
 
 “© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing this 

material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works.” 



Beamforming and Power Allocation for

Energy-Efficient Massive MIMO

Long D. Nguyen∗, Hoang D. Tuan†, Trung Q. Duong∗ and H. Vincent Poor‡

∗Queen’s University, Belfast, UK (e-mail:{lnguyen04,trung.q.duong}@qub.ac.uk)
†University of Technology Sydney, Sydney, Australia (e-mail: tuan.hoang@uts.edu.au)

‡Princeton University, Princeton, NJ, USA (e-mail: poor@princeton.edu)

Abstract—Massive multiple input multiple output (MIMO)
has emerged as a promising technology, which utilizes a large
number of antennas at base stations (BSs) to significantly improve
the spectral efficiency in terms of bits/s/Hz while reducing the
radiated signal power. A critical issue with massive MIMO is the
costly circuit power consumption, which is proportional to the
number of antennas. This paper develops low-complexity power
allocation techniques to apply beamforming and to maximize
the energy efficiency of massive MIMO while meeting users’
quality-of-service requirements. Algorithms of low computational
complexity with rapid convergence are proposed to solve for
the optimal beamformer in this sense. Numerical examples are
provided to show the merit of the proposed computational
approach.

I. INTRODUCTION

Massive multiple input multiple output (MIMO) [1], in

which a large scale array of antennas is deployed at base

stations (BSs) to enhance both spectral efficiency and radiated

power efficiency, has emerged as a solution to help enable

the dramatic increase in network capacity required to support

emerging wireless networks. However, the increased amount

of infrastructure needed for deploying such large numbers of

antennas also results in a substantial growth in the circuit

power consumption at BSs. Since the energy-efficiency (EE)

performance in terms of bits/Joule/Hz is a very important

figure-of-merit in 5G systems [2], [3], it is of great interest to

employ signal processing techniques to improve the EE perfor-

mance of massive MIMO. The objective of such improvement

is to maximize the ratio of the sum throughput and consumed

power. The consumed power in the denominator contains not

only the radiated power, which can be well controlled, but

also the circuit power consumption, which is proportional

to the number of transmit antennas and thus constitutes a

significant fraction of the total. Maximizing the system EE

is thus different from minimizing the transmit power in guar-

anteeing users’ quality-of-service (QoS) requirements, which

was addressed in [4] using semi-definite programming (SDP).

Moreover, the dimensionality of SDP increases dramatically

for massive MIMO, making such an approach computationally

very inefficient.

One of the most appealing aspects of massive MIMO

is its favorable propagation characteristics [1], [5], which

allow low-complexity beamforming such as zero forcing or

conjugate beamforming to perform well [6]. However, this

performance analysis has been considered under equi-power

allocated beamforming only [7]. Most works in this area (see

e.g. [7] and references therein) have focused on the QoS,

which equi-power beamforming can offer to the cell edge

users, i.e., those suffering from poor channel conditions. On

the other hand, optimizing power allocation (PA) in massive

MIMO beamforming can be useful in offering better QoS. The

main objective of this paper is to consider optimal PA for both

zero forcing and conjugate beamforming to maximize the EE

of massive MIMO while meeting users’ QoS requirements.

As a result, both the service quality for every user and EE for

massive MIMO are simultaneously optimized in the proposed

approach. Our main contributions are as follows:

• The PA problem of zero-forcing beamforming to max-

imize the EE is shown to be quasi-concave and solved

very effectively, where every Dinkelbach’s iteration of

fractional programming [8] admits a closed-form solu-

tion;

• The PA problem of conjugate beamforming to maximize

the EE is no longer concave/quasi-concave but is still

efficiently solved by a path-following computational pro-

cedure of rapid convergence, which invokes a simple

quadratic program of moderate dimension at each iter-

ation;

• An interesting insight is that optimal power-allocated

zero-forcing beamforming performs much better than its

conjugate counterpart although according to [9], equi-

power conjugate beamforming performs better in terms

of EE compared with equi-power zero-forcing beamform-

ing.

