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Abstract—Monaural source separation is an important re-
search area which can help to improve the performance of seval
real-world applications, such as speech recognition and aisted
living systems. Huang et al. proposed deep recurrent neuraiet-
works (DRNNs) with discriminative criterion objective fun ction
to improve the performance of source separation. However,he
penalty factor in the objective function is selected randorty and
empirically. Therefore, we introduce an approach to calcuate
the parameter in the discriminative term adaptively via the
discrepancy between target features. The penalty factor cabe
changed with inputs to improve the separation performance.
The proposed method is evaluated with different settings ah
architectures of neural networks. In these experiments, th
TIMIT corpus is explored as the database and the signal to

the mapping function is learnt, the T-F masks or clean spectr
are estimated and applied to reconstruct the desired speech
signals. The T-F masks are categorized as binary maskstor sof
masks. In the binary mask, the T-F unit is assigned as 1 or O
according to the criterion for the active source [12]. In soét
mask, the T-F unit is assigned as ratios of target energy and
mixture energy [11]. In recent years, recurrent neural nete/
(RNNs) have provided state-of-art performance in speech
signal processing, e.g. speech source separation, emhante
and recognition [1], [2], [13]. However, such RNNs often
require high memory and computational power resource. In
order to overcome these drawbacks of RNNs, the DRNNs are

distortion ratio (SDR) as the measurement. Comparing with he
previous approach, our method has improved robustness and a
better separation performance.

Index Terms—Monaural Source Separation, Deep Recurrent
Neural Network, Penalty Factor, Adaptive

proposed, for which only the selected layers in the networks
have the temporal connection [1].

In this paper, the DRNNs are trained to estimate the binary
and soft T-F masks. Different architectures of DRNNs are
used to generate the T-F masks to separate the speech mixture

. INTRODUCTION with the discriminative training criterion. In our methaithe

Speech source separation is a promising research topigameter in the discriminative term is calculated adaptito
for various real-world applications, such as automatieeshe penalize the objective function. The DRNNs with the progbse
recognition (ASR), assisted living systems and hearing aigldaptive discriminative criterion outperform the perfame
[1]-{3]. Some approaches have been utilized to single ogf [1].
sources from the speech mixtures by using spatial infoonati  The remainder of the paper is organized as follows, in
and statistical properties of the speech signals, e.gpemie Section II, the architectures of DRNNs and the T-F masks
dent component analysis (ICA) and computational auditogte described. In Section I, the method to calculate the
scene analysis (CASA) [4]-[8]. While in the monaural sourggenalty factor in the discriminative term with differentrnes
separation problem, only one speech mixture is capturgd presented; experimental settings and results are shown
and therefore the aforementioned methods become ill-posgfl Section IV to confirm the improvement of the proposed

To solve the monaural source separation problem, sevesghroach. Finally, conclusions are drawn in Section V.
approaches have been proposed [9], [10]. One of the most

famous methods is non-negative matrix factorization (NMF) Il. RELATION TO PREVIOUS WORK

which is a well established method for single channel SpEECh]_) Architectures of Neural Networksin the monaural
separation [9]. However, because of the randomness inlspeggurce separation problem, which is solved via neural net-
signals, the NMF based approaches are not expressive enopgfks, the separation performance can be improved by utiliz
to model the complicated mapping function in many reajng the temporal information of the speech signals in thiatra
world scenarios [1]. ing stage of networks. Commonly, the temporal information
In order to model highly non-linear mappings between thg exploited in two ways: concatenating neighbouring feegu
mixture and speech signals or a mixed signal to a timgnd using RNNs [14]. In the concatenating features method,
frequency (T-F) mask, deep neural networks (DNNs) hayg|arger window size can utilize more temporal information
been introduced [11]. In DNNSs, the relationship can be okyith the trade off being computational and memory resources
tained by optimizing the parameters of the networks. Aftgtherefore, an appropriate window size is required. The RNNs
have a recurrent architecture, which is a powerful model
for temporal information. The DRNNs combine the multiple
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levels of representation that have proved so effective itNBN S = (1 —M)OX, (7)

ith the flexible use of long range context that empower .
VF\z”NNs [13] X us 9 g X pow v?here the maskM can be selected as a binary or soft

