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Abstract—Herein, the problem of simultaneous localization of
two sources given a modest number of samples is examined. In
particular, the strategy does not require knowledge of the target
signatures of the sources a priori, nor does it exploit classical
methods based on a particular decay rate of the energy emitted
from the sources as a function of range. General structural
properties of the signatures such as unimodality are exploited.
The algorithm localizes targets based on the rotated eigenstruc-
ture of a reconstructed observation matrix. In particular, the
optimal rotation can be found by maximizing the ratio of the
dominant singular value of the observation matrix over the
nuclear norm of the optimally rotated observation matrix. It
is shown that this ratio has a unique local maximum leading to
computationally efficient search algorithms. Moreover, analytical
results are developed to show that the squared localization error
decreases at a rate n

−3 for a Gaussian field with a single source,
where n(log n)2 scales proportionally to the number of samples
M .

I. INTRODUCTION

Underwater source detection and localization is an impor-

tant but challenging problem. Classical range-based or energy-

based source localization algorithms usually require energy-

decay models and the knowledge of the environment [1]–[6].

However, critical environment parameters may not be available

in many underwater applications, in which case, classical

model-dependent methods may break down, even when the

measurement signal-to-noise ratio (SNR) is high.

There have been some studies on source localization using

nonparametric machine learning techniques, such as kernel

regressions and support vector machines [7]–[10]. However,

these methods either require a large amount of sensor data,

or some implicit information of the environment, such as the

choice of kernel functions. For example, determining the best

kernel parameters (such as bandwidth) is very difficult given

a small amount of data.

This paper focuses on source detection and localization

problems when only some structural properties of the energy

field generated by the sources are available. Specifically,

instead of requiring the knowledge of how energy decays with

distance to the source, the paper aims at exploiting only the

assumption that the closer to the source the higher energy re-

ceived, and moreover, the energy field of the source is spatially

invariant and decomposable. In fact, such a structural property

is generic in many underwater applications. The prior work

[11], [12] studied the single source case, where an observation

matrix is formed from a few energy measurements of the field

in the target area, and the missing entries of the observation

matrix are filled using matrix completion methods. Knowing

that the matrix would be rank-1 under full and noise-free sam-

pling of the whole area, singular value decomposition (SVD)

is applied to extract the dominant singular vectors, and the

source location is inferred from analyzing the peaks of the

singular vectors.

Herein, we propose to improve upon two shortcomings in

[11], [12]: we make rigorous an estimation/localization bound

(versus focusing on the reduction of the search region) and

we provide a method for localizing two sources. In the two

source case, we need to tackle an additional difficulty that

the SVD of the observation matrix does not correspond to

the signature vectors of the sources. To resolve this issue, a

method of rotated eigenstructure analysis is proposed, where

the observation matrix is formed by rotating the coordinate

system such that the sources are aligned in a row or in a

column of the matrix. We develop algorithms to first localize

the central axis of the two sources, and then separate the

sources on the central axis.

To summarize, we derive algorithms to simultaneously

localize up to two sources based on only a few power

measurements in the target area without knowing any specific

energy-decay model. The contributions of this paper are as

follows:

• We derive the location estimators with analytical results

to show that the squared error decreases at a rate n−3 for

a Gaussian field with a single source, where n(log n)2

scales proportionally to the number of samples M .

• We develop a localization algorithm for the double source

case based on a novel rotated eigenstructure analysis. We

show that the two sources can be separated even when

their aggregate power field has a single peak.

The rest of the paper is organized as follows. Section II

gives the system model and assumptions. Section III develops

location estimator with performance analysis for single source

case. Section IV proposes rotated eigenstructure analysis for

double source case. Numerical results are given in Section V

and Section VI concludes this work.

II. SYSTEM MODEL

Consider that there are K (K = 1, 2) sources with unknown

locations sk = (xS
k, y

S
k) ∈ R

2 located in a bounded area A.

Suppose that the sensors can only measure the aggregate power

transmitted by the sources, and is given by

h(x, y) =
∑

k

hk(x, y)

http://arxiv.org/abs/1701.08174v2
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Figure 1. Without knowing the energy-decay model, to localize the two
sources in (a) based on the a small number of measurement samples in (b),
where the colored bricks represent the sample locations and the black crosses
represent the source locations.

for measurement location (x, y), where

hk(x, y) = αu(x− xS
k)u(y − yS

k) (1)

is the power density from source k, where α > 0. The

explicit form of the density function hk(x, y) is unknown

to the system, except that the characteristic function u(x) is

known to have the following properties

a) positive semi-definite, i.e., u(x) ≥ 0 for all x ∈ R

b) symmetric, i.e., u(x) = u(−x)
c) unimodal, i.e., u

′

(x) < 0 for x > 0,

d) smooth, i.e., |u′

(x)| < Ku for some Ku > 0, and

e) normalized, i.e.,
∫∞

−∞
u(x)2dx = 1.

