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Abstract—Broadband wireless channels usually have the sparse 

nature. Based on the assumption of Gaussian noise model, 

adaptive filtering algorithms for reconstruction sparse channels 

were proposed to take advantage of channel sparsity. However, 

impulsive noises are often existed in many advance broadband 

communications systems. These conventional algorithms are 

vulnerable to deteriorate due to interference of impulsive noise. 

In this paper, sign least mean square algorithm (SLMS) based 

robust sparse adaptive filtering algorithms are proposed for 

estimating channels as well as for mitigating impulsive noise. By 

using different sparsity-inducing penalty functions, i.e., zero-

attracting (ZA), reweighted ZA (RZA), reweighted L1-norm 

(RL1) and Lp-norm (LP), the proposed SLMS algorithms are 

termed as SLMS-ZA, SLMS-RZA, LSMS-RL1 and SLMS-LP. 

Simulation results are given to validate the proposed algorithms. 

Keywords—sparse adaptive channel estimation; sign least mean 

square (SLMS); sparsity-inducing penalty; alpha-stable noise 

model. 

I.  INTRODUCTION 

   Broadband transmission is becoming more and more 

important technique in advanced wireless communications 

systems [1]–[3]. The main impairments to the systems are due 

to multipath fading propagation as well as additive noises. 

Hence, accurate channel state information (CSI) is required for 

coherence detection [1]. Based on the assumption of Gaussian 

noise model, channel estimation has been extensively studies 

in the literatures [4]–[8]. However, these methods may 

unsuitable to apply directly in estimating channel under non-

Gaussian noise environment. For example, the performance of 

SOS-LMS [4] is vulnerable to deteriorate by strong impulsive 

noise interference in advanced communications systems [9]. 

Such impulsive noise, which results from natural or man-made 

electromagnetic waves, usually has heavy-tailed distribution 

and violates the commonly used Gaussian noise assumption 

[10]. Hence, accurate noise model is one of important 

technical issues for designing dependable systems.  

    The aforementioned impulsive noise can be described by 

the family of alpha-stable distributions [11] which can also 

model many impulsive noise processes in communications 

channels and in fact, includes the Gaussian density as a special 

case. To mitigate the harmful interferences, it is necessary to 

develop robust channel estimation algorithms. Based on the 

assumption of dense finite impulse response (FIR), recently, 

several effective adaptive channel estimation algorithms have 

been proposed to achieve the robustness against impulsive 

interferences [12]–[14]. In [12], variable step-size (VSS) sign 

algorithm based adaptive channel estimation was proposed to 

achieve performance gain. In [13], an standard VSS affine 

projection sign algorithm (VSS-APSA) was proposed and its 

improved version was also proposed in [14]. However, FIR of 

real wireless channel is often modeled as sparse or cluster-

sparse and hence many of channel coefficients are zeros [15] 

[16]. However, these algorithms may unable to exploit sparse 

channel structure information and accurately there are some 

performance gain could be obtained if we can develop 

advanced adaptive channel estimation methods.  

    In this paper, we propose four sparse SLMS algorithms by 

adopting four sparsity-inducing penalty functions, i.e., zero-

attracting (ZA) [7], reweighted zero attracting (RZA) [7], 

reweighted ℓ1-norm (RL1) [17] and ℓ𝑝 -norm (LP), to exploit 

channel sparsity as well as to mitigate impulsive interferences. 

Our contribution of this paper can be summarized as follows. 

First, cost function of SLMS-ZA is constructed and the 

corresponding update equation is derived. Second, SLMS-

RZA, SLMS-RL1 and SLMS-LP are developed as well. At 

last, several representative simulation results are provided to 

verify the effectiveness of the proposed algorithms. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

     Let us consider an additive alpha-stable noise interference 

channel, which is modeled by the unknown N-length finite 

impulse response (FIR) vector [ , , , ]TNw w w w 0 1 1 at 

discrete time-index n . The ideal received signal is obtained as 

 ( ) ( ) ( ),Td n n z n w x                           (1) 

where ( ) [ ( ), ( ), , ( )]Tn x n x n x n N   x 1 1  is the input 

signal vector of the 𝑁 most recent input samples and 𝑧(𝑛) is a 

𝛼 -stable noise. The characteristic function of alpha-stable 

process is defined as 

   ( ) exp sgn( ) , ,p t j t t j t t
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Here, ( , ] 0 2 denotes the characteristic exponent to measure 