Notation: Boldface upper and lowercase letters denote ma-

trices and vectors, respectively. The transposition and conju-

gate transposition of a matrix XXX are respectively represented

by XXXT and XXXH . IIIM denotes the identity matrix of size

M×M . 〈x,y〉 for complex vectors x and y is their dot product

xHy and ||xxx|| =
√

〈x,x〉 is the norm of x. A Gaussian

random vector with mean x̄xx and covariance RRRxxx is denoted by

xxx ∼ CN (x̄xx,RRRxxx). [XXX1; ...;XXXk] is a matrix created by stacking

vertically XXX1, . . . ,XXXk.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider downlink communication from a base station

(BS) equipped with a large-scale M -element antenna array

with M up to several hundred to serve K (K << M ) users

(UEs), each of which is equipped with a single antenna. Each



symbol xk intended for UE k is beamformed by a vector

fk ∈ C
M before being transmitted by the BS. The transmitted

signal at the BS is thus
∑K

k=1 fkxk. Let gk ∈ C
M be the

channel vector between the BS and UE k, which is modelled

by gk =
√

β̄khk [1], [10], where
√

β̄k models the path loss

and large-scale fading while hk = (h1k, · · · , hMk)
T with

hmk ∈ CN (0, 1) represents the small-scaling fading.

For notational convenience, denote {1, · · · ,K} by K. The

received signal at UE k is given by

yk =

√

β̄khhh
T
k fffkxk +

∑

i∈K\{k}

√

β̄khhh
T
k fff ixi + nk, (1)

where nk ∈ CN (0, σ2
k). The channel state information (CSI)

is assumed known at the BS, which can be obtained from

the UE’s uplink pilots via time-division-duplexing (TDD) and

uplink/downlink radio channel reciprocity [1], [11].

For f = [fk]k∈K, the information throughput at UE k is

rk(f) = log2 (1 + SINRk(f)) (2)

with the signal-to-interference-plus-noise ratio (SINR) given

by

SINRk(f) =
β̄k|hhhT

k fffk|2
β̄k

∑

i∈K\{k} |hhhT
k fff i|2 + σ2

k

.

The consumed power for the instantaneous downlink transmis-

sion can be expressed as

Ptotal(f) = α

K
∑

k=1

||fffk||2 +MPA + PC , (3)

where α > 1 is the reciprocal of the drain efficiency of the

amplifier of the BS, PA denotes the per-antenna circuit power

and PC represents the non-transmission power of the BS.

The EE maximization problem subject to users’ QoS con-

straints and transmission power budget can be formulated as

max
f=[fk]k∈K

K
∑

k=1

rk(f)/Ptotal(f) (4a)

s.t. rk(f) ≥ r̄k, ∀k ∈ K, (4b)

K
∑

k=1

||fffk||2 ≤ Pmax, (4c)

where the constraint (4b) represents the QoS data rate require-

ment for each UE. The constraint (4c) enforces the power

budget at the BS.

The objective in (4a), which is the ratio of the sum through-

put and consumed power, expresses the energy-efficiency in

terms of bits/Joule/Hz. The circuit power consumption MPA

in (3) is proportional to the number M of antennas and cannot

be controlled. In general, (4) is a very difficult large-scale

nonconvex optimization problem because the numerator in the

objective function in (4a) is not a concave function of the

beamforming vector f ∈ C
MK and M is large.

III. PA FOR ZERO FORCING BEAMFORMING

Define a matrix H = [hT
1 , . . . ,h

T
K ] ∈ C

K×M , which is very

fat due to the fact that K << M and M is large. Accordingly,

the square matrix HHHHHHH ∈ CK×K of much smaller size is

very well-conditioned, whose eigenvalue distribution becomes

more deterministic as M increases [12]. To exploit these

favorable propagation characteristics in the massive MIMO

transmission, we first seek a beamforming vector fk in the

class of zero-forcing (ZF) beams as follows. Let

F̄FF =
[

f̄ff1, ..., f̄ffK

]

=HHHH(HHHHHHH)−1, (5)

so

IIIM =HHHF̄FF = [hhhT
1 F̄FF ; ...;hhhT

KF̄FF ] = [hhhT
i f̄ff j,](i,j)∈K×K. (6)

We normalize f̃ffk = f̄ffk/‖f̄ffk‖, k = 1, ...,K, and seek fk in

the set

fk =
√
pkf̃ffk, k ∈ K. (7)

The equation (1) becomes

yk =

√

β̄k
√
pkhhh

T
k f̃ffkxk + nk, (8)

where the multiple user (MU) interference in (1) has been

cancelled thanks to the zero-forcing condition (6).

For p = (p1, ..., pK)T , the information throughput for UE

k defined by (2) becomes the following concave function of

pk:

rk(pk) = log2

(

1 + β̄k|hhhT
k f̃ffk|2pk/σ2

k

)

, (9)

while the consumed power for the BS transmission defined by

(3) is now an affine function of p:

Ptotal(p) = α

K
∑

k=1

pk +MPA + PC . (10)

Therefore, the EE maximization problem (4) for zero-forcing

beamforming can now be formulated in terms of PA optimiza-

tion as

max
p=(p1,...,pK)T

K
∑

k=1

log2
(

1 + βkpk/σ
2
k

)

/Ptotal(p) (11a)

s.t. log2
(

1 + βkpk/σ
2
k

)

≥ r̄k , k = 1, ...,K (11b)

K
∑

k=1

pk ≤ Pmax , pk ≥ 0 , k = 1, ...,K, (11c)

where βk = β̄k|hhhT
k f̃k|2.