Note that u(x) can be considered as the marginal power

density function.

Consider that M power measurements {h(l)} are taken

over distinct locations z(l) = (x(l), y(l)), l = 1, 2, . . . ,M ,

uniformly at random in the target area A. The measurements

are assigned to a n1 × n2 observation matrix Ĥ as follows.

First, partition the target area A into n1 × n2 disjoint cells

Gij , i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2, where n1 and n2

are to be determined. Second, assign the power measurements

h(l) to the corresponding (i, j)th entry of Ĥ as

Ĥij = s(Gij)h(l) (2)

if z(l) ∈ Gij ,where s(Gij) measures the area of Gij .1 Denote

Ω as the set of observed entries of Ĥ, i.e., (i, j) ∈ Ω if there

exists z(l) ∈ Gij such that h(l) is assigned to Ĥij .

For easy discussion, assume that A = [−L
2 ,

L
2 ]× [−L

2 ,
L
2 ],

n1 = n2 = n, and Gij are rectangles centered at (xi, yj),
xi = −L

2 + L
2n + L

n (i − 1), yj = −L
2 + L

2n + L
n (j − 1), and

have identical size with each other. Let H = α
∑K

k=1 ukv
T
k

be the matrix of ideal observation, where

uk =
L

N

[

u(x1 − xS
k), u(x2 − xS

k), . . . , u(xn − xS
k)
]T

(3)

vk =
L

N

[

u(y1 − yS
k), u(y2 − yS

k), . . . , u(yn − yS
k)
]T

(4)

for k = 1, 2. Thus H has rank at most K . For (i, j) ∈ Ω,

we have Ĥij ≈ Hij , where the slight difference is due to

1If multiple samples are close to each other and assigned to the same entry

of Ĥ, the value of that entry is the average of the sample values.

sampling away from the centers of the cells Gij . As a result,

Ĥ is a sparse and noisy observation of the low rank matrix

H. An application example is illustrated in 1.

The goal of this paper is to find the approximate locations

of the sources using only the spatial invariant property (1)

and the four generic properties of the characteristic function

u(x). Note that this problem is non-trivial. We insist on

several features of the algorithm to be developed: it should

be robust to structural knowledge of the signatures of the

sources (as captured by g(x, y) in (1)). This disallows the use

of parametric regression or parameter estimation for source

localization. In addition, we wish to under-sample the target

area using small M . As such, maximum value entries may not

represent the true locations of the sources. While not a focus

of the current work, we will use matrix completion methods

and the low rank property of H as in [11], [12] to cope with

the under-sampled observations.

III. EIGENSTRUCTURE ANALYSIS FOR

SINGLE SOURCE LOCALIZATION

To simplify the discussion, the following mild assumptions

are made.2

A1) The observation area A is large enough, such that there

is only negligible energy spreading outside the area A.

A2) The parameter n is not too small, such that u(xi −
xS
k)

2δ2 ≈
∫ xi+1

xi

u(x − xS
k)

2dx and u(yi − yS
k)

2δ2 ≈
∫ yi+1

yi

u(y − yS
k)

2dy for all i = 1, 2, . . . , n.

Mathematically, the above assumptions imply that the vectors

uk and vk have unit norm.

A. Observation Matrix Construction

We first exploit the low rank property of H to obtain the full

matrix Ĥc from the partially observed matrix Ĥ. Let PΩ(X)
be a projection, such that the (i, j)th element of matrix PΩ(X)
is

[

PΩ(X)
]

ij
= Xij if (i, j) ∈ Ω, and

[

PΩ(X)
]

ij
= 0

otherwise. The completed matrix Ĥc can be found as the

unique solution to the following problem

minimize
X

‖X‖∗ (5)

subject to ‖PΩ(X− Ĥ)‖F ≤ ǫ

where ‖X‖∗ denotes the nuclear norm of X and ǫ is a

small parameter to tolerate the discrepancy between the two

matrices.

To choose a proper dimension n for the observation matrix

Ĥc ∈ R
n×n, we consider the results in [13]. It has been shown

that under some mild conditions of H (such as the strong

incoherence property and small rank property), the matrix

H ∈ R
n×n can be exactly recovered with a high probability,

if the dimension n satisfies Cn(logn)2 ≤ M and noise-free

sampling, Ĥij = Hij for (i, j) ∈ Ω, is performed. Here, C is

a positive constant. Given this, we propose to choose n = nc

as the largest integer to satisfy nc(lognc)
2 ≤M/C.

2The two assumptions are mainly to avoid discussing the effects on the
boundary of A and the high order noise term in the sampling noise model (21).
Straight-forward modifications can be made to handle the boundary effect in
practical algorithms.
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B. Location Estimator Exploiting Property of Symmetry

Consider the SVD of the completed matrix Ĥc as Ĥc =
α1û1v̂

T
1 +

∑nc

i=2 αiûiv̂
T
i . We thus model the singular vectors

of Ĥc as û1 = u1 + eu and v̂1 = v1 + ev .

