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Abstract—In this paper the Super-Resolution (SR) image regis-
tration and reconstruction problem is studied within the Bayesian
framework using a general sparse image prior combination.
The representation of the proposed priors as Scale Mixtures
of Gaussians (SMG), leads to the introduction of variational
parameters, for which degenerate distributions are assumed. In
the proposed method all the problem unknowns are automat-
ically estimated using variational techniques. An experimental
comparison between the proposed and state of the art methods
has been performed, on both synthetic and real images.

Index Terms—image processing; superresolution;

I. INTRODUCTION

Image SR is the process of obtaining a High Resolution
(HR) image from a set of degraded Low Resolution (LR)
images (see [1], [2] for a review). The basic principle in
SR is that changes in LR images caused by the blur and the
camera (and/or scene) motion provide additional information
that can be utilized to reconstruct the HR image. Usually
SR methods include two parts: registration, where the motion
between LR images, or updated versions of them, is estimated,
and image reconstruction, where the HR image is recovered
from the LR images. In this paper, both registration and
reconstruction are studied within the Bayesian framework. In
the Bayesian framework a prior model on the HR image to be
reconstructed is introduced. Its aim is to encapsulate our prior
image knowledge and consequently to avoid the ill-posedness
of the image reconstruction problem.

Sparse image priors are known to produce good results
in Bayesian image restoration, in general, and in SR, in
particular (see [3], [4]). An image prior is considered as
sparse when it is Super-Gaussian (SG) [5], i.e., compared
to the Gaussian distribution, it has heavier tails and it is
more peaked. These distributions are referred to as sparse
since most of the distribution mass is located around zero
(hence strongly favoring zero values), but the probability of
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occurrence of large signal values is higher compared to the
Gaussian distribution. Recently, a new general formalism for
SG image priors has been proposed and successfully applied to
the blind deconvolution problem [6]. In this paper we explore
the application of the general formalism proposed in [6] to the
SR problem and propose the use of a product of independent
Gaussian distributions as the image prior. This representation
will allow us to estimate all the unknowns of the SR problem.

The rest of this paper is organized as follows. Section II
provides the mathematical model for the LR image acquisi-
tion process. We provide the description of the hierarchical
Bayesian framework modeling the unknowns in Section III.
The inference procedure to develop the proposed methods is
presented in Section IV. We demonstrate the effectiveness of
the proposed methods with experimental results in Section V
and conclusions are drawn in Section VL.

II. PROBLEM FORMULATION

Let us consider an imaging process that generates an LR
image set {yx} = y1,...,yr from the HR image x. The
LR images y; and the HR image x consist of N and PN
pixels, respectively, where the integer P > 1 is the increasing
resolution factor. In this paper we adopt a matrix-vector
notation, that is, images y; and x are arranged as N x 1 and
PN x 1 vectors, respectively. The imaging process introduces
warping, blurring and downsampling, which is modeled as

vi = AHLC(sg)x + ng = B(sk)x + ng, (D

where A is the N x PN downsampling matrix, Hj the
PN x PN blurring matrix, C(s;) the PN x PN warping
matrix generated by the motion vector si, and ny is the
N x 1 acquisition noise. We assume that the blurring Hy,
matrices are known. The effects of downsampling, blurring,
and warping can be combined into a single N x PN system
matrix B(sy). Given Eq.(1), the super resolution problem is
to find an estimate of the HR image x from the set of LR
images {yx} using prior knowledge about {n;} and x.
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Usually the motion vector set {sy} is not known, so it has to
be estimated along with the HR image x. We consider a motion
model consisting of translational and rotational motion, that is,
sk = (O, hi, vi)T, where 6y, is the rotation angle, and hj, and
vy, are respectively the horizontal and vertical translations of
the k" HR image with respect to the reference frame x. The
detailed description of the explicit form of the C(sj) matrices
can be found in [4].

III. HIERARCHICAL BAYESIAN MODELS

In the following subsections we provide the description of
individual distributions used to model the unknowns.

A. Observation Model

Using the model in Eq.(1), assuming zero-mean white
Gaussian noise ny with inverse variance (precision) (i, and
statistical independence of the noise among the LR image ac-
quisitions, the conditional probability of the set of LR images
{yx}, given x, the motion vectors {s;} = {s1,...,s.}, and
{Br} ={B,...,BL} can be expressed as

L
[TV (elBsk)x, 1/8:) . (@)

k=1

P({yr}x, {sx} {Br}) =

B. A General Sparse Image Prior Combination

In this paper we utilize the following combination of general
sparse priors

PN

d
= H H p(z(i)) 3)

on the unknown filtered images set {z} = {z1,..,2z4}, where
z; = F;x, and F; are convolution operators. In Eq. (3) z; (7))
denotes the 7 component of the z; vector. Notice that in Eq. (3)
we are approximating the partition function as an independent
product of partition functions.

The general sparse priors p(z;(i)) of Eq.(3) are defined as

p(z;(i)) = yexp (—p(z;(i))) , )

where ~ is a normalization constant, that is 7_1 =

J exp[—p(w)] du, and p(.) is a penalty function symmetric
around O (see [6]). Sparsity is achieved when the function
p leads to the suppression of most coefficients z;(¢) while
preserving a small number of important features.

