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ABSTRACT 

Object proposals greatly benefit object detection task in 

recent state-of-the-art works, such as R-CNN [2]. However, 

the existing object proposals usually have low localization 

accuracy at high intersection over union threshold. To 

address it, we apply saliency detection to each bounding box 

to improve their quality in this paper. We first present a 

geodesic saliency detection method in contour, which is 

designed to find closed contours. Then, we apply it to each 

candidate box with multi-sizes, and refined boxes can be 

easily produced in the obtained saliency maps which are 

further used to calculate saliency scores for proposal ranking. 

Experiments on PASCAL VOC 2007 test dataset 

demonstrate the proposed refinement approach can greatly 

improve existing models. 

Index Terms—Object proposals, saliency detection, 

geodesic distance, closed contour 

1. INTRODUCTION

Benefit from the success of object proposal methods (e.g. 

[1]), which selects an ideal number of region proposals to 

cover most observable objects, object detection has made a 

great progress in recent years, such as region-based 

convolutional neural networks (R-CNN) [2], Fast R-CNN 

[3]. A good proposal generator should efficiently output 

candidate bounding boxes as few as possible to reach recall 

rate as high as possible. 

As summarized in [4], the existing object proposal 

generators can be roughly classified into two classes: 

grouping based [1, 6-9] and sliding window based [10-12]. 

The first type approaches usually generate relatively high 

accurate object proposals but require long computation time 

[4]. While the later typically produce proposals efficiently 

due to be independent of superpixel segmentation but with 

low localization accuracy [4]. Most of the above methods 

achieve high recall at the cost of sampling a large number of 

candidate boxes, which will prevent computationally 

expensive classifiers to be applied in subsequent process 

(e.g. object detection). To address it, an accurate objectness 

score or some other improvement is needed. In [13], each 

candidate box was scored by various objectness cues 

including color, contrast, edge and saliency map. A linear 

classifier was used to calculate the objectness score in [10]. 

In [11], objectness score was computed by counting the 

number of edges that are wholly contained in a candidate 

box, while in [9] edge was used as its summation on outer 

boundary and then normalized by its length. Contour score 

[14] was proposed by combing completeness and tightness 

to reject non-object proposals. In [15], superpixel tightness 

was used as a localization bias indicator which also can be 

applied for proposal ranking. Non-maximal suppression 

(NMS) [16] is also an effective way to reduce proposal 

redundancy [11, 15]. Although such progress have been 

made in this young field, it is still very challenging to 

generate object proposals with high quality which means 

high recall with few proposals at high intersection over 

union (IoU) threshold. 

Saliency detection is a very active research area recently 

and has been successfully applied in various applications 

[26-27], which aims to make certain objects or regions of an 

image stand out from their neighbors [17]. We find that 

object proposal generation and saliency detection are high 

related and can be fused to improve each other as described 

in [18]. Different with [18], which presented a graphical 

model by iteratively optimizing a novel energy function to 

integrate these two aspects, we directly apply saliency 

detection to each candidate box to refine them based on the 

following observation: a good candidate box should contain 

only one wholly object centered in it, which can be seen as 

an inside salient object that can be well captured by the 

existing bottom-up saliency detection methods. Although we 

can efficiently detect salient objects in one image, it will 

meet computation bottleneck when dealing with thousands 

of bounding boxes per image. To address it, we apply 

geodesic saliency [19] in contour image to detect salient 

object for each candidate box. It can be more efficient since 

the feature construction in contour is very simple compared 

with color images for saliency detection. More than that, 

obtained saliency map is also used to calculate a saliency 

score for proposal re-ranking. To introduce high diversity, 

multi-size windows are further selected for saliency 

detection. We test it on the Pascal VOC 2007 test dataset 

[25] and achieve great improvement in the existing methods 

especially at high IoU. In particular, we achieve the highest 

recall at IoU of 0.8 with 64.8% by using 1000 proposals. 
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2. THE PROPOSED METHOD

In this section, we describe our method to improve object 

proposals based on saliency detection in contour. The initial 

boxes are provided by the existing approaches, then we 

apply geodesic saliency metric in contour to detect saliency 

regions in each candidate box with multi-sizes. Based on the 

obtained saliency maps, refined boxes can be obtained in the 

segmentation results and then ranked by their saliency scores. 

The pipeline of the proposed refinement is shown in Fig.1. 
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Fig.1. The pipeline of the proposed method. 

2.1. Geodesic Saliency in Contour 

Saliency detection aims to detect the most salient objects 

(usually only one) in an image. While object proposal 

detector attempts to output a reasonable number of bounding 

boxes to cover most objects in an image, and each of them 

only covers one which can be seen as a salient object in it 

intuitively. Many effective bottom-up saliency detection 

approaches have been proposed in the literatures [21]. One 

of the most effective cues is backgroundness which assumes 

four borders of an image as pseudo-background, and then 

saliency can be measured by the contrast versus this 

background [19]. However, it may be noisy when object 

touches one or more image borders. In such case, it is still 

very difficult to get pure background border regions. 