Note that the vectors u1 and v1 defined in (3) and (4),

respectively, contain the source location information due to

the unimodal property of u(x). However, due to the noise

vectors eu and ev, the source location cannot be found by

simply locating the peaks of û1 and v̂1.

To resolve this difficulty, we exploit the symmetric property

of u(x) and develop a location estimator as follows.

Define a reflected correlation function as

R̂(t; û1) =

∫ ∞

−∞

û(x)û(−x+ t)dx (6)

where û(x) is a (nonparametric) regression function from

vector û1. For example, û(x) can be obtained by û(x) = û1(i)
if x = xi, and by linear interpolation between û1(i) and

û1(i + 1) if xi < x < xi+1. Then the location estimator

for xS
1 is given by

x̂S
1(û1) =

1

2
argmax

t∈R

R̂(t; û1). (7)

The location estimator for yS
1 can be obtained in a similar way.

The location estimator (7) exploits the fact that as û1 is

symmetric, the reflected correlation (6), which is the corre-

lation between û1 and a reflected and shifted version of û1,

is maximized at the source location. Therefore, the estimator

x̂S
1(û1) tries to the suppress the perturbation from the noise

by correlating over all the entries of û1.

We establish several properties for the estimator x̂S
1(û1).

Consider the autocorrelation for the characteristic function

u(x) as

τ(t) =

∫ ∞

−∞

u(x)u(x− t)dx. (8)

Then, the following property can be derived.

Lemma 1 (Monotonicity). The autocorrelation function τ(t)
is non-negative and symmetric. In addition, τ(t) is strictly

decreasing in t > 0.

Let the dominant singular vector of Ĥc as the solution to

(5) be given by û1 = u1 + e1, where u1 is the dominant

singular of H. Let ←−e 1 be a vector with reverse elements of

e1, i.e., the jth element of ←−e 1 equals to the last but the jth

element of e1. Let e−t
1 be a vector obtained from the t-shift

of←−e 1, i.e., for t > 0, the first t elements of e−t
1 are zeros and

the remaining (nc − t) elements of e−t
1 are identical to the

first (nc− t) elements of ←−e 1; and for t < 0, the first (nc− t)
elements of e−t

1 are identical to the last (nc − t) elements of
←−e 1 and the remaining t elements of e−t

1 are zeros. With such

a notion, we make the following assumption on the singular

vector û1 = u1 + e1 of the completed matrix Ĥc:

|uT
1e

−t
1 | ≤ Ce|uT

1e1| (9)

for any 0 ≤ t ≤ nc − 1, where Ce <∞ is a positive constant

that only depends on the characteristic function u(x) but not

nc or M .

Such an approximation is motivated by two observations.

First, the entries of the vector e1 may have roughly the same

chance to take positive values or negative values because both

u1 and u1 + e1 have unit norm. Second, the magnitude of

the elements in u1 depends only on the characteristic function

u(x) but not nc or M . Although it is difficult to analytically

validate the assumption (9), it can be roughly confirmed by

massive simulation results.

As a result, we have the following theorem to characterize

the estimation error of x̂S
1.

Theorem 1 (Localization error bound). Suppose that the

sampling error of Ĥ from the true energy field matrix H is

bounded by ‖PΩ(Ĥ−H)‖F ≤ ǭ and the algorithm parameter

ǫ in (5) is chosen as ǫ = ǭ. Then, with high probability,

|x̂S
1 − xS

1| ≤
1

2
τ−1

(

1− µuL
6nc(M)−3 + o(nc(M)−3)

)

(10)

where τ−1(r) is the inverse function of r = τ(t), µu =
Ce128u(0)

2K2
u, and nc(M) is the largest integer chosen such

that M ≥ Cnc(log nc)
2.

The specific performance from (10) depends on the char-

acteristics of the energy field. Intuitively, if u(x) has a sharp

peak (large slope of the autocorrelation function τ(t)), the

localization error should be smaller. Consider a numerical

example where the energy field has a Gaussian characteristic

function.

Corollary 1 (Squared error bound in Gaussian field). For a

Gaussian characteristic function u(x) =
(

2γ
π

)
1
4 e−γx2

, there

exists a constant Cµ, which only depends on the characteristic

function u(x), such that with high probability, the squared

estimation error is upper bounded by

|x̂S
1−xS

1|2+|ŷS
1−yS

1|2 ≤ CµL
6nc(M)−3+o(nc(M)−3). (11)

Theorem 1 and Corollary 1 gives the asymptotic perfor-

mance of the proposed localization algorithm without knowing

the energy-decay model. For large M , the worst case squared

error decays at a rate nc(M)−3. As a benchmark, the squared

error of a naive scheme, which estimates the source location

directly from the position of the measurement sample that

observes the highest power, decreases as M−1, which is equiv-

alent to nc(M)−1(lognc(M))−2, much slower than that of

the proposed algorithm. This is because, the granularity of the

original observations is L/
√
M . The results then confirm that

by exploiting the low rank property using matrix completion

and the reflected correlation technique, the proposed algorithm

significantly improves the localization resolution.

