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Abstract—The performance of objective quality metrics for
high-definition (HD) video sequences is well studied, but little
is known about their performance for ultra-high definition
(UHD) video sequences. This paper analyzes the performance of
several common objective quality metrics (PSNR, VSNR, SSIM,
MS-SSIM, VIF, and VQM) on three different 4K UHD video
sequences using subjective scores as ground truth. The findings
confirm the content-dependent nature of most metrics (with VIF
being the only exception), which has been reported previously
for standard and high resolution video sequences. PSNR showed
the lowest correlation with ground truth quality scores when
the analysis was performed for all contents at once and thus is
not recommended as a general metric for video quality, while
VIF showed the highest Pearson (0.83) and Spearman (0.87)
correlation coefficients and may be used as a general purpose
metric. On the other hand, all studied metrics were accurate in
distinguishing different quality levels for the same content. The
results of several fittings between metric values and subjective
ground truth scores demonstrated that logistic fitting provides the
highest correlation. The results also indicated a shift in metrics
values between synthetic and natural contents.

Index Terms—Video quality assessment, objective metrics,
ultra-high definition

I. INTRODUCTION

Recent advances in hardware (both for acquisition and ren-
dering) and compression algorithms (HEVC) have increased
research interest in ultra-high definition (UHD) video content,
such as 4K and 8K UHD. While UHD is positioned and
marketed as an increasingly immersive experience, little is
understood about its impacts on human visual perception and
how to measure it. However, since UHD video content is
meant for viewing in high-end home cinemas or in movie
theaters, where high visual quality is one of the major factors
constituting the quality of experience, an accurate measure-
ment of its perceptual visual quality is important.

While the subjective evaluations remain the most accurate
means of quantifying video quality, as measurements are done
using human observers, they are time consuming and tedious,
yielding such evaluations impractical in many applications.
In practice, objective measures are often a more preferable
more efficient alternative to subjective evaluations. However,
objective metrics, especially the most commonly used, i.e.,
PSNR, are often criticized for their inaccurate prediction of
perceptual video quality. The main reason for the inaccuracy
is the lack of established exact relationship between values
of a metric and perceived quality. This relationship should
consider non-linearities and saturation effects of the human
visual system.

Previous studies [1], [2], which used standard or high-
definition content, have shown that PSNR is strongly con-
tent dependent and can only be used as measure of visual
quality for each content separately. Sheikh et al. [3] evalu-
ated several objective metrics on standard definition images
and demonstrated the superior performance of VIF compared
to other metrics, including PSNR, which showed the worst
performance. Pedersen and Hardeberg [4] evaluated different
objective metrics on many available image databases and
showed that the performance of the metrics highly depends
on the type of content and the types of distortions applied
to degrade visual quality. Most of the previous work used
standard and high definition images and video sequences in
their evaluations, and none of the studies evaluated metrics
performance on UHD content.

In our previous study [5], we performed a subjective quality
evaluation to benchmark the performance of the upcoming
H.265/HEVC video compression standard on 4K UHD con-
tent. Three original 4K UHD video sequences were con-
sidered: two with natural content and one with synthetic
content. The contents were compressed with H.264/AVC and
H.265/HEVC at five different bit rates, resulting in a total of
thirty compressed video sequences. In this paper, we analyze
the performance of several common objective quality metrics
(PSNR, VSNR, SSIM, MS-SSIM, VIF, and VQM) on 4K
UHD content, using the video sequences and corresponding
ground truth subjective scores obtained in [5]. For each metric,
objective scores were fitted to subjective scores using linear,
cubic, and logistic fitting. As compliant with the standard pro-
cedure for evaluating the performance of objective metrics [6],
[7], the following properties of the estimation of mean opinion
scores (MOS) were considered in this study: accuracy, mono-
tonicity, and consistency. Several performance indexes, such
as Pearson and Spearman correlation coefficients, root-mean-
square-error, and outlier ratio, were computed to compare the
metrics estimation of MOS. Statistical tests were performed to
determine if the difference between two metrics is statistically
significant.

The rest of the paper is organized as follows. The dataset
and corresponding subjective scores used as ground truth are
described in Section II. The different metrics benchmarked
in this study are defined in Section III. In Section IV, the
methodology used to evaluate the performance of the metrics
is described. Results are presented and analyzed in Section V.
Finally, concluding remarks are given in Section VI.