According to [15], two DRNN architectures are defined: 1$ask,® is the element-wise multiplication operator. By using

an L hidden layer DRNN with temporal connection only a e inverse short-time Fourier transform (ISTFT), the seur

the i-th layer (DRNN?) and 2) a full RNN. Assumé! is the SpgeCh S'gna'S" ?re. regor‘s”“fte‘i' s brovid t
hidden activation at |ayd|'and timet ecause well-trained neural Networks provide more aceura

estimated spectra, they can help to improve the separation
h! = fu(xs, 0l ,) performance. Based on these network architectures and T-F
_ masks, our proposed approach will focus on how to optimize
= gi(R',_, + Wig (W i(Wike)))) (1) the neural network parameters. The penalty parameter in the
the outputy, is expressed as: objective function is calculated adaptively, which will be
elaborated in the next section.
Y = fo(hi)

:WLgL_l(WL—l(”.gl(wlhi))) (2) I1l. PROPOSEDMETHOD

n By optimizing the parameters of the neural network, the
rhapping relationship between the feature of mixtuwg,and
the estimationsy,, andy,,, can be obtained. The sum of the
squared errors is selected as the objective function as:

where f;, and f, are the state transition and output functio
respectively. The input at time is x;, g(-); represents the
activation function at thé-th layer,R' is the recurrent weight
matrix andW' is the current connection at theth layer. In
the layers without temporal connection, the previous weigh 1L
matrices are the zero matrices. J = §Z(|\5’1t = Viull3 + 1920 — yaull5) (8)
The full connection DRNN has the same architecture as the t=1
vanilla RNN [16], the hidden state of tHeth layer at timet wherey,, andy,, are the predictions of the spectra apg
is: 1 1 and represent the target spectria; ||2 is the I norm
hi = fu(bi™"hiy) = (BB, + Whi ™) (3) operzfi%n, F?’:md (8) needsgto th)a m?ﬁinllfzed to optimize the
In the first layer, wheré = 1, the activatiorh; is calculated parameters in the neural network.
by h? = x;. In the DRNN, the activation function is selected In this work, the input is a concatenation of features; when
as a rectified linear unit (ReLU) to avoid gradient vanishinthe features are similar, the neural network will be corastire
and reduce the computational cost. The RelLU function i the training stage. Because of the similarity, a featareoe
expressed as: attributed to source 1 or source 2 in some cases. To maintain
g(x) = maz(0,x) (4) the efficiency of the training stage, the neural network will
) ) attribute the feature to both source 1 and source 2, which is
2) Time-Frequency MaskThe proposed method trains thegjieq the conservative strategy. However, if the ambiguou

neural network to learn the mapping relationship from e res are attributed repeatedly, the separation pesioce
features of the mixed signal to the features of the sourgeyecreased due to this strategy.

signals and the T-F mask is computed by using the outputy, 111 5 giscriminative network training criterion was pro

features. In this work, both the binary and soft masking,seq "The new discriminative objective function is defined
functions are explored.

as:
Assume the target outputs of the neural networksyare 1

andy,,, the predicted outputs agg;, andy,,. These outputs Jprs = §Z(|ly1t — 9l + 1o — Faell*—

are the magnitude spectra of source 1 and 2. t=1
Using the estimated outputs to generate masks to separate Yy1, = Foull2 = Yllyar — 51112 9)

signals, the binary T-F mask is computed as [17]: )
where~ can be treated as the penalty parameter. In the ideal

My (/1) = {1 191 > [F2:(F)] (5) C3e.3y, andy, are only estimated by the corresponding
’ 0 otherwise target features. However, because of the indeterminacy and
. conservative strategy, this case cannot happen. What we can
The soft T-F mask for source 1 is expressed as [18]: do is to minimize the negative influence from these ambiguous
ML (1) = 91l (6) features. Thély,, — s> and|ly,, —,,” terms are used to
SN 151 ()| + 1572: ()] represent the squared errors, which are caused by attigputi
the estimated featureg,, andy,,, incorrectly.

According to previous work [1}y is selected in the range of
é).Ole.l, empirically. Whereas the speech signals are random
with high indeterminacy. If the value of is irrelevant to
inputs, when the inputs for training stage are changed, the
S1: = MOX; performance and the trained network may not be amenable.

where f = 1,.--F is the index of the frequency bing,=
1,---T is the index of the temporal frame bins.