IV. ROTATED EIGENSTRUCTURE ANALYSIS FOR

DOUBLE SOURCE LOCALIZATION

The location estimator x̂S
1 in (7) is based on the intuition

that the singular vectors of H are just the vectors u1 and v1,

which contains the source location in their peaks. However,

a similar technique cannot be applied to the two source case,

because uk and vk may not be the singular vectors of H, as

the vectors {uk} may not be orthogonal.
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A. Optimal Rotation of the Observation Matrix

When there are two sources, the (ideal) observation matrix

H is not rank-1, expect for the special case where the two

sources are aligned on one of the axes of the coordinate

system.

Without loss of generality (w.l.o.g.), assume that the

sources are aligned with the x-axis, where yS
k = C

for k = 1, 2. Consequently, we have v1 = v2, and

H = α
(
∑

k uk

)

vT
1 , which is rank-1. Hence, the right

singular vector of H is v1 and, by analyzing the peak of v1,

the central axis ŷS
k = C can be estimated.

The above observations suggest that we rotate the coordinate

system such that the sources are aligned with one of the axes.

Consider rotating the coordinate system by θ. The entries of

Ĥc are rearranged into a new observation matrix Ĥθ, where

[

Ĥθ

]

(i,j)
=

[

Ĥc

]

(p,q)
(12)

in which (p, q) is the index such that (x
′

p, y
′

q) is the closest

point in Euclidean distance to (x̄, ȳ) in the original coordinate

system C0, with x̄ = d cos(β + θ) and ȳ = d sin(β + θ). Here

β = ∠(xi, yj) is the angle of (xi, yj) to the x-axis of the

rotated coordinate system Cθ, and d = ‖(xi, yj)‖2. Note that

1 ≤ i, j ≤ n
′

, where n
′ ≤ nc, since the rotation of the axes

induce truncation of some data samples.

Let the orientation angle of the central axis of the sources

with respect to (w.r.t.) the x-axis in the original coordinate

system C0 be θ0, θ0 ∈ [0, π). Then the desired rotation for

coordinate system Cθ would be θ∗ = θ0 for θ0 < π
2 , or

θ∗ = θ0 − π
2 for θ0 ≥ π

2 . The desired rotation θ can be

obtained as

maximize
θ∈[0,π

2
]

ρ(θ) ,
λ1(Ĥθ)

∑

k λk(Ĥθ)
(13)

where λk(A) is the kth largest singular value of A. Note that

ρ(θ) ≤ 1 for all θ ∈ [0, π2 ] and ρ(θ∗) = 1, where Ĥθ becomes

a rank-1 matrix when the sources are aligned with one of the

axes.

The maximization problem (13) is in general non-convex.

An exhaustive search for the solution θ∗ is computationally

expensive, since for each θ, SVD should be performed to

obtain the singular value profile of Ĥθ. Therefore, we need to

study the properties of the alignment metric ρ(θ) in order to

develop efficient algorithms for the source detection.

B. The Unimodal Property

We also show that the function ρ(θ) also has the unimodal

property defined as follows.

Definition 1 (Unimodality). A function f(x) is called uni-

modal in a bounded region (a, b), if there exists x0 ∈ [a, b],
such that f

′

(x)f
′

(y) < 0 for any a < x < x0 < y < b.

The unimodality suggests that f(x) has a single peak in

(a, b), and hence f(x) has a unique local maximum (or

minimum).

Algorithm 1 Search for the optimal rotation angle

1) Let θL = 0 and θR = π
2 . Choose an integer T ≥ 1 for

smoothing (for sampling noise tolerance).

2) Let θc =
1
2 (θL+θR). Take uniformly T points in [θL, θc],

i.e., θi = θc − i
T (θc − θL), and compute ρ̄L(θL, θR) =

1
T

∑T
i=1 ρ(θi) using (12) and (13). Compute ρ̄R(θL, θR)

in the similar way.

3) If ρ̄L > ρ̄R, then θR = θc; otherwise, θL = θc.
4) Repeat form Step 2) until θR − θL small enough. Then

θ∗ = θc is found.

Theorem 2 (Unimodality in the two source case). The function

ρ(θ) in (13) is unimodal in θ ∈ (θ∗ − π
4 , θ

∗ + π
4 ), if

s · τ ′

(t) > t · τ ′

(s) (14)

for all 0 < s < t, where τ
′

(t) , d
dtτ(t). In addition, ρ(θ)

is strictly increasing over (θ∗− π
4 , θ

∗) and strictly decreasing

over (θ∗, θ∗ + π
4 ).