the tail heaviness of the distribution, i.e., smaller   indicates 

heavier tail and vice versa. In addition, one can find that the 

Gaussian process is a special case of the paper, we assume that 

alpha-stable noise when  2 .   0  represents the 

dispersive parameter to act a similar role to the variance of 

Gaussian distribution; [ , ]  1 1  denotes the symmetrical 

parameter which controls symmetry scenarios about its local 

parameter 𝛿. Throughout noise is symmetrical in the case of  

  0  as well as  0 . The objective of adaptive channel 

estimation is to perform adaptive estimate of ( )nw  with 

limited complexity and memory given sequential observation 

{ ( ), ( )}d n nx  in the presence of additive noise ( )z n . That is 

to say, the estimate observation signal ( )y n  is given as 

 ( ) ( ) ( ),Ty n n nw x                                 (4) 

where ( )nw  is an 𝑁-dimensional signal vector of the unknown 

system; ( )z n  describes the measurement noise with variance 

n
2

. By combining (1) and (4), the estimation error ( )e n  is 

 ( ) ( ) ( ) ( ) ( ) ( ),Te n d n y n z n n n   x v             (5) 

where ( ) ( )n n v w w  is the estimate error of ( )nw  at 

iteration 𝑛. The cost function of standard LMS was written as 

     2( ) 1 2 ( ).ZAG n e nw                           (6) 

The update equation of LMS was derived as 
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where   is step-size. To keep stable of gradient descend, the 

range of   is chosen as ( , ) 0 2 . To mitigate impulsive 

noise, then the standard SLMS [12] was proposed as 

  ( 1) ( ) sgn ( ) ( ),n n e n n  w w x                (8) 

where sgn( )  denotes sign function, i.e., sgn( )x 1  for x 0 , 

sgn( )x  1  for x 0  and sgn( )x 0  for x 0 .  

III. STABLE SPARSE ADAPTIVE FILTERING ALGORITHMS  

    To full take advantage of channel sparsity, optimal sparse 
constraint function (i.e., ℓ0 -norm) [18] is utilized as sparse 
SLMS algorithm for estimating channels in impulsive 
interference environments. By virtual of the ℓ0-norm as for 

sparsity-inducing penalty function on channel estimate ( )nw , 

mathematically, the cost of function of optimal sparse SLMS 
is constructed as 

    ( ) ( ) ( ) ,L LG n e n n w w2
0 0 0

1 2               (9) 

where 
0

 represents ℓ0 -norm function and L 0 denotes the 

regularization parameter to balance the instantaneous updating 

error and sparsity of ( )nw . In the perspective of mathematical 

theory, ℓ0 -norm can exploit most sparsity information on 

sparse channel estimation. However, computing the ℓ0-norm 

is a NP-hard (non-deterministic polynomial-time hard) 

problem [18]. Hence, it is necessary to consider computable 

sparse constraints on sparse channel estimation. By means of 

four sparsity functions, in the subsequent, four sparse SLMS 

algorithms, i.e., SLMS-ZA, SLMS-RZA, SLMS-RL1 and 

SLMS-LP, are proposed to exploit the channel sparsity as well 

as to mitigate the impulsive interferences simultaneously. 

A. Proposed algorithm: SLMS-ZA  

    According to (9), one can replace the ℓ0 -norm sparse 
constraint with ℓ1-norm function [19]. Then, cost function of 
LMS-ZA was constructed as 

    ( ) ( ) ( ) ,ZA ZAG n e n n w w2
1

1 2            (10) 

where ZA denotes a regularization parameter to balance  

estimation error and ℓ1-norm sparsity function of the ( )nw . 

According to (10), hence, the update equation of LMS-ZA was 

derived as 
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where ZA ZA   is decided by   and ZA . With respect to 

estimate vector ( )nw , SLMS-ZA is proposed as 

    ( ) ( )+ sgn ( ) ( ) sgn ( ) .ZAn n e n n n   w w x w1   (12) 

B. Proposed algorithm: SLMS-RZA 

    It was well known that more strong sparse constraint could 
exploit  sparsity more efficient [17]. This principle implies 
that channel estimation performance could be improved by 
using more efficient sparse approximation function even if in 
the presence of impulsive noises. Hence, the cost function of 
LMS-RZA is written as 

