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Abstract—The problem of three-dimensional (3-D) wind profile

prediction is addressed based a trinion wind model, which

inherently reckons the coupling of the three perpendicular

components of a wind field. The augmented trinion statistics are

developed and employed to enhance the prediction performance

due to its full exploitation of the second-order statistics. The

proposed trinion domain processing can be regarded as a more

compact version of the existing quaternion-valued approach, with

a lower computational complexity. Simulations based on recorded

wind data are provided to demonstrate the effectiveness of the

proposed methods.

Index Terms—wind profile prediction, trinion-valued repre-

sentation, least mean squares, adaptive filtering, widely linear

processing

I. INTRODUCTION

Hypercomlex numbers are high-dimensional extensions of

real numbers [1], [2], and they have been introduced to solve

multivariate signal processing problems, such as colour image

processing [3]–[6], vector-sensor array signal processing [7]–

[12], human gesture spotting [13], [14], wind profile predic-

tion [15]–[17], [22], and wireless communications [23]. In

the last application, anemometer readings are modeled with

hypercomplex numbers and the wind profile is predicted by

adaptive filtering algorithms. In particular, pure quaternions

have been widely used to model three-dimensional (3D) wind

speed. When external atmospheric parameters are available, a

full quaternion-valued model can be considered [15].

The quaternion-valued model leads to improved perfor-

mance over real-valued models, since it accounts for the

coupling of the wind measurements and can be extended to

exploiting the augmented quaternion statistics [15]. However,

pure quaternions do not form a mathematical ring [18], since

the product of two pure quaternions is not a pure quaternion

in general. As a result, the related adaptive algorithms for 3-D

wind profile prediction initialised in the pure quaternion will

have to work in the full quaternion domain. The prediction

results have to be truncated from full quaternions to pure

quaternions, implying redundant computations in the update

process. For example, it takes 16 real-valued multiplications

and 12 real-valued additions to implement a full-quaternion-
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Fig. 1. Trinion-valued three-dimensional wind speed model.

valued multiplication. By comparison, it only takes 9 real-

valued multiplications and 6 real-valued additions to calculate

the multiplication of any two 3-D numbers.

In this work, we aim to develop a more compact 3-D wind

speed model based on a 3-D mathematical ring called trinions,

termed by an anonymous author who provided all possible

definitions of 3-D numbers [19]. We first define the gradient

operation in the trinion domain and then derive the least mean

squares (LMS) adaptive algorithm, which is further extended

to augmented statistics.

The rest of this paper is organised as follows. A brief

introduction to trinions is provided in Section II. The trinion-

valued LMS (TLMS) algorithm is developed in Section III,

and the augmented TLMS (ATLMS) algorithm in Section IV.

Simulation results are presented in Section V and conclusions

are drawn in Section VI.

II. TRINIONS

As shown in Fig. 1, the 3-D wind speed is a tri-variate

signal composed of three perpendicular components, and can

be modeled with 3-D hypercomplex numbers (see Fig. 1).

There are various definitions of a 3-D number v composed

of one real part (va) and two imaginary parts (vb and vc),

v = va + ıvb + vc, (1)

according to definitions about the relationships among the

three base elements 1, ı, and .



To form an Abelian group of these three, the following rules

apply [20]:

ı2 = , ı = ı = −1, 2 = −ı . (2)

Trinions subject to the above rules form a commutative ring,

namely, for two trinions v and w, we have vw = wv.

The modulus of v is given by [20]

|v| =
√

v2a + v2b + v2c . (3)

We define the following conjugate of v,

v∗ = va − vb − ıvc, (4)

so that |v|2 is equal to the real part of vv∗, i.e. |v|2 = ℜ(vv∗).