The result in Theorem 2 is powerful, since it confirms

that the function ρ(θ) is unimodal within a π
2 -window, and

there is a unique local maximum, when the autocorrelation

of the energy field characteristic function u(x) agrees with

the condition (14). Note that ρ(θ) is also symmetric w.r.t.

θ = θ∗. As a result, a simple bisection search algorithm

can efficiently find the global optimal solution θ∗ to (13). An

example algorithm is given in Algorithm 1.

Note that condition (14) can be satisfied by a variety of en-

ergy fields. For example, for Laplacian field u(x) =
√
γe−γ|x|,

we have τ(t) = (1 + γt)e−γt, and τ
′

(t) = −γ2te−γt; for

Gaussian field u(x) =
(

2γ
π

)
1
4 e−γx2

, we have τ(t) = e−γt2/2,

and τ
′

(t) = −γte−γt2/2. In both cases, condition (14) is

satisfied.

C. Source Detection

In the coordinate system Cθ under optimal rotation θ = θ∗

(assuming alignment on the x-axis), the left and right singular

vectors of Ĥθ can be modeled as û1 = 1
2 (u1(θ

∗)+u2(θ
∗))+

eu and v̂1 = v1(θ
∗) + ev, respectively. Correspondingly, the

y-coordinates of the sources can be the found using estimator

(7) based on reflected correlation

ŷS
1(v̂1; θ

∗) = ŷS
2(v̂1; θ

∗) =
1

2
argmax

t∈R

R̂(t; v̂1). (15)

To find the x-coordinates, note that the function u1(x) =
1
2

(

u(x − xS
1) + u(x− xS

2)
)

is symmetric at x = 1
2 (x

S
1 + xS

2).
Therefore, the center of the two sources can be found by

ĉ =
1

2
argmax

t∈R

R̂(t; û1). (16)

In addition, after estimating ŷS
1, the marginal power density

function u(x) can be obtained as û(y) = v̂1(y − ŷS
1), where

v̂1(y) is a regression function from v̂1 (for example, by

linear interpolation among y1, y2, . . . , ync
). As a results, the

x-coordinates of the two sources can be found using similar



FULL VERSION 5

techniques as spread spectrum early gate synchronization [14],

and obtained as x̂S
1(θ

∗) = ĉ− d̂ and x̂S
2(θ

∗) = ĉ+ d̂, where

d̂ = argmax
d≥0

Q(d; û1, v̂1) (17)

and

Q(d; û1, v̂1) ,
1

2

∫ ∞

−∞

û1(x)
(

û(x− ĉ−d)+ û(x− ĉ+d)
)

dx.

It is straight-forward to show that Q(d; û1, v̂1) is maximized

at d∗ = 1
2 |xS

1 − xS
2|.

As a benchmark, consider a naive scheme that estimates xS
1

and xS
2 by analyzing the peaks of û1. However, such naive

strategy cannot work for small source separation, because if

d = 1
2 |xS

1 − xS
2| is too small, the aggregate power density

function ũ1(x) = u(x − xS
1) + u(x − xS

1 − d) would be

unimodal and there is only one peak in û1. As a comparison,

the proposed procedure estimator from procedure (15)–(17)

does not such a limitation.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

location estimator in both single source and double source

cases. Two sources are placed in the area [−0.5, 0.5] ×
[−0.5, 0.5] uniformly and independently at random, with the

restriction that the distance between the two sources is no

more than 0.5.3 The power field generated by each source

in an underwater environment is modeled as hk(x, y) =

e−20(x−xS
k
)2−20(x−yS

k
)2 , k = 1, 2. There are M power mea-

surements taken in the area A = [−1, 1]× [−1, 1] uniformly

at random. The parameter nc of the proposed observation

matrix Ĥ ∈ R
nc×nc is chosen as the largest integer satisfying

nc(lognc)
2 ≤M/C, for C = 1.

As a benchmark, the proposed location estimation is com-

pared with the naive scheme, which determines the source

location directly form the position of the measurement sample

that observes the highest power. In the two source case, the

naive algorithm aims at detecting either one of the sources, and

the corresponding localization error is computed as E2naive =
min{‖ŝnaive − s1‖2, ‖ŝnaive − s2‖2}. As a comparison, the

localization error of the proposed algorithm is computed as

E2 = 1
2 (‖ŝ1 − s1‖2 + ‖ŝ2 − s2‖2).

Fig. 2 depicts the MSE of the source location versus the

number of samples M . In the single source case,the coefficient

of the worst case upper bound (11) is chosen as Cµ = 1
to demonstrate the asymptotic decay rate of the worst case

squared error bound. The decay rate of the analytic worst case

error bound is roughly the same as the MSE obtained from

the numerical experiment. It is expected that as M increases,

the two curves merge in an asymptotic way. As a benchmark,

the proposed scheme requires less than half of the samples to

achieve similar performance to that of the naive baseline even

for small M (around 50). More importantly, it demonstrates a

higher MSE decay rate, where for medium M (around 200),

the proposed scheme reduces the number of samples to 1/10.