(a) PeopleOnStreet (b) Traffic

(c) Sintel2 (d) Sintel39

Figure 1: Sample frames of the individual contents considered in the subjective test.

II. DATASET AND SUBJECTIVE SCORES

The dataset was composed of four ultra-high definition
video contents, one for the training (referred to as Sintel39)
and three for the test (referred to as PeopleOnStreet, Traffic,
and Sintel2), with different visual characteristics, resolutions,
and frame rates. All contents were five seconds long. The
first frame of each content is shown in Figure 1. All test se-
quences were stored as raw video files, progressively scanned,
with YCbCr 4:2:0 color sampling, and 8 bits per sample.
The video sequences were compressed with H.264/AVC and
H.265/HEVC using the Random Access configuration. For
each content and codec, five different bit rates were selected.

The evaluation was performed using a 56-inch professional
high-performance 4K/QFHD LCD reference monitor Sony
Trimaster SRM-L560. Thirty-six naive viewers evaluated the
quality of each test sequence. The subjects were seated in
three different positions (Left, Centre, and Right) with respect
to the center of the monitor, at a distance approximately equal
to 3.5 times the height of the screen. The laboratory setup had
controlled lighting system to produce reliable and repeatable
results. All subjects taking part in the evaluations underwent
a screening to examine their visual acuity and color vision.

The Double Stimulus Impairment Scale (DSIS) method-
ology [8] was chosen as this methodology was selected by
VCEQ and MPEG to evaluate the responses to the Joint Call
for Proposals on Video Compression Technology [9]. Since the
test sequences were only five seconds long and subjects are not
used to watch UHDTV, Variant II was selected. A continuous

scale ranging from 0 to 100, associated with five distinct
impairment categories (Very annoying, Annoying, Slightly an-
noying, Perceptible but not annoying, and Imperceptible) was
used.

Before the start of the tests, oral instructions were provided
to subjects explaining their task. Additionally, a training ses-
sion was organized to allow subjects to familiarize with the
assessment procedure. The video sequences used as training
samples had quality levels representative of the labels reported
on the rating scales and the experimenter explained the mean-
ing of each label reported on the scale and related them to the
presented sample sequences.

The overall experiment was split into two sessions. Between
the sessions, each subject took a 15 minutes break before
starting the next session. Each session included test materials
corresponding to all contents, all the codecs under analysis,
and only a subset of the bit rates, which were uniformly
distributed across all the sessions. To reduce contextual ef-
fects, the stimuli orders of display were randomized applying
different permutation for each group of subjects, while the
same content was never shown consecutively.

The subjective results were processed by first detecting and
removing subjects whose scores appeared to deviate strongly
from others in each test session. Then, the mean opinion
score was computed for each test stimulus as the mean across
the rates of the valid subjects, as well as associated 95%
confidence interval, assuming a Student’s t-distribution of the
scores. More details about dataset, subjective evaluations, and
computation of ground truth MOS can be found in [5].



III. OBJECTIVE QUALITY METRICS

In this study, the performance of the following objective
metrics was assessed:

1) PSNR: Peak Signal-to-Noise Ratio,
2) VSNR: Visual Signal-to-Noise Ratio [10],
3) SSIM: Structural Similarity Index [11],
4) MS-SSIM: Multi-Scale Structural Similarity Index [12],
5) VIF: Visual Information Fidelity1 [13],
6) VQM: Video Quality Metric2 [14].

All above objective metrics, except for VQM, were com-
puted on the luma component of each frame and the resulting
values were averaged across the frames to produce a global
index for the entire video sequence.

Most of the objective metrics, except for VSNR, and
VQM, were computed using our Video Quality Measurement
Tool [15]. VSNR was obtained from its developer web-
site [16]. VQM was obtained from the Institute for Telecom-
munication Sciences (ITS) website [17].

IV. PERFORMANCE INDEXES

The results of the subjective tests can be used as ground
truth to evaluate how well the objective metrics estimate
perceived quality. The result of execution of a particular
objective metric is a video quality rating (VQR), which is
expected to be the estimation of the MOS corresponding to a
pair of video data. To be compliant with the standard procedure
for evaluating the performance of objective metrics [6], [7],
the following properties of the VQR estimation of MOS
were considered in this study: accuracy, monotonicity, and
consistency.