As the objective function in (11a) is the ratio of concave and

affine functions while the constraints (11b)-(11c) are convex,

the problem (11) can be solved by Dinkelbach’s algorithm

of fractional programming [8], which finds the optimal value

for τ > 0 such that zero is the optimal value of the convex

program

max
p

K
∑

k=1

log2(1 + βkpk/σ
2
k)− τPtotal(p) s.t. (11b)− (11c).

(12)



However, being convex, the program (12) is still computa-

tionally difficult as it involves optimization of logarithmic

functions. Our first contribution is to provide a closed-form

solution for (12).

It follows from (11b) that pk ≥ p̄k := σ2
k(2

r̄k − 1)/βk.

Therefore, by making the variable change pk = p̃k + p̄k, (12)

is equivalent to

max
p̃=(p̃1,...,p̃K)T

K
∑

k=1

log2
(

ak + βkp̃k/σ
2
k

)

− τP̃total(p̃) (13a)

s.t.

K
∑

k=1

p̃k ≤ P̄max , p̃k ≥ 0 , k = 1, ...,K, (13b)

where ak = 1 + p̄kβk/σ
2
k, p̄cir = α

∑K
k=1 p̄k + pcir, pcir =

MPA + PC , P̄max = Pmax − ∑K
k=1 p̄k and P̃total(p̃) ,

α
∑K

k=1 p̃k + p̄cir.

Problem (13) admits a closed-form solution

p̃∗k =

[

1

ln 2.(τα+ λ)
− akσ

2
k

βk

]+

, (14)

where [x]+ = max{0, x}. If

K
∑

k=1

[

1

ln 2.τα
− akσ

2
k

βk

]+

≤ P̄max,

then λ = 0. Otherwise, λ > 0 is such that

K
∑

k=1

[

1

ln 2.(τα+ λ)
− akσ

2
k

βk

]+

= P̄max, (15)

which can be easily located using bisection search.

In summary, (11) is solved by the following Dinkelbach’s

type algorithm.

• Initialization. Solve (13) for initial τ > 0. If its optimal

value is more than zero set τ = τ and reset τ ← 2τ
and solve (13) again. Otherwise (its optimal value is less

than zero) set τ̄ = τ . We end up by having τ and τ̄ such

that the optimal value of (13) is positive for τ = τ and

is negative for τ = τ̄ . The optimal τ for zero optimal

value of (13) lies on [τ , τ̄ ] so from now we locate it by

bisection in the next stage;

• Bisection. Solve (13) for τ = (τ + τ̄)/2. If its optimal

value is positive reset τ ← τ , otherwise (its optimal

value is negative) reset τ̄ ← τ . Process until τ̄ − τ ≤ ǫ
(tolerance) to have the optimal value of (13) is zero.

IV. PA FOR CONJUGATE BEAMFORMING

Another class of low-complexity beamforming is conjugate

beamforming

fk =
√
pkh

∗
k/||hk||, (16)

where h∗
k = (h∗

1k, ..., h
∗
Mk)

T . The received equation (1)

becomes

yk =

√

β̄k
√
pk‖hhhk‖xk +

√

β̄k

∑

i∈K\{k}

√
pi
〈hhhk,hhhi〉
‖hhhi‖

xi

+nk, (17)

where unlike (8) with the MU interference completely can-

celled due to the zero-forcing condition (6), the second term

in the right hand side of (17) cannot be cancelled. Beside the

inherent low-complexity, conjugated beamforming is justified

by the fact that ‖hhhk‖2 = O(M) while |〈hhhk,hhhi〉| = O(
√
M)

as M → +∞ [1], [11], making the SINR in (17) scaled up

by
√
M .

For βkk = β̄k‖hhhk‖2 and βki = β̄k|〈hhhk,hhhi〉|2/||hhhi||2 for

i 6= k, the information throughput at UE k is given by

r̃k(p) = log2

(

1 +
βkkpk

∑

i∈K\{k} βkipi + σ2
k

)

. (18)

The EE maximization problem is formulated by

max
p=(p1,...,pK)T

1

ln 2
F (p) s.t. (11c), (19a)

log2

(

1 +
βkkpk

∑

i∈K\{k} βkipi + σ2
k

)

≥ r̄k, k ∈ K, (19b)

where

F (p) ,
K
∑

k=1

r̃k(p)/Ptotal(p),

and Ptotal(p) is defined from (10).