In the double source case, there is an error floor for the naive

3When the two sources are far apart, the problem degenerates to two single-
source-localization problems.
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Figure 2. MSE of the source location versus the number of samples M .
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denote the true source locations, and black circles denote the estimates. The
color map represents the aggregate power field generated by the two sources.
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scheme, because the location that observes the highest power

may not be either one of the source locations. As a comparison,

there is no error floor in for proposed scheme as M increases.

Fig. 3 shows an example on simultaneously localizing two

sources (red crosses). Although the aggregate power field has

only one peak, the algorithm (black circles) is able to separate

the two sources.

VI. CONCLUSIONS

This paper developed source localization algorithms from

a few power measurement samples, while no specific energy-

decay model is assumed. Instead, the proposed method only

exploited the structural property of the power field generated

by the sources. Analytical results were developed to demon-

strate that the proposed algorithm decreases the localization

error at a higher rate than the baseline algorithm when the

number of samples increases. In addition, a rotated eigen-

structure analysis technique was derived for simultaneously

localizing two sources. Numerical results demonstrate the

performance advantage in localizing single or double sources.
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APPENDIX

A. Proof of Lemma 1

τ
′

(t) =
d

dt

∫ ∞

−∞

u(x)u(x − t)dx

=

∫ ∞

−∞

−u(x)u′

(x− t)dx

= −
∫ 0

−∞

u(z + t)u
′

(z)dz −
∫ ∞

0

u(z + t)u
′

(z)dz

= −
∫ 0

−∞

u(z + t)u
′

(z)dz +

∫ ∞

0

u(z + t)u
′

(−z)dz
(18)

= −
∫ 0

−∞

u(z + t)u
′

(z)dz +

∫ 0

−∞

u(−w + t)u
′

(w)dw

(19)

= −
∫ 0

−∞

[

u(z + t)− u(−z + t)
]

u
′

(z)dz

= −
∫ 0

−∞

[

u(z + t)− u(z − t)
]

u
′

(z)dz (20)

< 0

where (18) is due to the change of variable z = x − t and

u
′

(z) = −u′

(−z), (19) is to change the variable z = −w, (20)

exploits the fact that u(x) = u(−x), and the last inequality is

due to u(z + t)− u(z − t) > 0 and u
′

(z) > 0 for all z < 0.

B. Proof of Theorem 1

To simplify the algebra, we only focus on the dominant

terms w.r.t. nc as nc goes large.

1) Upper Bound of the Sampling Error: For notational

convenience, define u1(x) = u(x−xS
1) and v1(y) = u(x−yS

1).
Consider the sampling position (x, y) ∈ Gij . Using a Taylor

expansion, we have

|h1(x, y)− h1(x1, y1)|
= α|u1(x)v1(y)− u1(x1)v1(y1)|
= α

∣

∣

(

u1(x1) + u
′

1(x1)(x− x1)
)

×
(

v1(y1) + v
′

1(y1)(y − y1)
)

− u1(x1)v1(y1)

+ o(x − x1) + o(y − y1)
∣

∣

= α
∣

∣u1(x1)v
′

1(y1)(y − y1) + v1(y1)u
′

1(x1)(x − x1)
∣

∣

+ o(x − x1) + o(y − y1)

≤ αu(0)Ku
L

nc
+ o

( L

nc

)

from the property u(x) ≤ u(0) and |u′

(x)| ≤ Ku.

From (2), we have

|Ĥij −Hij | =
(

L

nc

)2

|h1(x, y)− h1(x1, y1)|

≤ αu(0)Ku
L3

n3
c

+ o
(L3

n3
c

)

. (21)

As a result,

‖PΩ(Ĥc −H)‖2F =
∑

(i,j)∈Ω

|Ĥij −Hij |2

≤M
(

αu(0)KuL
3/n3

c

)2
, ǭ2.

2) Matrix Completion with Noise and Singular Vector Per-

turbation: When there is sampling noise, the performance of

matrix completion can be evaluated by the following result.

Lemma 2 (Matrix completion with noise [13]). Consider that

ǫ in (5) is chosen such that ‖PΩ(Ĥ −H)‖F ≤ ǫ = ǭ. Then,

with high probability,

δ , ‖Ĥc −H‖F ≤ 4

√

(2 + p)nc

p
ǭ+ 2ǭ (22)

where p = M/n2
c .

As we focus on not too small nc, which is chosen to be such

that M ≈ Cnc(lognc)
2, the bound (22) can be simplified as

δ ≤ 4

√

(2 + Cnc(lognc)2/n2
c)nc

Cnc(log nc)2/n2
c

ǫ+ 2ǫ

≈
√

32

C

nc

lognc
ǫ.

Let u1 and û1 = u1 + e1 be the dominant left singular

vectors of H and Ĥc, respectively. We exploit the following

classical result from singular vector perturbation analysis.