First, a regression was fitted to each [VQR, MOS] data set
using linear fitting (1), cubic fitting (2), and logistic fitting
(3), with the constraint that the function is monotonic on the
interval of observed quality values:

MOSp(V QR) = a · V QR+ b (1)

MOSp(V QR) = a · V QR3 + b · V QR2 + c · V QR+ d (2)

MOSp(V QR) = a+
b

1 + exp [−c (V QR− d)]
(3)

where a, b, c, and d are the parameters of the fitting functions.
Then, the Pearson linear correlation coefficient (PCC) and

the root-mean-square error (RMSE) were computed between
MOSp and MOS to estimate the accuracy of the VQR. To
estimate monotonicity and consistency, the Spearman rank or-
der correlation coefficient (SROCC) and the outlier ratio (OR),
were computed between MOSp and MOS, respectively. To
determine whether the difference between different metrics
is statistically significant, statistical tests were performed on
these estimators, as described in the following subsections.

1Pixel domain version.
2NTIA General Model, no calibration.

A. Pearson correlation coefficient

The Pearson linear correlation coefficient (PCC) was com-
puted between MOSp and MOS to estimate the accuracy of
the VQR

PCC =

M∑
i=1

(
Xi −Xi

) (
Yi − Yi

)
√

M∑
i=1

(
Xi −Xi

)2√ M∑
i=1

(
Yi − Yi

)2 (4)

where Xi and Yi denote the ground truth subjective score
(MOS) and predicted subjective score (MOSp), respectively,
and M is the total number of points.

Based on the assumption that MOS and MOSp follow
a bivariate normal distribution, the Fisher transformation of
the Pearson correlation coefficient, F (PCC), approximately
follows a normal distribution with mean

z = F (PCC) =
1

2
ln

1 + PCC

1− PCC
(5)

and standard deviation

σz =

√
1

M − 3
(6)

To determine whether the difference between two PCC
values corresponding to two different metrics is statistically
significant, a two-sample statistical test was performed. The
null hypothesis under test was that there is no significant
difference between correlation coefficients, against the alter-
native hypothesis that the difference is significant, although
not specifying better or worse

H0: PCC1 = PCC2

H1: PCC1 6= PCC2

The observed value zobs was computed from the observa-
tions for each comparison

zobs =
z1 − z2 − µz1−z2

σz1−z2

(7)

where

µz1−z2 = 0 (8)

due to the null hypothesis and

σz1−z2 =
√
σ2
z1 + σ2

z2 (9)

If the observed value zobs was inside the critical region
determined by the 95% two-tailed z-value, then the null
hypothesis was rejected at a 5% significance level.

If the sample size M was lower than 30 samples, then the z-
value was replaced by a t-value corresponding to a two-tailed
Student’s t-distribution with M − 1 degrees of freedom.



B. Spearman rank order correlation coefficient

The Spearman rank order correlation coefficient (SROCC)
was computed between MOSp and MOS to estimate the
monotonicity of the VQR

SROCC =

M∑
i=1

(xi − xi) (yi − yi)√
M∑
i=1

(xi − xi)2
√

M∑
i=1

(yi − yi)2
(10)

where xi and xi denote the ranked variables of the ground
truth subjective score (MOS) and predicted subjective score
(MOSp), respectively, and M is the total number of points.

To determine whether the difference between two SROCC
values corresponding to two different metrics is statistically
significant, a two-sample statistical test was performed similar
to Section IV-A.

C. Root mean square error

The root-mean-square error (RMSE) was also computed
between MOSp and MOS to estimate the accuracy of the
VQR

RMSE =

√√√√ 1

M − 1

M∑
i=1

(MOSi −MOSpi)
2 (11)

where M is the total number of points.
Based on the assumption that MOS and MOSp follow

a normal distribution, the root mean square error follows
approximately a chi-squared distribution with M − d degrees
of freedom, where d is the degrees of freedom of the fitting
function.

To determine whether the difference between two PCC
values corresponding to two different metrics is statistically
significant, a two-sample statistical test was performed. The
null hypothesis under test was that there is no difference
between RMSE values, against the alternative hypothesis that
the difference is significant, although not specifying better or
worse

H0: RMSE1 = RMSE2

H1: RMSE1 6= RMSE2

The statistic defined in Equation (12) follows a F-
distribution with M1 and M2 degrees of freedom

Fobs =
RMSE2

1

RMSE2
2

(12)

The observed value Fobs was computed from the observa-
tions for each comparison. If the observed value Fobs was
inside the critical region determined by the 95% two-tailed
F-value with M1 − d and M2 − d degrees of freedom, then
the null hypothesis was rejected at a 5% significance level.

