsity constraint on the core tensor applied in
the GradTensor learning algorithm clarifies this relationship
and reduces the ambiguity in the interpretation of this rela-
tionship. The classification results show that the sparsity con-
straint also helps to maintain the discriminative ability of the
learned dictionaries.

6. CONCLUSION

We have designed a tensor dictionary learning algorithm for
the TUCKER model that incorporates sparsity constraints on
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Fig. 3. Classification performances for the identification of 5
speakers for different decomposition algorithms with differ-
ent number of utterances per speaker.

the core tensor. We show the convergence property of the pro-
posed algorithm along with experiments on signal reconstruc-
tion and classification. The reconstruction and classification
results clearly show the ability of our algorithms for maintain-
ing the discerning features of the signals while retaining the
signal reconstruction. In future, we will explore the possibil-
ities for further improving its discriminative ability by incor-
porating additional constraints to the cost function, such as
inter-class correlations, in order to learn class discriminative
dictionaries.
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