Lemma 3 (Singular vector perturbation [15]). Let σ1 and σ2

be the first and second dominant singular values of H. Then,

sin∠(u1, û1) ≤
2‖Ĥc −H‖F

σ1 − σ2
=

2δ

σ1 − σ2
.
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By exploiting Lemma 3 for our case, we have

sin∠(u1, û1) =

√

1−
∣

∣uT
1(u1 + e1)

∣

∣

2

=

√

−2uT
1e1 +

∣

∣uT
1e1

∣

∣

2

≈
√

2
∣

∣uT
1e1

∣

∣

where | · | denotes the absolute value operator, and we drop the

second order term |uT
1e1|2, since |uT

1e1| is small as we focus

on large nc(M). We also note that uT
1e1 ≤ 0.

Consider that we have chosen M ≈ Cnc(log nc)
2, and

moreover, H is a rank-1 matrix with singular value σ1 = α.

As a result,

2
∣

∣uT
1e1

∣

∣ ≈ sin2 ∠(u1, û1) ≤
(2δ

α

)2

≤ 4

α2

32

C

( nc

log nc

)2

ǭ2

= 128u(0)2K2
uL

6n−3
c .

3) Estimator based on Reflected Correlation: Let e(x) =
û(x)− u1(x). Define a reflected correlation function as

R(t;xS
1) =

∫ ∞

−∞

u(x− xS
1)u(−x− xS

1 + t)dx.

Then, it follows that R(t;xS
1) = τ(2xS

1 − t). As a result, we

have

R̂(t; û1)

=

∫ ∞

−∞

(

u1(x) + e(x)
)(

u1(−x+ t) + e(−x+ t)
)

dx

=

∫ ∞

−∞

u1(x)u1(−x+ t)dx +

∫ ∞

−∞

u1(x)e(−x+ t)dx

∫ ∞

−∞

e(x)u1(−x+ t)dx +

∫ ∞

−∞

e(x)e(−x+ t)dx

≈ R(t;xS
1) +

∫ ∞

−∞

u1(x)e(−x + t)dx

+

∫ −∞

+∞

e(−y + t)u1(y)(−dy) (23)

= R(t;xS
1) + 2

∫ ∞

−∞

u1(x)e(−x + t)dx

≈ R(t;xS
1) + 2uT

1e
−t
1 (24)

where the first approximation (23) is by dropping the second

order term
∫∞

−∞
e(x)e(−x+ t)dx, and the second approxima-

tion (24) is to use the inner product uT
1e

−t
1 to approximate the

integral based on assumptions A1 and A2 in Section III. As a

result, we have R(t;xS
1)− R̂(t; û1) ≈ −2uT

1e
−t
1 .

Recall that t̂ = 2x̂S
1 maximizes R̂(t̂; û1) and t∗ = 2xS

1

maximizes R(t∗;xS
1) = τ(2xS

1 − t∗). We have

τ(0) − τ
(

2
∣

∣x̂S
1 − xS

1

∣

∣

)

= R(t∗;xS
1)− R̂(t̂; û1)

≈ −2uT
1e

−t
1

≤ Ce2
∣

∣uT
1e1

∣

∣

≤ µuL
6n−3 + o(n−3

c )

where µu = Ce128u(0)
2K2

u and o(n−3
c ) is due to the fact that

we keep omitting the higher order terms. Finally, we obtain

τ
(

2
∣

∣x̂S
1 − xS

1

∣

∣

)

= 1− µuL
6n−3 + o(n−3

c )

and hence,

∣

∣x̂S
1 − xS

1

∣

∣ ≤ 1

2
τ−1(1 − µuL

6n−3
c + o(n−3

c )).

C. Proof of Theorem 2

We first study the singular vectors in double source case.

Lemma 4 (Singular vectors in two source case). Let uk(θ)
and vk(θ) be the vectors defined following (3) and (4) in the

rotated coordinate system Cθ. The SVD of Hθ is given by

Hθ = α1p1q
T
1 + α2p2q

T
2 (25)

where α1 = α
2 ‖u1+u2‖‖v1+v2‖ and α2 = α

2 ‖u1−u2‖‖v1−
v2‖ are the singular values, and

p1 =
u1 + u2

‖u1 + u2‖
, q1 =

v1 + v2

‖v1 + v2‖

p2 =
u1 − u2

‖u1 − u2‖
, q2 =

v1 − v2

‖v1 − v2‖
are the corresponding singular vectors.

Proof. First,

Hθ = ᾱ
(

u1v
T
1 + u2v

T
2

)

=
ᾱ

2

[

(u1 + u2)(v1 + v2)
T + (u1 − u2)(v1 − v2)

T
]

= α1p1q
T
1 + α2p2q

T
2

Hence, these four vectors form a decomposition of Hθ.

