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Abstract—Synthetic aperture radar is a popular remote sensing
technique to observe the topography of the earth by producing
interferograms. After initial corrections, there remains a mixture
of different disturbances visible in them. Therefore, an estimation
is necessary to distinguish between patterns caused by different
sources. Commonly, this is achieved by using Persistent Scat-
terer Interferometry (PSI) or Small BAseline Subset Algorithm
(SBAS) which both utilise large stacks of temporally connected
interferograms of the same area. The objective of this paper
is to introduce a new technique that can also handle small
stacks and temporally unconnected subsets, and does not use the
isotropy assumption. The introduced estimation technique, called
Cinderella, is related to the elimination process and therefore
belongs to the Bionic research area. The proposed technique
works as follows. First, the initial images are transferred into
the dual tree complex wavelet domain. Second, the Cinderella
technique is applied for each complex coefficient and estimates
a percentage affiliation of the corresponding wavelet to different
causes. Third, the Tikhonov regularisation uses this estimate and
provides the resulting assignment. Finally, the synthesis of the
dual tree complex domains provides the images of all estimated
signals. Verification is achieved by simulating random patterns,
mixing them, applying the proposed technique, and comparing
the estimates with the initial simulations. In doing so, only six
interferograms were required to provide an estimation with a
standard deviation below 1 mm.

Index Terms—process of exclusion; Tikhonov regularisation;
InSAR; atmospheric phase screen; Bionic

I. INTRODUCTION

Synthetic aperture radar is a popular remote sensing
technique to observe the topography of the earth. Differential
interferometric synthetic aperture radar (DInSAR) images are
subtracted phase information of two synthetic aperture radar
acquisitions (master - slave acquisition scene). Observed
signals within a DInSAR result from a deformation of the
topography, atmospheric and ionospheric conditions, errors
of the used digital elevation model, and noise (see [1]).

If the topographic deformation is the purpose of the
monitoring, all disturbing signals have to be compensated.
Different preprocessing steps reduce the errors, but some
residual errors are still present within a single interferogram.
Therefore, stacks of DInSAR images of the same area are
utilised to filter the desired signal from the disturbances. For
example, the temporal linear deformation (centre image in
Figure 1) is included in every interferogram (surrounding

images) and forms the stack. Each interferogram is in the same
way affected by the atmosphere of the master and changing
atmosphere of the slave scenes in this example. These
disturbances are filtered from the stack, such that just the
deformation remains (see Figure 3, right column). Common
assumptions are that the disturbances are uncorrelated and
that the desired signal is correlated with time (see [1]).
Unfortunately, this technique fails if the size of the stack is
too small, i.e. errors are still too large.

Generally, a regression analysis estimates the desired signals
(x) from the observed interferograms y by (utilisation for PSI,
see [2])

argminx||Ax− y||22 (1)

where matrix A describes the linear relationship between the
unobservable vector x and observations y (see [6]).

Practically, this technique is sensitive to outliers and has
required large stacks up to the present time. The necessary
stack size is reduced by knowing these outliers and weighting
the corresponding observations less heavily. Often, it is
helpful to identify visually the faulty interferograms that have
strong disturbances, and to ignore them. Naturally, the eye
looks for repeating patterns at the same location in different
DInSAR images. Here, a pattern signifies that the pattern
is well approximated by just a few wavelets and is not
necessarily isotropic. Those interferograms, inheriting many
changing patterns are identified as outliers. This intuitive
approach by inspection of the data is time-consuming, and
repeating signals may be misinterpreted. For example, digital
elevation model errors often occur also at the same location
like it is expected for deformations. Therefore, a technique
is needed that automatically identifies repeating patterns
and assigns them to their most plausible cause. The natural
process of visually inspecting the data is binary, i.e. each
pattern belongs exclusively to one cause and may fail at
special conditions. Hence, this needed technique should also
generalise this binary assignment to percentage assignment.