AssumeX; is the magnitude spectra of the input mixtur
signal, the separated spectra can be computed as:



Therefore, we propose an approach to calculate the penailtyere P is the positive integer.

parameter adaptively, which is applied to penalize theabje In this work, we discuss two cases in tlienorm, where
function to train the neural networks. the value ofP is selected as 1 or 2.
For P = 1:
T F
Estimated l Dy = ZZ'dLH (14)
S h Feature 1 [ Time- t=1f=1
peec
. DRNNs Frequency — a5
Mixture Estmated Mask For P = 2:
Target I Feature 2 T F )
Penalty Factor _ 2\5 _ *
| Features | Calculation Separated HDH2 - (ZZ|dt,f| )2 - trace(D~D ) (15)
Source 1 t=1f=1
Separated where D* denotes the conjugate transposeIdf It is well
known as the Frobenius norm.
Fig. 1: Framework of the Proposed Method Theoretically, from the definition of thé-norm, we can

know that it shrinks the difference between inputs. Thewfo
Figure 1 is the flow diagram of our proposed method. Befotge algorithm based on thé-norm should have a better
training the neural network, a penalty factor calculationdm separation performance. To confirm this point, the perfoicea
ule is added to compute the parameter in the discriminatige DNNs with differentP-norms is compared in Table 1.
term to penalize the objective function. Then, in the traini TABLE 1: Separation performance comparison in terms of SDR (dB) with
stage, the parameters of the DRNN are optimized with tld#ferent types of-norm, the architecture of these neural networks are DNNs.

penalty factor and discriminative criterion. Norm Types| 1-norm | 2-norm
In our method, the value ofy in (9) is changed with Binary Mask | 6.64 6.28
the input features. To be specific, if the input features are Soft Mask 7.27 6.92

almost the same, it indicates that features are more likely t

be attributed to both source 1 and source 2. Therefore, theMoreover, for any two matrix normg-||, and ||-||;, they
penalty term needs to be significant andftrequires a greater have the relationship for some positive constangdé and
value. In contrast, when the targets have huge differencef, matricesD in R¥*T, It is defined as:

the conservative strategy and penalty factor are trivighia

situation and~y should be close to zero. According to the 5”D”a<”D”B<9”DHa (16)

analysis above, the value of the penalty factor is inversefye apove equation indicates that all norms BR*” are
proportional to the discrepgncy between target feature;. equivalent [19]. However, in a specific algorithm, theorm

Generally, norms of matrix are used to measure the discrerd the2-norm will show different performance. From Table
ancy. In this paper, we explore three types of norms. 1, thel-norm is the proper choice.

Assume the spectra of source 1 and source 2 are, respeinally, the type of norm in (11) is selected as th@orm
tively, A € R"*" andB € R"*". The discrepancy betweenand the penalty factor is calculated as:
the features is defined as:

1 1
D-A-B (10) "= oL - TA-BIL a0
The penalty factor is calculated as: Therefore, they can be calculated adaptively with the changes
1 of target features.

= - (11) This approach is effective for all of the neural network
IDnorm architectures in Section Il and considers both interpitiab
Because the discrepancy between two features needs t2B@ precision of the discriminative parameter, which wal b

measured, firstly, the max norm is utilized, which is defineepnfirmed by experimental results in the next section.

as:

gl

IV. EXPERIMENTS

1) Experimental SettingsThe separation performance is
whered, ; is the element in the matril, ¢ and f represent evaluated based on the famous TIMIT database, which con-
the frame and frequency index=1,...,Tandf =1,...,F. tains broadband recordings of 630 speakers [20]. In our
However, the max norm only finds the maximum valuexperiments, speech signals are selected from the TIMIT
of the matrix, it cannot fully measure the total discrepancgorpus randomly to constitute the training, validation and

HDHmaz = ma)th,f| Vi f (12)

Hence, theP-norm will be discussed below. testing sets. The number of mixtures in training, validatio
The P-norm of matrixD is defined as: and testing set is 972, 216 and 108, respectively. The nggtur
T F in these experiments are generated with different speech
ID||p = (ZZMLHP)% (13) sources having different genders. To extract the propetsgie

t=1f=1 representation to train the networks, a 1024-point shore i



TABLE 5: Separation performance comparison in terms of SDR (dB) with
different values ofy and neural network architectures via soft mask and the
input features are log power spectra.