    ( ) ( ) log ( ) ,
N

RZA i RZA RZA i
i

G w n e n w n 
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where RZA 0   is a regularization parameter to balance the 

estimation error and sparsity of  log ( )
N

RZA ii
w n






1

0
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Likewise, the corresponding update equation was derived as 
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where RZA RZA RZA   . The matrix-vector form of (14) 

can be rewritten as 

 sgn ( )
( ) ( ) ( ) ( ) ,

( )

RZA

RZA

n
n n e n n

n
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where reweighted factor is set as RZA 20  [7] to exploit 

channel sparsity efficiently. In the second term of (15), please 

notice that channel coefficients ( ) ,  , , ,iw n i N 0 1 1  are 

replaced by zeroes in high probability if under the threshold 

RZA1 . Hence, one can find that SLMS-RZA can exploit 



sparsity and mitigate noise interference simultaneously.  Then 

the SLMS-RZA can be developed as 

  
 sgn ( )

( ) ( ) sgn ( ) ( ) .
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C. Proposed algorithm: SLMS-RL1  

Beside the RZA-type algorithm, RL1 minimization for 
adaptive sparse channel estimation has a better performance 
than L1 minimization that is usually employed in compressive 
sensing [17]. It is due to the fact that a properly reweighted ℓ1  
norm (RL1) approximates the ℓ0-norm, which actually needs 
to be minimized, better than ℓ1 -norm. The cost function of 
LMS-RL1 was constructed as 

     2
1 1 1

( ) 1 2 ( ) ( ) ( ) ,RL RLG n e n n n w f w         (17) 

where RL 1  is the weight associated with the penalty term and 

elements of the N1  row vector ( )nf  are set to 

 [ ( )] ,  , , , ,
[ ( )]

i
RL i

n i N
n

  
 

f
w1

1
0 1 1

1
    (18) 

where RL 1  being some positive number and hence 

[ ( )]in f 0  for , ,...,i N 0 1 1 . The update equation can be 

derived by differentiating (17) with respect to ( )nw . Then, the 

resulting update equation of LMS-RL1 is 
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Please notice that in Eq. (20), since   sgn ( ) Nn f 11 , hence 

one can get    sgn ( ) ( ) sgn ( )n n nf w w . Note that although 

( )nw  changes in every stage of this sparsity-aware SLMS-

RL1 algorithm, it does not depend on ( )nw . Hence the cost 

function ( )RLG n1  is convex as well. According to (20), 

SLMS-RL1 is proposed as  

  
 sgn ( )

( ) ( ) sgn ( ) ( ) .
( )

RL

RL

n
n n e n n

n
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D. Proposed algorithm: SLMS-LP 

Aforementioned three sparse SLMS algorithms are convex 

algorithms. Accurately, nonconvex sparse constraints, e.g., ℓ𝑝-

norm, can be also utilized to exploit channel sparsity. In [5], 

LMS-LP based adaptive sparse channel estimation method has 

been proposed to exploit channel sparsity efficiently. Similarly, 

the cost function of LMS-LP was constructed as 

    ( ) ( ) ( ) ,LP LP p
G n e n n w w21 2             (21) 

where LP  0  is a regularization parameter which balances 

the estimation error and channel sparsity. The corresponding 

update equation of LMS-LP is derived as 
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where LP  0  denotes threshold parameter and LP LP    

is a parameter which depends on step-size and regularization 

parameter. According to the update equation of (23), SLMS-

LP is proposed as 
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IV. NUMERICAL SIMULATIONS 

    In this section, the proposed sparse SLMS algorithms are 

evaluated in different scenarios: channel sparsity as well as 

impulsive noise environments. For achieving average 

performance, M=1000 independent Monte-Carlo runs are 

adopted. The simulation setup is configured according to 

typical broadband wireless communication system [3]. The 

signal bandwidth is 60MHz located at the central radio 

frequency of 2.1GHz. The maximum delay spread of 1.06𝜇𝑠. 