The dual tree complex wavelet transform (DTCWT ) repre-
sents images in a sparse way, and the framework can be found
in [3], [4]. In such a transform, a pattern is concentrated in a



few complex-valued coefficients, allowing the identification of
repeating patterns by looking for repeated large coefficients.
Therefore, the introduced technique is applied within the
DTCWT domain.
Different causes contribute to different interferograms in vary-
ing magnitude. For example, a temporal linear deformation
in time is characterised by the temporal distance (temporal
baseline) between the acquisition times of an interferogram.
Therefore, if the temporal baselines of two interferograms are
related by a factor, the deformation signals are also related by
this factor. Hence, a linear combination of all interferograms
can be built, such that the pattern that is being sought must
vanish. Every pattern that is still present, cannot be the
desired pattern and does not belong to the desired cause. This
elimination process is generalised (denoted by Cinderella),
allowing the estimation of the inverse covariance matrix (C−1)
of x. The Tikhonov regularisation (||x||2C−1 ) is utilised to
extend equation 1 to

argminx||Ax− y||22 + ||x||2C−1 (2)

where ||x||2C−1 is the weighted norm xC−1x (see [5],
[6]). This allows us to find repeating patterns by using the
DTCWT , estimating the percentage affiliation by estimating
C−1 and assigning them by solving the equation 2.

The objective of this work is the methodical introduction of
the proposed technique and its validation. Accordingly, linear
deformation estimations of the proposed technique and the
stacking technique are compared against each other.

II. METHODS

First, the initial interferograms are unwrapped and corrected
to the greatest extent possible. Second, the coarsely-corrected
interferograms are transferred into the complex-valued
wavelet domain by utilising the DTCWT . Third, for each
complex coefficient within the wavelet domain, the Cinderella
algorithm is applied, and thereby the percentage affiliation
is estimated and assigned by the equation 2. Finally, the
synthesis (inverse transform of the DTCWT ) provides the
final estimated causes as images.

For the generalisation, the shape of A is linked to the
exclusion principle, and its detailed shape is derived in the fol-
lowing paragraph. Starting with the nomenclature, the Xi will
denote different kinds of processes, such as atmospheric phase
screens (APS), deformations that depend on temporal linear
properties, or digital elevation model (DEM) errors depending
on the baseline or other processes. For motivation, consider
two DInSARs with equidistant temporal baselines and the
same master scene. For simplicity, it is assumed that the
disturbances only correspond to the APSs. Now, the signals are
separated from the atmospheric phase screens (X1, X2, X3) of
the three different acquisitions from the deformation, which
are temporally dependent (X4). The interferograms are math-
ematically described by

Y ′1 = X2 −X3 −X4 (3)

Y ′2 = X2 −X1 +X4 (4)

where the master scene is the second acquisition with APS
X2. The slave scene APSs are therefore X1 and X3. The
deformation X4 has the opposite direction (+/−X4) within
the interferograms Y ′1 and Y ′2 , because the temporal distance
has alternate signs. The corresponding linear equation system
is under-determined and is expressed by the matrix

A′ :=

(
0 1 −1 −1
−1 1 0 1

)
(I)
(II)

where A′X = Y ′, XT = (X1, X2, X3, X4) and Y ′T =
(Y ′1 , Y

′
2). By adding, subtracting and reordering the rows of

A′, we find

A :=


0 1 −1 −1
−1 0 1 2
−1 1 0 1
−1 2 −1 0


(I)

(II− I)
(II)

(I + II)

,

Y T = (Y ′1 , Y
′
2 − Y ′1 , Y ′2 , Y ′1 + Y ′2) such that AX = Y .

Matrix A has zeros on the diagonal, and on the off-diagonal,
it has only nonzero values. Assume that in Y1, Y2 and Y3, the
same pattern is always visible, but missing in Y4. Now, the
exclusion principle states that this pattern is caused by the
deformation, because it is the only process at the fourth row
of A that is not present (has 0 value). Therefore, the shape of
A provides the utilisation of the exclusion principle.
The following generalises this approach by transforming the
linear equation problem into an estimation problem. Therefore,
the variances of the Xi are model parameters (σ2

i ) that will be
estimated. First, an assumed model parametrisation of the Xi

(σ2
i ) implies variances of the Yi (ṼYi). Second, the observa-

tions of the complex coefficients provide the sample variances
(V̂ Yi). Third, the sample variance and the implicit variance are
compared against each other. If they do not match well, the
assumed model parametrisation (σ2

i ) was wrong. Now, these
model parameters (σ2

i ) are selected such that all differences
(| ṼYi − V̂ Yi|) are minimal. For improved readability, the
problem is rewritten and generalised for higher dimensions.
It is assumed that every stochastic process Xi ∼ N (0, σi)
where the model parameter VX = (σ2