To develop an LMS-like algorithm in the trinion domain,

the trinion-valued gradient needs to be defined. In the complex

domain, a variable z and its conjugate can be viewed as two

independent variables, based on which the complex-valued

gradient can be defined [21]. Similarly, in the quaternion

domain, a variable q and its three involutions can be viewed

as four independent variables, based on which the quaternion-

valued gradient can be derived [22], [24]. However, to our best

knowledge, the trinion involution is not available in general. In

this paper, we define the following gradients of a function f(x)

with respect to the trinion-valued variable x and its conjugate,

∇xf =
1

3

(

∇xa
f − ∇xb

f − ı∇xc
f
)

,

∇x
∗f =

1

3

(

∇xa
f + ı∇xb

f + ∇xc
f
)

,

(5)

respectively, where x = xa + ıxb + xc.

Unlike the quaternion-valued gradient, the trinion-valued

gradient remains the same, no matter which side of the sub-

gradients the imaginary units ı and  are on, since trinions are

commutative. We can then calculate the derivatives of some

simple functions, for instance,

∂x

∂x
=

∂x∗

∂x∗
= 1,

∂x

∂x∗
=

∂x∗

∂x
=

1− ı+ 

3
.

(6)

III. TRINION-VALUED LMS FILTERING

Similar to the LMS algorithm in the complex-valued do-

main, the trinion-valued error e(n) is given by

e(n) = d(n)−w
T(n)x(n), (7)

where d(n) is the reference signal, w(n) is the weight vector,

x(n) = [x(n−P );x(n−P − 1); · · · ;x(n−L−P +1)]T is

the filter input, L is the filter length, and P is the prediction

step. The cost function is expressed as

J(n) = |e(n)|2. (8)

Using the steepest descent method, the following gradient need

to be calculated

∇w
∗J(n) =

1

3

[

∇wa
J(n) + ı∇wb

J(n) + ∇wc
J(n)

]

. (9)

For details of the calculation, please refer to Appendix at the

end. Using results there, the update of the weight vector can

be obtained as

w(n+ 1) = w(n) + µe(n)x∗(n), (10)

where µ is the step size. The algorithm formulated above is

termed as the trinion-valued LMS (TLMS) algorithm.

IV. AUGMENTED TRINION STATISTICS

A zero-mean trinion-valued vector v is composed of three

zero-mean real-valued random vectors va, vb, and vc, and

their complete second-order statistics can be found in the

following six real-valued covariance matrices:

Cvava
= E{vav

T
a }, Cvbvb

= E{vbv
T
b },

Cvcvc
= E{vcv

T
c }, Cvavb

= E{vav
T
b },

Cvbvc
= E{vbv

T
c }, Cvcva

= E{vcv
T
a }.

(11)

And they can be more efficiently represented by three trinion-

valued covariance matrices:

Cvv = E{vvH},

Cvv
ı = E{vvıH},

Cvv
 = E{vvH},

(12)

where superscript H denotes the Hermitian transpose and the

two additional mappings of v are defined as

v
ı = vb − ıva − vc,

v
 = vc − ıvb − va.

(13)

Neither of these two mappings is an involution, and they are

defined as shorthand notations only. Then we can obtain

Cvava
=

1

2
ℜ(Cvv + Cvv

ı),

Cvbvb
=

1

2
ℜ(Cvv

ı − Cvv
ı),

Cvcvc
=

1

2
ℜ(Cvv − ıCvv

),

Cvavb
=

1

2
ℜ(Cvv

ı + Cvv
),

Cvbvc
=

1

2
ℜ(ıCvv − Cvv

),

Cvcva
=

1

2
ℜ(Cvv

ı − ıCvv).

(14)

To take the complete second-order statistics into consideration,

we need to make use of the augmented input vector composed

of the original input vector x(n) and its two mappings

x
ı(n),x(n), namely,

x
aug(n) =





x(n)

x
ı(n)

x
(n)



 , (15)

and the predicted estimate y(n) will be given by

y(n) = w
augT(n)xaug(n)

= w
T
1 (n)x(n) +w

T
2 (n)x

ı(n) +w
T
3 (n)x

(n),
(16)



Fig. 2. Predicted result from the TLMS algorithm.

where w
aug = [w1;w2;w3]. Analogous to the derivation of

the TLMS algorithm, the update equation of the augmented

TLMS (ATLMS) algorithm is given by

w
aug(n+ 1) = w

aug(n) + ρeaug(n)xaug∗(n), (17)

where ρ is the step size.