Fortunately, we needn’t worry about that in box saliency 

detection. In object proposal generation, a candidate box is 

inaccurate to localize an object if it straddles the box borders. 

Thus, we can simply select the regions surrounding the box 

as its background priors. Then, saliency can be simply 

measured by computing the difference between them as 

common saliency detection does. The candidate box 

straddled by its inside object will have low saliency value, 

which indicates low objectness. In contrast, high saliency 

value denotes high objectness. Thus, obtained saliency map 

can be intuitively utilized to score its corresponding box. 

Salient objects usually have distinctive colors, to capture 

it, CIE LAB is the most used color space. To get high visual 

quality, diffusion or propagation based methods are further 

explored recently [22-23]. However, it will meet 

computation bottleneck if we directly apply these complex 

approaches into object proposals due to the huge number. 

To this end, we make saliency detection in contour which 

can be generated by the efficient algorithm in [20]. Note that 

it has not been explored in saliency detection as far as we 

know. Contour is an effective cue for proposal generation 

and has been successfully applied in some previous works 

[11, 14], which are based on the observation that the box 

with a closed contour is more likely to be an object. 

Different with them, we measure it by saliency detection. 

In box saliency detection, backgroundness can be re-

explained as the background regions are connected to the 

box borders while it is hard for the objects. This prosperity 

can be well captured by the effective and efficient geodesic 

distance metric which has been successfully applied in color 

image saliency detection [19], where regional saliency is 

measured by the length of its shortest path to the virtual 

background node in a weighted graph. 

Based on the above observations, saliency detection in 

contour can well capture the probability of a bounding box 

containing an object. Specifically, given an image, graph-

based segmentation [24] is first used to segment it into 

superpixels, and then structured forests algorithm [20] to 

produce its contour. The distance between a joint superpixel 

pair is measured by summing up the contour responses 

within the common boundary pixels and normalized by the 

length of the common boundary as described in [9]. Let C (z) 

to be the contour response at pixel z, and l (i, j) denote the 

common boundary pixels set, then the distance between 

superpixel i and j is defined as: 
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Based on the above distance metric, the geodesic 

distance can be formulated as the accumulated distances 

along the shortest path from t to background superpixels B. 

Let π = {π(0),…, π(K)} be the shortest path in the set ΠB,t of 

all paths, saliency for superpixel t can be measured as: 
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2.2. Box Refinement 

To improve the localization accuracy of the candidate boxes, 

we present a box refinement method using the above 

geodesic saliency detection. Specifically, given a bounding 

box b, we first need to select its background superpixels. 

Here, we simply choose its four borders with single pixel 

width. Based on it, we can easily get a saliency map for the 

given box using our geodesic saliency detection. Note that 

each saliency map is normalized into [0, 1] for refinement. 

Some detection results are shown in Fig.2, it can be clearly 

observed that object inside each box can be well highlighted 

by our proposed approach. Then, a refined box b’ can be 

obtained from the binarized saliency map with a threshold T. 

Superpixels in a box with low localization accuracy 

usually straddle box borders, which indicates low tightness 

as mentioned in [13, 15]. To refine these boxes, we need to 

enlarge them to include more image contents for saliency 



      
 

      
 

      
Fig.2. The proposed geodesic saliency detection results of 

different object proposals. 

 

detection to capture the whole object. Thus, we introduce 

multi-size windows to solve it. Specifically, totally M 

enlarged windows with δ pixels width are selected for each 

candidate box. By this means, M new boxes are generated 

for each initial candidate. As shown in Fig.1, considering 

multi-size windows can well refine these inaccurate boxes. 

However, more redundancy will also be introduced thus 

need to be reduced to a moderate budget of proposals. 

 

2.3. Proposals Re-Ranking 

As mentioned above, the refined boxes may contain a large 

number of redundancy. Thus, we define a ranking function 

to prune them. Generally, an accurate object box typically 

has high saliency values, while it is not for a background 

box. Furthermore, in our multi-sizes saliency detection, the 

larger the window is, the less confident the refined proposal 

will be, that’s because more included contours will introduce 

more noisy saliency detection results. Considering them 

together, we define our ranking function for each box b as: 

     1
m t b
b

M m S t size t

score
b





  




                 (3) 

where |b| is the area of b, m = 0,1,…,M, and λ is set to be 

less than 1 to favor larger boxes. Then, all the proposals are 

sorted in descending order. 

Nevertheless, saliency detection results may be noisy 

when the extracted contours are not accurate enough, which 

will lead to inaccurate ranking orders. To improve it, we 

combine the refined box sets together with the input sets for 

ranking to get our final proposals. In detail, each of them are 

re-scored by its normalized inverse indexes and then re-

sorted in descending order in the combined sets. Finally, 

NMS is performed to obtain the final proposals as did in [11, 

15] by setting the IoU to 0.9. 