Note that (19b) consists of the linear constraints

βkkpk ≥ (2r̄k − 1)(
∑

i∈K\{k}

βkipi + σ2
k) , k = 1, ...,K. (20)

As a result, (19) is the following linearly constrained opti-

mization problem:

max
p=(p1,...,pK)T

1

ln 2
F (p) s.t. (11c), (20). (21)

Unlike (11), the numerator of the objective function in (21)

is no longer concave but is a d.c. (difference of two convex

functions) function [13] so the aforementioned Dinkelbach’s

algorithm is not applicable. The authors in [2] suggested to

approximate this objective at each outer iteration by a concave

function to facilitate Dinkelbach’s algorithm. As mentioned

above, Dinkelbach’s algorithm requires a few inner iterations,

each of which involves optimization of a logarithmic function

and thus is still computationally difficult.

We now propose an efficient computational procedure for

(21), which needs to solve only a few quadratic convex

programs (QPs) of moderate dimension.

Let p(n) be a feasible point for (11c) and (20).

Using the inequality (31) in the Appendix for x =
βkkpk(

∑

i∈K\{k} βkipi + σ2
k, t = Ptotal(p), and x̄ =

βkkp
(n)
k (

∑

i6=k βkip
(n)
i + σ2

k, t̄ = Ptotal(p
(n)) yields

F (p) ≥ F (n)(p), (22)

for



F (n)(p) ,

K
∑

k=1



a
(n)
k − b

(n)
k σ2

k

βkkpk
− b

(n)
k

∑

i∈K\{k}

[
2βki

√

p
(n)
i

βkkp
(n)
k

√
pi

− βkip
(n)
i

(βkkp
(n)
k )2

βkkpk] −c(n)k Ptotal(p)
]

, (23)

and 0 < a
(n)
k , 2

ln(1 + x
(n)
k )

t̄
+

x
(n)
k

t̄(x
(n)
k + 1)

, 0 < b
(n)
k ,

(x
(n)
k )2

t̄(x
(n)
k + 1)

, and 0 < c
(n)
k ,

ln(1 + x
(n)
k )

t̄2
, k = 1, . . . ,K.

It should be noted that the inequality (32) in the Appendix

has been used in deriving (22). Beside relation (22), it is

straightforward to see that

F (p(n)) = F (n)(p(n)). (24)

Suppose that p(n)+1 is the optimal solution of the QP

max
p=(p1,...,pK)T

1

ln 2
F (n)(p) s.t. (11c), (20). (25)

It follows from (22) and (24) that

F (p(n+1)) ≥ F (n)(p(n+1)) > F (n)(p(n)) = F (p(n))

as far as p(n+1) 6= p(n), i.e. p(n+1) is a better point than p(n)

for problem (21). It can be easily shown that the sequence

{p(n)} converges at least to a locally optimal solution of

(21). Algorithm 1 summarizes the proposed QP-based path-

following computational procedure for solving (21). The initial

point p(0) for (21) can be easily located because the constraints

in (21) are linear.

Algorithm 1 : Path-following algorithm for the EE maximiza-

tion (21)

1: Initialization: Choose a feasible point p(0) for (21). Set

n := 0.

2: Repeat

3: Solve the QP (25) for the optimal solution p(n+1).

4: Set n := n+ 1.

5: Until convergence of the objective in (21).

V. NUMERICAL RESULTS

In this section, the performance of the proposed algorithms

will be evaluated using numerical examples. The BS is located

in the center of a circular cell with radius 1 km. There are K =
16 UEs, which are uniformly distributed at random within the

cell. The other simulation parameters are provided in Table I,

which are similar to those used in [4]. Rate QoS of 2 Mbps is

set for all users. The proposed computational procedures for

solving (11) and (19) typically converge within 10 iterations,

yielding their optimal solutions.