The computational complexity for each update of the weight

vector of the trinion-based and quaternion-based filtering algo-

rithms are summarised in Table I. It can be seen that the trinion

model can effectively reduce the computational complexity

compared to the quaternion model.

TABLE I

COMPUTIONAL COMPLEXITY PER UPDATE OF THE WEIGHT VECTOR

Algorithm Real multiplications Real additions

QLMS [17] 16L+ 4 16L

Augmented QLMS 64L+ 4 64L

TLMS 9L+ 3 9L

Augmented TLMS 27L+ 3 27L

V. SIMULATIONS

In this section, both proposed algorithms (TLMS and

ATLMS) are applied to anemometer readings provided by

Google’s RE<C Initiative [25]. The wind speed measured on

May 25, 2011 is used for demonstration. The step size is set

to be 6× 10−5. The filter length is 8, and the prediction step

is 1. All algorithms are initialised with zeros. The predicted

results provided by TLMS and ATLMS algorithms are shown

in Figs. 2 and 3, respectively. From the results, we can see

that both algorithms can track the wind data effectively.

The learning curves averaged over 200 trials of the proposed

algorithms are shown in Fig. 4, compared with the quaternion-

based QLMS and AQLMS algorithms. It can be observed that

both augmented algorithms (AQLMS and ATLMS) have a

Fig. 3. Predicted result from the ATLMS algorithm.

Fig. 4. Averaged learning curves.

faster convergence rate than the original ones (QLMS and

TLMS), due to their full exploitation of the second-order

statistics. Meanwhile, the proposed TLMS algorithm has a

similar performance with the QLMS algorithm, while the

ATLMS algorithm is comparable with the AQLMS algorithm.

However, as shown in Table I, the proposed trinion-based

algorithms have a much lower computational complexity.

VI. CONCLUSION

A compact model for three-dimensional wind profile pre-

diction based on trinion algebra has been proposed, with two

LMS-type adaptive filtering algorithms derived using partial

and full trinion-valued second-order statistics, respectively.

Numerical simulations using recorded wind data have shown

that the two algorithms have a similar performance to their



quaternion-valued counterparts, but with a much lower com-

putational complexity.

APPENDIX

The cost function J(n) as a function of real-valued variables

is given by

J = (da −w
T
axa +w

T
b xc +w

T
c xb)

2

+ (db −w
T
axb −w

T
b xa +w

T
c xc)

2

+ (dc −w
T
axc −w

T
b xb −w

T
c xa)

2,

(18)

where the time index ‘n’ has been dropped for the sake of

compact notation. Then the three component-wise gradients

can be computed as

∇wa
J = 2

[

(xax
T
a + xbx

T
b + xcx

T
c )wa

+ (xbx
T
a + xcx

T
b − xax

T
c )wb

+ (xcx
T
a − xax

T
b − xbx

T
c )wc

− (daxa + dbxb + dcxc)
]

,

(19)

∇wb
J = 2

[

(xax
T
b + xbx

T
c − xcx

T
a )wa

+ (xcx
T
c + xax

T
a + xbx

T
b )wb

+ (xcx
T
b − xax

T
c + xbx

T
a )wc

+ (daxc − dbxa − dcxb)
]

,

(20)

∇wc
J = 2

[

(xax
T
c − xbx

T
a − xcx

T
b )wa

+ (xbx
T
c − xcx

T
a + xax

T
b )wb

+ (xax
T
a + xcx

T
c + xbx

T
b )wc

+ (daxb + dbxc − dcxa)
]

.

(21)

Finally, we can obtain the expression for the gradient of J(n)

by substituting (19)–(21) into (9),

∇w
∗J(n) =

2

3
e(n)x∗(n), (22)

which yields the update equation in (10), as the term 2
3

can

be absorbed into the step size.
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