D. Outlier ratio

The outlier ratio (OR) was computed between MOSp and
MOS to estimate the consistency of the VQR

OR =
total number of outliers

M
(13)

where M is the total number of points and an outlier is defined
as a point for which the error exceeds the 95% confidence
interval of the mean MOS value

|MOSi −MOSpi| > CIi (14)

The outlier ratio follows a binomial distribution with mean

p = OR (15)

and standard deviation

σp =

√
p(1− p)
M

(16)

To determine whether the difference between two OR values
corresponding to two different metrics is statistically signifi-
cant, a two-sample statistical test was performed. The null
hypothesis under test was that there is no significant difference
between outlier ratios, against the alternative hypothesis that
the difference is significant, although not specifying better or
worse

H0: OR1 = OR2

H1: OR1 6= OR2

If the sample size is large (M ≥ 30), the distribution of
differences of proportions from two binomially distributed
populations can be approximated by a normal distribution.

The observed value zobs was computed from the observa-
tions for each comparison

zobs =
p1 − p2 − µp1−p2

σp1−p2

(17)

where

µp1−p2
= 0 (18)

and

σp1−p2 =

√
p(1− p) 2

M

p =
p1 + p2

2

(19)

because the null hypothesis in this case considers that there is
no difference between the population parameters p1 and p2.

If the observed value zobs was inside the critical region
determined by the 95% two-tailed z-value, then the null
hypothesis was rejected at a 5% significance level.

If the sample size M was lower than 30 samples, then the z-
value was replaced by a t-value corresponding to a two-tailed
Student’s t-distribution with M − 1 degrees of freedom.



Figure 2: Subjective versus objective results.

Figure 3: MOS versus PSNR.

Figure 4: MOS versus VQM.



V. RESULTS

Scatter plots of subjective versus objective results are pre-
sented in Figure 2 for the different metrics considered in
this study. For all metrics, except for VIF, two well-defined
clusters can be observed. One cluster is formed with all data
points corresponding to the natural contents (PeopleOnStreet
and Traffic), whereas another cluster is formed with all data
points corresponding to the synthetic content (Sintel2). The
amount of image noise is significantly different between
natural and computer-generated contents, which can explain
this clear separation. It seems that these objective metrics
evaluated synthetic content as having higher overall quality
compared to the natural scenes. This finding implies that
objective perception depends (for several common metrics) on
whether the content is naturally shot or computer-generated,
which is not the case with the subjective perception. Although
this finding is interesting and was not previously reported for
standard or high definition video, the size of the evaluated
dataset is too small (only one synthetic video and two natural
scenes) to draw any definitive conclusion. This clustering
effect is also due to the strong content dependency of these
metrics, as reported in previous studies. However, VIF seems
to be less content dependent as the data points are more packed
into a single cluster.

The linear, cubic, and logistic fittings, as defined in Sec-
tion IV, were applied in two different ways:

a) on all contents at once,
b) on each content separately.

In the latter case, the performance indexes were computed
separately on each content and then averaged across contents.
The fitting functions resulting from the different fittings ap-
plied on all contents at once are shown in Figure 2. Based on
these graphs, it is expected that content dependent metrics will
show lower performance in terms of the accuracy, consistency,
and monotonicity indexes when compared to VIF. It is also
expected that mapping objective scores to subjective scores
using a linear fitting, which does not consider non-linearities
and saturation effect of the human visual system, will exhibit
lower correlation with ground truth subjective scores when
compared to using a logistic fitting. However, for MS-SSIM
and VIF, the relation between objective scores and MOS
considering all data points seems to be more linear. Therefore,
the PCC values should be similar between the different fittings
for these two metrics. As it can be observed, the fitted
cubic and logistic functions are quite similar on each metric.
Therefore, the performance indexes obtained for these two
fittings should be also quite similar.