 

3. EXPERIMENTS 

 

We evaluate our method on the PASCAL VOC2007 dataset 

[25] which contains 9,963 images spread over 20 categories, 

and each of them has a bounding box for each object. We 

only test it on the test set as previous works. The common 

recall metric is used to evaluate the quality of object 

proposals in this paper following [4], including recall-IoU 

and recall-proposal curves. In addition, average recall (AR) 

between IoU 0.5 to 1.0 is further computed to measure the 

overall accuracy of proposals. In our experiments, T and λ 

are set to 0.01 and 0.9 respectively, σ = 0.8, and k = 100 for 

graph-based segmentation, all the parameters are unchanged 

in the following experiments. 

 

3.1. Influence of Window Sizes 

We first examine the performance of the proposed method 

by using different sizes in saliency detection. In this 

experiment, we compare the results by varying M from 0 

(single size) to 4 using MCG (Multiscale Combinatorial 

Grouping) [7] as the initial candidates, in which δ = {1}, {1, 

5}, {1, 5, 15}, {1, 5, 15, 25}, and {1, 5, 15, 25, 40}, 

respectively. The number of proposals tested is 2000 and the 

results are shown in Fig.3. As can be seen, best recall rate is 

obtained when M = 3 nor 4. That’s not surprise because 

larger window will introduce more noisy results as 

mentioned before. Thus, M is fixed to 3 in the following 

experiments. We also find that our method is not very 

sensitive to M. In generally, more sizes are needed for the 

methods with poor localization accuracy in our refinement. 

 
Fig.3. Evaluation of performance with different sizes using 

2000 proposals.  

 

3.2. Validation of the Proposed Approach 

In this section, we verify the effectiveness of the proposed 

refinement with the existing models, including SS (Selective 

Search) [1], EB (Edge Boxes 70) [11], and MCG [7]. We 

also report the performance of a recent published improving 

method MTSE [15] for comparison. The variants of our 

saliency refinement integrated models are recommended as 

S-SS, S-EB, S-MCG, and M-SS, M-EB, M-MCG for MTSE. 

Fig.4 (a)-(c) show their performances using recall-IoU curve 

(500, 1000, and 2000 proposals), we can clearly see that our 

saliency refinement successfully improves the existing 

methods by a large margin and even performs slightly better 

than MTSE when IoU higher than 0.7. The improvement at 

low IoU is not so significant, e.g. EB is only boosted at high



 
(a) 500 proposals                                   (b) 1000 proposals                                 (c) 2000 proposals 

  
(d) IoU = 0.8                                          (e)  IoU = 0.9                                      (f) Average recall 

Fig.4. Performance of different methods and their improved versions by MTSE and our saliency refinement. 

 

IoU by our refinement. It can be explained that the 

localization of the box with low IoU is too coarse for 

saliency detection to refine it even with multi-sizes. It also 

can be verified by the observation that the improvements in 

EB and SS are not comparable with MCG especially in the 

case of small number proposals. In particular, S-MCG 

achieves best 64.8% recall at strict 0.8 IoU when using 1000 

proposals. We also consider the challenge IoU 0.8 even 0.9 

and AR by varying the number of proposals from 1 to 1000 

shown in Fig.4 (d)-(f). Again, performance boost can be 

observed by our saliency refinement, in which S-MCG still 

achieves highest recall in all the cases. Therefore, we believe 

that our saliency refinement can benefit object detection task 

with better localization. 

 

3.3. Failure Cases 

Our saliency refinement is based on the saliency detection 

results which is determined by the accuracy of contour 

detection. Thus, it will get worse refined proposals if the 

contour of the object is weak or even missing. Another we 

need to point out is that our approach is trying to find the 

closed contour to indicate objectness, which is similar with 

[14]. Therefore, it tends to pop out some box with closed 

contour while is not a semantic object, such as windows or 

some small structures. In other words, there are still some 

non-object proposals with high objectness scores need to be 

removed, which is our future work. Some failure cases are 

shown in the last row of Fig.2. 

 

4. CONCLUSIONS 

 

In this paper, we present a new geodesic saliency detection 

in contour to improve the quality of object proposals. Based 

on the obtained saliency map of each candidate box, we get 

a refined box with better localization than the initial one. By 

further applying multi-sizes in saliency detection, the input 

candidate is well refined with both high diversity and 

accurate localization. Finally, boxes with high objectness are 

pop out by their saliency scores. By integrating our saliency 

refinement, all the existing methods are improved by a large 

margin in PASCAL VOC 2007 test dataset both at high IoU 

threshold and few proposal number, which can benefit 

subsequent object detection task. It is also worthy to note 

that our geodesic saliency detection in contour can be 

directly applied for salient object detection task. We also 

wish to see more related works to be explored in this 

direction. In the future, we will first try to accelerate our 

code by re-writing in C/C++. Another concern is to apply 

more powerful contour detection method to improve 

performance. The source code will be public available for 

research purpose after publication by email request. 
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