Hence, the maximum length of channel vector w is N=128 

and its number of dominant taps is set as Sparsity ∈ {4,8}. To 

validate the effectiveness of the proposed methods, average 

mean square error (MSE) standard is adopted. Channel 

estimators are evaluated by average MSE which is defined by 

    MSE ( ) log ( )
M

mm
n M n


 w w w w

2 2
10 2 21

10 1 (24) 

where w  and ( )m nw  are the actual signal vector and 

reconstruction vector, respectively. The results are averaged 

over 1000 independent Monte-Carlo (MC) runs. Each 

dominant channel tap follows random Gaussian distribution as 

( , )w
20  which is subject to {|| || }E w 2

2 1  and their 

positions are randomly decided within the w . The received 

SNR is defined as nP  2
0 , where P0  is the received power of 

the pseudo-random noise (PN)-sequence for training signal. In 

addition, to achieve better steady-state estimation 

performance, reweighted factor of (S)LMS-RZA is set as 

휀𝑅𝑍𝐴 = 20 [20]. Threshold parameter of (S)LMS-RL1 is set as 

𝛿𝑅𝐿1 = 0.05 [5]. Detailed parameters for computer simulation 

are given in Tab. I. 

    In the first example, average MSE performances of the 

proposed methods are evaluated for Sparsity=8 in Figs. 1-2 

under two SNR regimes (i.e., 10dB and 20dB) in the presence 

of impulsive noise ( α = 1.2 ). One can find the proposed 

sparse SLMS algorithms always achieve better performance 

than SLMS with respect to average MSE. In the case of 

SNR=10dB, the proposed sparse SLMS algorithm can achieve 

3dB performance gain over standard SLMS as shown in Fig. 1. 

In the case of SNR=20dB, Fig. 2 shows that the proposed 

algorithms can still get 2dB performance gain. Hence, the 

http://www.edaboard.com/thread105495.html


effectiveness of the proposed algorithms is confirmed in the 

case of different SNR regimes.  

TAB. I. SIMULATION PARAMETERS. 

Parameters Values 

Training signal Pseudo-random Gaussian 
sequence 

alpha-stable noise 
distribution 

𝛼 ∈ {1.2,2.0}, 𝛽 = 0, 
𝛾 = 1,  δ = 0 

Channel length 𝑁 = 128 

No. of nonzero coefficients 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 ∈ {4,8} 
Distribution of nonzero coefficient Random Gaussian 𝒞𝒩(0,1) 

Received SNR for channel estimation            {5dB, 10dB} 
Step-size  𝜇 = 0.005 

Regularization parameters  
for sparse penalties 

 𝜆𝑍𝐴 = 2 × 10−4 
 𝜆𝑅𝑍𝐴 = 2 × 10−3 
 𝜆𝑅𝐿1 = 5 × 10−5 
 𝜆𝐿𝑃 = 5 × 10−6 

Reweight factor of (S)LMS-RZA 휀𝑅𝑍𝐴 = 20  
Threshold of the (S)LMS-RL1 𝛿𝑅𝐿1 = 0.05 
Threshold of the (S)LMS-LP 휀𝐿𝑃 = 0.05 

 

 

 
Fig. 1. Avergae MSE comparsions (SNR=10dB and  𝛼 = 1.2). 

 

 
Fig. 2. Avergae MSE comparsions (SNR=20dB and  𝛼 = 1.2). 

 

       In the second example, the proposed methods are 

evaluated under Gaussian noise environment (i.e., α = 2.0)  in 

the case of SNR=10dB. In Fig. 3, MSE performance of these 

proposed methods are evaluated in Sparsity=4. The proposed 

SLMS algorithms are very close to sparse LMS ones. 

However,   the proposed SLMS algorithms can achieve better 

than MSE performance than sparse LMS ones in the case of 

Sparsity=8. According to Figs. 3-4, one can deduce that the 

proposed SLMS algorithms can ensure stable for larger 

number of nonzero taps, e.g., Sparsity=16. Hence, the 

proposed algorithms are not only stable for impulsive noise 

interference but also for the large number of nonzero taps. 
 

 
Fig. 3. Avergae MSE comparsions under the assumpution of Gaussian noise. 

 
 

 
Fig. 4. Avergae MSE comparsions under the assumpution of Gaussian noise. 

 

V. CONCLUSIONS AND FUTURE WORK 

   The family of alpha-stable distributions provides an accurate 
model of impulsive noise processes in communications 
channels and in fact, includes the Gaussian density as a special 
case. Based on this noise model, this paper proposed stable 
adaptive filtering algorithms by using different sparsity-
inducing penalty functions. Computer simulation results are 
provided to verify the effectiveness of the proposed algorithms. 
In future work, we will test our proposed methods in different 
communications systems, such as underwater acoustic systems 
as well as power-line communication systems. 
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