The fitting functions resulting from the different fittings
applied on each content separately are shown in Figure 3 and
Figure 4 for PSNR and VQM, respectively. Because of the
limited space, only these results are given, but they illustrate
general trends. As it can be observed, mapping objective scores
to subjective scores for each content independently signifi-
cantly increased the correlation with ground truth subjective
scores. In this case, the content dependency had no influence

as the data points of only one content were used in the fitting
process. Therefore, it is expected that the performance indexes
will be good for all fittings and metrics when the fitting is
applied on each content separately.

The accuracy, consistency, and monotonicity indexes, as
defined in Section IV, are reported in Table I (a), Table II (a),
and Table III (a) for the linear, cubic, and logistic fittings,
respectively. The results reported in this tables confirm the
analysis performed based on Figure 2 and Figure 3. For all
metrics, except VIF, a clear improvement can be observed in
terms of PCC, SROCC, RMSE, and OR when the fitting was
applied on each content separately rather than on all contents
at once. In this case, the PCC and SROCC were always higher
than 0.82 and 0.89, respectively. In the case of VIF, the PCC
and SROCC values were over 0.82 and 0.86, respectively,
when the fitting was applied on all contents at once. These
results confirm previous results obtained for standard and high
definition video showing that PSNR, VSNR, SSIM, MS-SSIM,
and VQM are highly content dependent, whereas VIF is less
content dependent.

When the fitting was applied on each content separately, the
obtained performance indexes were roughly similar between
cubic and logistic fittings, and slightly better when compared
to linear fitting. On the other hand, when the fitting was applied
on all contents at once, the performance indexes obtained
with cubic and logistic fittings were significantly better when
compared to linear fitting. These findings are also consistent
with evaluations of standard and high definition video. As pre-
dicted based on the graphical analysis, the PCC value of MS-
SSIM and VIF were quite similar across the different fittings.
Theoretically, if the fitting functions are strictly monotonic on
the interval of observed quality values, then the SROCC value
of one particular metric should be the same across fittings.
However, because of the numerical precision of floating-point
numbers, the logistic function can become monotonic instead
of strictly monotonic, especially on the horizontal asymptotes.
This phenomenon can be observed for SSIM and VQM when
the fitting was applied on all contents at once, for example.

All metrics seem to have good and similar performance in
terms of PCC, SROCC, RMSE, and OR when the fitting was
applied on each content separately. However, when the fitting
was applied on all contents at once, VIF seems to outperform
other metrics. To determine if the difference between VIF and
the other metrics is significant, statistical tests were performed
according to Section IV. The results of the statistical tests
are reported in Table I (b), Table II (b), and Table III (b)
for the linear, cubic, and logistic fittings, respectively. Each
entry in the table corresponds to the results of the statistical
tests performed on the following performance indexes (from
left to right): PCC, SROCC, RMSE, and OR. The statistical
tests were performed to determine whether the difference
between two performance index values corresponding to two
different metrics was statistically significant. In these results,
‘=’ means that there was no significant difference between
the two metrics, whereas ‘ 6=’ means that the difference was
significant.



Table I: Linear fitting.

(a) Accuracy, consistency, and monotonicity indexes.
All contents Average

PCC SROCC RMSE OR PCC SROCC RMSE OR
PSNR 0.1862 0.1818 20.3207 0.7333 0.8521 0.9111 6.6611 0.3667
VSNR 0.4929 0.4131 17.9960 0.7333 0.8253 0.8949 7.5384 0.5000
SSIM 0.2858 0.1818 19.8200 0.7667 0.8706 0.9071 6.4677 0.4000
MS-SSIM 0.6158 0.4429 16.2963 0.7000 0.8787 0.9152 6.3531 0.2667
VIF 0.8252 0.8661 11.6833 0.6667 0.8473 0.9071 7.3221 0.4333
VQM 0.2444 0.1804 20.0552 0.7333 0.8306 0.9071 7.7061 0.4333

(b) Statistical analysis.
PSNR VSNR SSIM MS-SSIM VIF VQM

PSNR ==== ==== ==== 6= 6=6== ====
VSNR ==== ==== ==== 6= 6=6== ====
SSIM ==== ==== ==== 6= 6=6== ====
MS-SSIM ==== ==== ==== =6=== ====
VIF 6=6= 6== 6= 6=6== 6= 6=6== =6=== 6= 6=6==
VQM ==== ==== ==== ==== 6= 6=6==

Table II: Cubic fitting.