Formally, for p(u) = yexp [—p(u)] to be SG, the function
p(4/s) has to be increasing and concave for s € (0,00) [5].
This condition is equivalent to p’(s)/s being decreasing on
(0,00). This allows us to express p(z;(i)) of Ec. (4) as an
SMG, ie.,

— [Nl 1/90(6) de. )

Using the SMG representation, and introducing the new
variables {nq} = {n1,.. ,na}, with n; € RN it is possible

to transform the general sparse prior p(x) of Eq.(3) to the
Gaussian form
d PN

= [T IV (@10, 1/n;(0)p(n;(0) . (6)

j=11i=1

{nd}a

In this paper we use the following image prior

d PN
p({ma}, x) = [T [TV @10, 1/n;(0), @
j=1li=1
which can be written as
d PN
p({na},x HHN zj(9)]0,1/n;(0)p(n; (1)), (®)

where p(n;(7)) is for all 4 and j a degenerate distribution.
This SMG representation allows us to easily perform infe-
rence using a variational procedure, (see [6], for details).

C. Hyperpriors on the Hyperparameter

The hyperparameters {0} are crucial for the performance
of the SR algorithm. For their modeling, we employ Gamma
distributions

L
p({Br}) = H (Brlag,  b%,) ©)

where aj > 0 and b3 > 0 are the shape and scale pa-
rameters, respectively. The hyperpriors are chosen as Gamma
distributions since they are conjugate priors for the Gaussian
distribution.

D. Modeling the uncertainties in the registration parameters

Let us denote by {s”} the estimate of {sx} = {s1,...,s.}
obtained from LR observations in a preprocessing step, using
registration algorithms, such as the ones reported in [7].
As these estimates are in general inaccurate, we model the
motion parameters, as stochastic variables following Gaussian
distributions with a priori means set equal to the preliminary
motion parameters sk, that is,

p({sk}) = HN (sklsy, B%),

k=1

(10)

with E? the a priori covariance matrix. The parameters
sh and Z incorporate prior knowledge about the motion
parameters into the estimation procedure. If such knowledge is
not available, s} and (E£)71 can be set equal to zero, which
makes the observations solely responsible for the estimation
process.

E. Joint Model
Combining Egs. (2),(8),(9)&(10) we obtain the following
joint probability distribution
p(0,{yx}) = p({yr}/x, {si}, {Br})x
p({na}, x)p({srH)p({na})p({Bc}), (D

where © = {{nq},x,{sk},{0k}} denotes the set of all
unknowns.



IV. VARIATIONAL BAYESIAN INFERENCE

The Bayesian inference is based on the posterior distribution
p(® | y) which can be variationally approximated by the
a(©) = [lceea(C) distribution, where the unknown distri-
butions ¢(¢), ¢ € © are obtained from

a(¢)  exp ((1og [p(©.¥)e, ) -

where ©; denotes the set © with ¢ removed, and
Eqe.) [] =< - >e,. In the following, the subscript of the
expected value will be removed when it is clear from the
context.

From Eq.(12), we obtain for q(x)

a(x) o< exp { B llog(p({y}x, {51}, (B D) o,
+E [log(p({ma}, X)) () } -

which is the multivariate Gaussian q(x) =

(12)

(13)

N (x|, covy(x))

with

d
covq(x) = ZF diag(w;)F; + ZBkE (sk) tB(sk)]

j=1
(14)
and
L
X = COVy(x) Z BcE B(sk)]y, Y- (15)
k=1

In Eq.(14), the w; for j =1,...,
components

w; (1)
which for our degenerate p(n;(¢)) distributions, take the value

E [le(i)]nj(i) Z?(l)]x,

d, are PN vectors with

:E[nj(i)]m(i), for i=1,...,PN, (16)

= 1/ (17)

E[27(i)]x = Eq(x) [X]'FiI"F jEqx)[x] + tr(covyx)FI"F;),

(18)

where J% is the single-entry matrix with zero everywhere
except at the entry (¢,¢), which is equal to one. The estimation
of E[2(i)]x, using Eq. (18), requires the evaluation of the
trace of a matrix product involving the covariance matrix
COVy(x)- As this covariance matrix cannot be obtained in exact
form, the Jacobi approximation has been applied in this paper.
The posterior distribution approximations q(/3x) are obtai-
ned from Eq. (12) as
1+a B, %

a(B) 5

exp =1 (0, + 58 I - BB 7] )]
(1)

Also from Eq.(12) the posterior distribution approximation
for q(si) is found as

atsw) ocexp 3 (GRIE [ - Blowx ],

-8 @) s -s)) . @)
The computation of E[B(sy) ], in Eq.(l5),
E[B(sk)'B(st)],, in Eq.(14), and E[|lys — B(sp)x ||?]

in Eq.(20), are not straightforward since B(sy) is nonlinear
with respect to s;. In [4] these estimations were performed
by expanding B(sy), using its first-order Taylor series,
around the mean value < s >= 8§, = (O, hy, 0x)T of the
distribution q(sy). We follow here the same approach, and
refer to [4], where the detailed derivation and the resulting
expressions for these estimated values may be found.