1 , . . . , σ
2
n) ∈ Θ are

estimated. Later, they form C−1 in the equation 2. Remember,
the Xi are not observable, but rather linear combinations of
them are observed. From now on, XT = (X1, . . . , Xn) and
the observable random variable Y T = (Y1, . . . , Yn) are related
by the following equation:

AX = Y . (5)

A is constructed as in the previous example, such that A ∈
Rn×n, Ai,i = 0 for all i ∈ {1, ..., n} and Ai,j 6= 0 for i 6= j.
Each parametrisation VX ∈ Θ implies the variances of the Yi
by the formula of Bienaymé. Remember, VX is not known
and therefore neither is the real variance of Y . Because of



this, we denote and compute the implicit variance by

ṼYi =

n∑
k=1

A2
k,iσ

2
k. (6)

The randomly-observed sample variance V̂ Yi of m indepen-
dent observations is defined as a random variable. The Yi are
centred, because the Xi are centred, such that

V̂ Yi =
1

m

m∑
k

Yi
2
k. (7)

It is expected that V̂ Yi ≈ VYi = ṼYi if for each k ∈
{1, . . . , n} the model parameter σ2

k equals the true variance
of Xk (VXk). Now, these model parameters are chosen such
that all observed differences (V̂ Yi−ṼYi) are minimal, exactly
as expected.
In order to normalise the difference it is divided by ṼYi. Thus,

Ti = | V̂ Yi

ṼYi
− 1|. (8)

Due to the normalisation, all Ti have the same distribution such
that a balanced situation is established. Let ti be an observation
of Ti, then

v = argmin(σ2
1 ,...,σ

2
n)
|(t1, . . . , tn)|22 (9)

is computed. For the demonstration at the end of this work,
the minimisation was computed by the Powell algorithm (see
[7]).
Because of the independence of the Xi, the diagonal inverse
covariance matrix from the equation 2 is C−1i,i = v−1i . Then,
the solution of equation 2 provides the percentage assignment
of the complex coefficient and the related wavelet. Finally,
for all processes Xi, the synthesis (inverse dual tree complex
wavelet transform) provides the final estimates of the indepen-
dent causes.

III. RESULTS

First, the relationship of the proposed technique to the exclu-
sion principle is illustrated by an example. Then, the solutions
of the exclusion principle and the introduced technique are
compared. Next, a validation is provided by simulating random
patterns (ground truth), mixing them (input data), separating
them by the proposed technique, and comparing them with the
ground truth that was initially established.

A. Relationship of the Cinderella approach to the exclusion
principle

Remember, the motivation of the presented algorithm is the
relationship of it to the exclusion principle. To provide an
example, this relationship is briefly illustrated. Let

A =

0 1 1
1 0 1
1 −1 0

 , y =

1
1
ε

 (10)

then Ax = y is ill-posed. Now, if ε = 0, then the exclusion
principle provides a reasonable solution xT = (0, 0, 1), be-
cause at the third row of A, only the third entry vanished as

well as the third observation y3. This argumentation is false
if ε 6= 0, but the presented method provides a solution. It is

v = (
ε2

2
,
ε2

2
, 1− ε2

2
)T (11)

because for all i ∈ {1, 2, 3}, the sample variance

V̂ Yi = y2i (12)

equals the implicit variance

ṼYi = A2
i,1v1 +A2

i,2v2 +A2
i,3v3, (13)

and therefore, ti = 0 thus t1 + t2 + t3 = 0 is minimal. So,
v converges against the solution of the exclusion principle if
ε→ 0.