(a) Accuracy, consistency, and monotonicity indexes.
All contents Average

PCC SROCC RMSE OR PCC SROCC RMSE OR
PSNR 0.5328 0.1818 17.5020 0.7333 0.9273 0.9111 5.0571 0.1667
VSNR 0.5965 0.4131 16.5995 0.7000 0.9023 0.8949 5.9134 0.2667
SSIM 0.5768 0.1818 16.8960 0.8000 0.9248 0.9071 5.3742 0.2333
MS-SSIM 0.6284 0.4429 16.0885 0.7333 0.9291 0.9152 4.5779 0.2000
VIF 0.8689 0.8661 10.2365 0.4000 0.9212 0.9071 5.6887 0.2333
VQM 0.5365 0.1804 17.4542 0.7333 0.8797 0.9071 6.5988 0.3000

(b) Statistical analysis.
PSNR VSNR SSIM MS-SSIM VIF VQM

PSNR ==== ==== ==== 6= 6=6= 6= ====
VSNR ==== ==== ==== 6= 6=6= 6= ====
SSIM ==== ==== ==== 6= 6=6= 6= ====
MS-SSIM ==== ==== ==== 6= 6=6= 6= ====
VIF 6=6= 6= 6= 6= 6=6= 6= 6= 6= 6=6= 6= 6=6= 6= 6= 6=6= 6=
VQM ==== ==== ==== ==== 6= 6=6= 6=

Table III: Logistic fitting.

(a) Accuracy, consistency, and monotonicity indexes.
All contents Average

PCC SROCC RMSE OR PCC SROCC RMSE OR
PSNR 0.5869 0.1818 16.7451 0.8333 0.9616 0.9111 4.4415 0.1333
VSNR 0.5792 0.4131 16.8598 0.7667 0.9533 0.9014 5.0867 0.2000
SSIM 0.6038 0.2761 16.4862 0.8000 0.9620 0.8998 4.6772 0.1667
MS-SSIM 0.6264 0.4429 16.1232 0.7333 0.9672 0.9079 3.8316 0.1667
VIF 0.8708 0.8661 10.1694 0.4000 0.9596 0.9071 4.9557 0.1667
VQM 0.6038 0.4750 16.4864 0.8000 0.8792 0.9071 6.7072 0.3000

(b) Statistical analysis.
PSNR VSNR SSIM MS-SSIM VIF VQM

PSNR ==== ==== ==== 6= 6=6= 6= ====
VSNR ==== ==== ==== 6= 6=6= 6= ====
SSIM ==== ==== ==== 6= 6=6= 6= ====
MS-SSIM ==== ==== ==== 6= 6=6= 6= ====
VIF 6=6= 6= 6= 6= 6=6= 6= 6= 6= 6=6= 6= 6=6= 6= 6= 6=6= 6=
VQM ==== ==== ==== ==== 6= 6=6= 6=



When the fitting was applied on each content separately,
the performance indexes were computed on only ten data
points. To avoid violating some of the assumptions made in
Section IV, the statistical tests were not performed in this
case. Therefore, the statistical tests were performed only on the
performance indexes computed when the fitting was applied
on all contents at once. When linear fitting was applied,
results of the statistical tests showed that the SROCC values of
VIF and MS-SSIM were significantly different whereas there
was no difference on the PCC, RMSE, and OR values. The
PCC, SROCC, and RMSE values of VIF were significantly
different to those of PSNR, VSN, SSIM, and VQM whereas
there was no difference on the OR values. In all other cases,
there was no significant difference between the PCC, SROCC,
RMSE, or OR values. When cubic or logistic fitting was
applied, results of the statistical tests showed that there was
a significant difference between the PCC, SROCC, RMSE,
and OR values of VIF and the other metrics. There was no
significant difference between the PCC, SROCC, RMSE, or
OR values of the other metrics.

VI. CONCLUSION

In this paper, the performance of several objective quality
metrics was evaluated on three different 4K UHD video
sequences. To evaluate the metrics performance, mean opinion
scores collected during a formal subjective evaluation were
used as ground truth. Results showed that metrics are content
dependent except for VIF, which is consistent with previous
findings for standard and high definition image and video
content. Applying a logistic fitting increases the performance
when compared to linear and cubic fitting. An interesting
finding is that the majority of metrics showed a shift in
objective values between synthetic and natural contents, with
the exception being VIF. However, the number of ultra-high
definition contents used in the dataset is not large enough
to draw general conclusions about the content dependency of
these metrics.
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