Fourier transform (STFT) with 50 overlap is explored. The
initialization method in [21] is utilized to reduce the maig

difficulty of deep networks. Penalty factory | DNN | DRNN-1 | DRNN-2 | RNN

The circular shift in the time domain is explored to increase =1 6.01 6.13 6.75 7.21
the variety of training set [22]. The spectra and log powef 7=0 6.13 6.51 6.31 6.77
spectra are utilized as the types of input features, whic ~ = 0.05 [1] 6.82 7.23 7.26 7.40
are calculated by using the HTK toolkit [23]. The basic Adaptivey 7.07 752 7.33 774

DNN, the DRNN with first layer connection, the DRNN with
second layer connection and full connected DRNN are the four

different architectures of neural networks. All of expegimts of features in different architectures of networks. Gelfgra
are based on these architectures to identify generalizatiy pNN and DRNN-1, using the log power spectra as the
ability of the proposed method. _ _ input features has better performance. In contrast, thetrspe

In these networks, the number of hidden layers is two arééjn yield a higher SDR in DRNN-2 and full RNN. Then,
the number of hidden units on each layer is 1000. The SDRggcording to the Tables & 4 and Tables 3 5, the soft mask
utilized to measure the separation performance of the 3P0 phased models outperform binary mask based models greatly.
method [24]. The limited-memory Broyden-Fletcher-Gotifa |t js evident that the soft mask can have aroundlfore
Shanno (L-BFGS) method is an optimization algorithm iﬂnprovements in SDR.
the family of quasi-Newton methods, which is used fo train finally, the performance between different architectiises
the models [25]. In the experiments, the valuesnofare compared. The results in all Tables confirm the separation
selected as 0, 1 and 0.05 (in the range of 0.01 and 0.1) frformance and robustness of the proposed method are im-
comparison. The size of context window in these networks isdroved in all architectures of DRNNs. Besides, comparing
the concatenation contains three frames, one central feauthe ;e separation performance of DNN and DRNNS, introducing
two window frames. According to the analysis in Section Ifhe connected layer in networks can provide improvement. In

and Table 1, tha-norm is applied to calculate the discrepancprNNSs, almost all of the full RNN maintains the highest SDR,
in the target features.

2) Experimental ResultsAfter the different neural net- hese architectures with connection in hidden layers, DRNN

works are trained, the mixture is separated by using differe;  prRNN-2 and full RNN, increasing the complexities of
mask functions and values of

TABLE 2: Separation performance comparison in terms of SDR (dB) wi
different values ofy and neural network architectures via binary mask a

the input features are spectra.

n

but demands high computational power and larger memory. In

DRNNs gains the SDR. Although the performance is affected
tgiifferently for DNN and DRNNSs, the proposed approach
outperforms the DRNN-based method in [1].

Penalty factor, | DNN | DRNN-1 | DRNN-2 | RNN In the experiments, the proposed method is compared with
S =1 549 561 6.60 6.56 different architectures and values of penalty factors.nfro
=0 555 538 657 501 Table 1, thel-norm is. the proper choice to calculate the

5= 0.05[] 550 558 652 672 penalty factor. According to Tables 2—_5, the results of th_e
Adaptive 1 £ 81 £06 666 684 proposed method surpass the experimental results, which

are produced by the irrelevant parameter method. The soft

TABLE 3: Separation performance comparison in terms of SDR (dB) withasking function can assist to achieve a better separation

different values ofy and neural network architectures via binary mask anperformance. Generally, the full RNN is the better choice
the input features are log power spectra.

than DNN, DRNN-1 and DRNN-2, but the requirement of

Penalty factory | DNN | DRNN-1 | DRNN-2 | RNN computational resource will be higher, when the complexity
y=1 5.56 5.89 6.12 6.62 of the network is increased.
=0 5.13 6.16 5.88 7.01
~=005[1] | 6.28| 656 6.27 | 6.94 V. CONCLUSION
Adaptivey 6.79 6.89 6.87 711 In this paper, we proposed a method for learning with an

adaptive penalty factor. DRNNs were trained by our proposed

TABLE 4: Separation performance comparison in terms of SDR (dB) witg_pproach to solve the monaural speech source separation

different values ofy and neural network architectures via soft mask and th,

input features are spectra.

Broblem. Various neural network architectures and differe
values ofy were explored based on our approach. All of

Penalty factory | DNN | DRNN-1 | DRNN-2 | RNN . . L
= .08 617 700 707 the experimental results confirmed that the adaptive aviter
7 -0 5'72 6.20 7'12 6.60 method outperformed the approach with irrelevant penalty
_70 05 ] 6.14 6.25 7'24 7'52 factor method [1]. Because of the indeterminacy of speech
VAaap.tivey 6.30 6.70 7.48 7.56 signals in the real-world scenarios, our method can be more

applicable. In the future work, we will explore some new

The experimental results are compared in terms of differentrerse proportional functions or limited numerical pséch
aspects. Firstly, it can be seen from Tableg 3 and Tables 4 DRNNs to further improve the separation performance and
& 5 that the separation performance is impacted by the typsfficiency.
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