B. Validation with synthetic data

The validation is provided in four steps. First, synthetic data
are simulated for a typical deformation as well as textured
atmospheric disturbances. Typically, a subsidence or uplift
causes a Gaussian bell-shaped pattern while the atmosphere
is more chaotic. Patterns that are caused by, for example, cold
fronts, topographically-related eddies, or gravity waves have
different spatial dependencies at different locations (refer to
examples provided in [8]). Therefore, a sinus with different
offsets and frequencies generates the initial simulated APS.
Further, the APS is multiplied by simulated fractal noise using
a Hurst parameter of H = 0.7 to render it realistically.
A rescaled-range analysis (see [9]) of Global Navigation
Satellite System (GNSS) zenith time-delay series at Kokkee
Park in Hawaii and Wetzell in Germany has confirmed this
parameter setting. Typically, the standard deviations of the
residual APSs are approximately 15mm (see GNSS–ECMWF
in [10]), and the simulated linear deformation has a velocity
of 10mm/12days. Together, 10 simulated processes xi are
derived, where the first 9 correspond to the APS, and the final
one to the deformation.
Second, eight synthetic interferograms (i ∈ {1, . . . , 8})

yi = x1 − xi+1 + ix10 (14)

are simulated and form the test data set (see Figure 1). Third,
on subsets of the test data set, the introduced technique and
the stacking technique are applied, providing two different
kinds of estimates of the linear deformation (see Figure 3).
Fourth, the standard deviations of the residual disturbances
(estimates – ground truth) are computed and compared against
each other (see Figure 2).

Therefore, six subsets of the initial images are

Si = {y1, . . . , yi+2}, (15)

providing six pairs of standard deviation. The introduced tech-
nique compensates the APS to a greater extent and converges
against the true deformation if the stack size increases. This
is visible from top to bottom in the right column of Figure
3. In comparison, the estimation of the stacking technique
(left column) does not remove the APS. Consequently, the



Fig. 1. The centre image shows the synthetic deformation in the strongest
occurrence within a synthetic interferogram (lower right). Synthetic interfer-
ograms are displayed from left to right, and from top to bottom.

Fig. 2. The graph shows the standard deviation of the residual disturbances
(estimate – ground truth deformation) of the stacking technique (+) and the
Cinderella technique (∗). Additionally, the middle function (−·−) corresponds
to the analytical accuracy of the PSI technique.

standard deviations in Figure 2 converge quickly towards 0
for the Cinderella estimates in contrast, this is not true for the
stacking technique estimates.

IV. DISCUSSION

Now, the proposed technique is compared against the com-
monly used PSI technique. Remember, the PSI technique is
based on frequency estimation (i.e. no phase unwrapping)
whereas Cinderella adds a regularisation term which is es-
timated in a first step. Accordingly, the Cinderella algorithm
is more computational time consuming and requires a phase
unwrapping. On the other hand, for PSI the accuracy of the
linear deformation estimate is given by

σd = σa

√
1

NVar(Xd)
(16)

where σa ≈ 21mm is the atmospheric distortion, N is the
number of interferograms and Var(Xd) is the variance of the
deformation in utilised interferograms. Corresponding function
is plotted in figure 2 drawn with − · −. Consequently, 16
interferograms are required to reach an accuracy of 1mm. In
comparison, Cinderella needs only 6 interferograms, illustrat-
ing practical advantage.

Fig. 3. The left column displays the stacking technique estimation for the
linear deformation within a month. The right column displays the estimates
of the Cinderella approach of the linear deformation for six months. Different
time scales are necessary to see the deformation within the Cinderella
technique because of its strong noise reduction.

Two new challenges arise. First, the minimisation 9 is done by
the Powel algorithm (see [7]) and is therefore computational
time consuming. Accordingly, a faster algorithm to derive the
global minimum is needed. Second, from a statistical point of
view, the Ti are treated as independent observations for sim-
plicity. Therefore, a potential further development is achieved
by introducing a decorrelation step for the Ti. Consequently,
a higher accuracy should be derived.
Naturally, Cinderella is adoptable for other problems which
are related to the linear regression analysis. However, the most
advantage of Cinderella in comparison to the straight forward
linear regression analysis is achieved in sparse domains. This
is the case, because Cinderella is closely related to the exclu-
sion principle.

V. CONCLUSION

The introduced technique filters signals from a stack of
interferograms that correlate more closely with a predefined
relationship between the interferograms. Therefore, the pro-
posed technique filters undesired signals and provides a better
estimate of the desired signal in comparison with the stacking
technique and PSI. If the stack size is too small, such that PSI
and SBAS are not applicable, the introduced technique still has
the ability to filter signals even if the subsets of interferograms
are temporarily not connected.
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