The proposed algorithm is summarized below in Algo-
rithm 1.

Algorithm 1 Variational Bayesian Super Resolution

Require: : Initial values for HR image, registration parame-

ters and hyperparameters.

while convergence criterion is not met do
1. Compute E [nj]nj using Eq.(17).
2. Estimate HR image % by solving Eq.(15).
3. Estimate the registration parameters using Eq.(20) (See
[4D.
4. Estimate the distributions of the hyperparameters {5y, }
using Eq. (19).

V. EXPERIMENTAL RESULTS

The proposed prior model of Eq. (3), allows for the com-
bination of several filtered images z;, and in this section
the following combinations have been considered: 1) NF2
combines horizontal and vertical first order differences (f.0.d.),
2) NF3 horizontal and vertical f.o.d. with the Laplacian filter,
3) NF4 horizontal, vertical and diagonal f.o.d., and 4) NF5
combines NF4 with the Laplacian filter.

In all experiments reported below, the initial values of
Algorithm 1 are chosen as follows: The HR image estimate
is initialized using the bicubic interpolation of observation
y1. The inverse covariance matrices (Ei)_1 are set equal to
zero matrices, that is, no prior information is utilized about
the uncertainty of motion vectors. The covariance matrices
in Algorithm 1 are initially set equal to zero. The rest of
the algorithm parameters are automatically calculated from
the initial HR image estimate using the algorithmic steps
provided in Algorithm 1. As convergence criterion we used
[x™ — x"71|2/[|x" 1| < 107°, where x" and x"~! are
the image estimates at the n-th and (n — 1)-st iterations,
respectively.

Let us first perform a numerical comparison, on the syn-
thetic sequences of five LR images generated, from 132 x 132
fragments of the images showed in Fig. 1, through warping,
blurring and downsampling by a factor of v/P = 2..



(a)

Fig. 1: Images used in the synthetic experiments.

The warping consisted of translations of (0,0)%(0,0.5)¢,
(0.5,0)%, (1,0)" and (0,1)* pixels respectively, and rotations
of 0°, 3% —3°5° and —5°. A 3 x 3 uniform PSF has been
used for blurring. The LR images obtained after the warping,
blurring and downsampling operations are further degraded by
additive white Gaussian noise at SNR levels of 10 dB, 15 dB,
20 dB and 25 dB. At each SNR level, ten noise realizations
have been utilized.

In this experiment, the quality of the different restored
HR images has been measured in terms of the Peak Signal-
to-Noise Ratio (PSNR), which is defined as PSNR =
101log;q ﬁ, where X and x are the estimated and original
HR images, respectively, with their pixel values normalized to
lie in the interval [0, 1].

Fig. 2 shows a quantitative comparison in terms of PSNR, of
the restorations of the images in Fig. 1 at different noise levels,
obtained using the following methods: 1) bicubic interpolation
(denoted by BBC), 2) the SR method in [8] (denoted by ZMT),
which is based on backprojection with median filtering, 3) the
robust SR method in [9] (denoted by RSR), which is based
on bilateral TV priors, 4) the variational SR method using
a TV prior in [10] (denoted by TV), 5) the variational SR
method in [4] based in a combination of /1 and SAR priors
(denoted by LISAR), and our proposed algorithm 1 using the
filter combinations 6) NF2, 7) NF3, 8) NF4 and 9) NF5. It
can be observed in Fig. 2, that the proposed method provides
better results than the other methods under comparison, except
for the NF2 filter combination at high noise levels.

Let us finally perform a qualitative study of the performance
of the proposed method with two real sets of LR observations
from a Sony Nex5 digital camera. Two sets of 19 100 x 100
RAW images have been obtained using an ISO sensitivity of
6400. Afterward, and assuming a 5 x 5 A/(0,1) integration
PSF, superresolved images by a factor /P = 2 were obtained
from each sequence using different SR methods.

Fig. 3 and Fig. 4 show the HR reconstructions obtained

()

from these sets of real observations using BBC, RSR, ZMT,
TV, LISAR and NF5 methods. In both cases, the proposed
method suppresses noise better than the other methods, and
provides better reconstructions.

VI. CONCLUSIONS

In this paper the SR image registration and reconstruction
problem has been studied, within the Bayesian framework,
using a general sparse image prior combination. A new SR
method has been proposed, which allows for the automatic
estimation of all the problem unknowns using variational
techniques. The proposed method performs better than other
state of the art SR methods, specially when the NF3, NF4 and
NF5 filter combinations are used for the prior.
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Fig. 2: Mean PSNR values, and standard deviations, corresponding to different methods and noise levels: (a) for the image in
Fig. 1(a), and (b) for the image in Fig. 1(b).
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Fig. 3: HR reconstruction of real images using the following methods: (a) BBC, (b) RSR, (c) ZMT, (d) TV, (e) LISAR and (f)
NF5
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Fig. 4: HR reconstruction of real images using the following methods: (a) BBC, (b) RSR, (c) ZMT, (d) TV, (e) LISAR and (f)
NF5