TABLE I: Simulation Setup

Parameter Assumption

Carrier frequency / Bandwidth 2GHz / 10MHz
BS transmission power 46 dBm
Path loss from BS to user 148.1 + 37.6log10 R [dB], R in km
Shadowing standard deviation 8dB
Noise power density -174 dBm/Hz
Drain efficiency of amplifier λ = 0.388

The circuit power per antenna PA = 189 mW
The non-transmission power PC = 40 dBm

Analyzing the objective functions in (11) and (19) we

can see that when the circuit power MPA dominates their

denominators, they are maximized by maximizing the sum

throughput in the numerator. On the other hand, by setting the

thresholds r̄k in (11b) and (19b) higher for better QoS, one

needs more transmit power, so the objective functions in (11)

and (19) are maximized by minimizing the total transmission

power needed to meet the users’ QoS. This analysis motivates

us to compare the EE performance of (11) and (19) with that

obtained by the following throughput maximization:

Rmax ZF: max
p=(p1,...,pK)

K
∑

k=1

rk(pk) s.t. (11c), (11b), (26)

for zero-forcing beamforming and

Rmax Conj: max
p=(p1,...,pK)

K
∑

k=1

r̃k(p) s.t. (11c), (19b) (27)

for conjugate beamforming, which can be solved by Algorithm

1, and by the following transmit power minimization:

Pmin ZF: min
p=(p1,...,pK)

K
∑

k=1

pk s.t. (11c), (11b), (28)

for zero-forcing beamforming and

Pmin Conj: min
p=(p1,...,pK)

K
∑

k=1

pk s.t. (11c), (19b), (29)

for conjugate beamforming, which are linear programs.

Fig. 1a shows the EE performance vs. the number of anten-

nas M in all considered optimization problems. The optimal

power-allocated ZF beamforming significantly outperforms the

optimal power-allocated conjugate beamforming. Although the

sum throughput is still increasing in M , as Fig. 1b shows,

the EE performance decreases for M > 80. This shows that

increasing the number of antennas may not result in a gain

in the EE because the saved transmit power cannot always

compensate for the circuit power increase.

Observe that the EE performance resulting from the transmit

power minimizations (28) and (29) is very bad because the

circuit power MPA actually dominates the consumed power

in these optimization problems. Even though the minimal

transmit powers in (28) and (29) are different, they do not

lead to much change in the consumed power so the EE

performances of (28) and (29) are not visually distinguishable.

The EE performance attained by the sum throughput maxi-

mizations (26) and (27) is much better than those attained by



the transmit power minimizations (28) and (29). Both Fig. 1a

and Fig. 1b also reveal that zero-forcing beamforming also

significantly outperforms its conjugate counterpart in these

maximization problems. Since the sum throughput is scaled

up with the number of antennas, the EE performance of the

sum throughput maximizations (26) and (27) also increases.

Interestingly, the EE performance of the sum throughput

maximization problem (26) for zero-forcing beamforming

catches up with that of the EE maximization problem (19)

for conjugate beamforming at M = 200.
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Fig. 1: The EE performance and sum throughput versus the number of antennas M .

VI. CONCLUSIONS

We have proposed numerical algorithms of low

computational complexity and rapid convergence for

maximizing the energy efficiency of zero-forcing and

conjugate beamforming in the downlink transmission of a

massive MIMO BS while meeting the users’ QoS constraints.

The effectiveness of these algorithms was confirmed via

numerical examples. Their extensions to massive MIMO

heterogeneous networks are currently under our consideration.

APPENDIX: FUNDAMENTAL INEQUALITIES

We exploit the fact that the function f(x, t) = ln(1+1/x)
t is

convex in x > 0, t > 0 which can be proved by examining its

Hessian. The following inequality for all x > 0, x̄ > 0, t > 0
and t̄ > 0 then holds true [13]:

ln(1 + 1/x)/t ≥ f(x̄, t̄) + 〈∇f(x̄, t̄), (x, t)− (x̄, t̄)〉

= 2
ln(1 + 1/x̄)

t̄
+

1

t̄(x̄+ 1)
− x

(x̄+ 1)x̄t̄
− ln(1 + 1/x̄)

t̄2
t. (30)

By substituting 1/x→ x and 1/x̄→ x̄ in (30), we have

ln(1 + x)

t
≥ a− b

x
− ct, (31)

where a = 2 ln(1+x̄)
t̄ + x̄

t̄(x̄+1) > 0, b = x̄2

t̄(x̄+1) > 0, and

c = ln(1+x̄)
t̄2 > 0. Finally, by exploiting the fact that the

function x2/t is convex in x > 0 and t > 0 which leads

to the inequality
x2

t
≥ 2

x̄x

t̄
− x̄2

t̄2
t ∀ x > 0, x̄ > 0, t > 0,

t̄ > 0, we also have the following inequality by substituting

x→ √
x and x̄→

√
x̄:

x

t
≥ 2

√
x̄
√
x

t̄
− x̄

t̄2
t ∀ x > 0, x̄ > 0, t > 0, t̄ > 0. (32)
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