Second, we have

pT
1p2 = c(u1 + u2)

T(u1 − u2)

= c
(

‖u1‖2 − ‖u2‖2
)

= 0

where c = 1/(‖u1 +u2‖‖u1 −u2‖). Similarly, qT
1q2 = 0. In

addition, all the four vectors have unit norm.

As a result, (25) is the SVD of Hθ.

Consider an arbitrary coordinate system. W.l.o.g. (due to

Assumption 1), assume that the first source is located at the

origin, xS
1 = 0 and yS

1 = 0, and the second source is away

from the first source with distance D and angle θ to the x-

axis, xS
2 = D cos θ and yS

2 = D sin θ. In addition, defining

uc(x, θ) , u(x−D cos θ), us(x, θ) , u(x−D sin θ)

we have

u1 =
√
δ
[

u(x1), u(x2), . . . , u(xN )
]T

v1 =
√
δ
[

u(y1), u(y2), . . . , u(yM )
]T

u2 =
√
δ
[

uc(x1, θ), uc(x2, θ), . . . , uc(xN , θ)
]T

v2 =
√
δ
[

us(y1, θ), us(y2, θ), . . . , us(yM , θ)
]T
.

Based on assumption A1 and A2, we have

‖uk‖2 =
(L

n

)2 N
∑

i=1

u(xi − xS
k)

2 ≈
∫ xn−1

x1

u(x− xS
k)

2dx

≈
∫ ∞

−∞

u(x− xS
k)

2dx = 1

(26)
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and similar integrals apply to vk.

As an equivalent statement to Theorem 2, we need to show

that ρ(θ) is a strictly increasing function in θ ∈ (0, π4 ).
Equivalently, we should prove that the function

λ2(Hθ)
2

λ1(Hθ)2

≈
∫∞

−∞

(

u(x)− uc(x, θ)
)2
dx

∫∞

−∞

(

u(x) + uc(x, θ)
)2
dx

∫∞

−∞

(

u(x)− us(x, θ)
)2
dx

∫∞

−∞

(

u(x) + us(x, θ)
)2
dx

, µ(θ)

is strictly increasing in θ ∈ (0, π
4 ), where the approximated

integrals are obtained from (26).

To simplify the notation, define the integration operator 〈·〉
as

〈f〉 ,
∫ ∞

−∞

f(x, θ)dx

for a function f(x, θ). By definition, the integration operator is

linear and satisfies the additive property, i.e., 〈af〉 = a〈f〉 and

〈f+g〉 = 〈f〉+〈g〉, for a constant a and a function g(x, θ). As

a result, 〈(u−uc)
2〉 = 〈u2〉+〈u2

c 〉−2〈u ·uc〉 = 2
(

1−〈u ·uc〉
)

,

and the function µ(θ) can be written as

µ(θ) =

(

1− 〈u · uc〉
)(

1− 〈u · us〉
)

(

1 + 〈u · uc〉
)(

1 + 〈u · us〉
) . (27)

In addition, from the properties in calculus, if f(x, θ) and
∂
∂θf(x, θ) are continuous in θ, then

d

dθ
〈f〉 = d

dθ

∫ ∞

−∞

f(x, θ)dx

=

∫ ∞

−∞

∂

∂θ
f(x, θ)dx =

〈 ∂

∂θ
f
〉

.

Therefore, defining

u
′

c(x, θ) ,
d

dx
u(x)

∣

∣

x=x−D cos θ

u
′

s(x, θ) ,
d

dx
u(x)

∣

∣

x=x−D sin θ

we have

d

dθ
〈u · uc〉 = 〈u ·

∂

∂θ
uc(x, θ)〉 = 〈u · u

′

c〉D sin θ

d

dθ
〈u · us〉 = 〈u ·

∂

∂θ
us(x, θ)〉 = −〈u · u

′

s〉D cos θ.

With some algebra, the derivative of µ(θ) can be obtained

as

d

dθ
µ(θ) = η

[

D cos θ〈u · u′

s〉
(

1− 〈u · uc〉2
)

−D sin θ〈u · u′

c〉
(

1− 〈u · us〉2
)

]

= η
[

− t · τ ′

(s)
(

1− τ(t)2
)

+ s · τ ′

(t)
(

1− τ(s)2
)

]

where η = 2
(

1+ 〈u ·uc〉
)−2(

1+ 〈u ·us〉
)−2

, t = D cos θ, and

s = D sin θ.

Note that 0 < s < t for 0 < θ < π
4 . Applying condition

(14), we have

d

dθ
µ(θ) > η · t · τ ′

(s)
[

(

1− τ(s)2
)

−
(

1− τ(t)2
)

]

= η · t · τ ′

(s)
(

τ(t)2 − τ(s)2
)

> 0

since τ
′

(s) < 0 and τ(t) < τ(s) for 0 < s < t.
This confirms that µ(θ) is a strictly increasing function, and

hence ρ(θ) is a strictly increasing function in θ ∈ (0, π4 ). The

results in Theorem 2 is confirmed.
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