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Abstract—A unified and generalized framework for a recur-
sive least squares (RLS)-like least mean square (LMS) algorithm
is proposed, which adopts the cost function of the RLS to
minimize the mean square error. This paper aims to explore,
in a systematic way, the corresponding ideas scattered and
multiple-time re-invented in the literature, and introduces a
unified approach in the same spirit as in [1], which relates LMS
with the Kalman filter. The proposed alternative to the RLS is
favored when the matrix inversion lemma is not useful, such as
the case of multivariate or multichannel data where the input is
not a vector. Furthermore, all the derivations are conducted in
the quaternion domain and are hence generalizable to complex-
and real-valued models. The resulting algorithm has a neat form
and a similar complexity to the RLS. Through experiments, the
method is shown to exhibit performance close to or even better
than the RLS algorithm. Other aspects, such as the choice of
descent directions and variable stepsizes, are also discussed to
support the analysis.

Keywords—Online predictor, least mean square, recursive least
squares, quaternions, widely linear model, steepest descent, conju-
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I. INTRODUCTION

The least mean square (LMS) algorithm has long been a
workhorse of adaptive filtering and has, since its conception
in 1959 [2], found a number of successful applications. Based
on the minimization of an instantaneous approximation to the
mean square error, the LMS converges to Wiener-Hopf solu-
tion wop (i.e. the optimal solution), while its ‘instantaneous’
nature also makes it an algorithm of choice for non-stationary
signal processing. Another popular way to reach the Wiener
solution, wop, is by using the method of least squares, through
the algorithm called the recursive least squares (RLS) [3].
Owing to no approximations in the derivation, the RLS is
capable of converging in much fewer iterations than the LMS,
and achieve better tracking performance. It is nevertheless
not without drawbacks, such as poorer ability to track non-
stationary processes or processes with outliers. Moreover, it is
less numerically stable and more computationally expensive,
both due to the use of matrix inversion lemma [3]. To date,
there has been no clear consensus on whether to use the
LMS or the RLS, and the answer depends on the applications
at hand, while much research effort has been dedicated to
improving both algorithms. For LMS, most of its variants have
focused on varying the step size, in an attempt to accelerate the
convergence and reduce steady-state misalignment [4], while
for RLS, the main focus has been on effective implementation
and numerical robustness [5].

Many methods were proposed in an attempt to create
alternative online linear algorithms which inherit the virtues of

both LMS and RLS, while mitigating some of their drawbacks.
Albeit introduced under seemingly different concepts(e.g. [6],
[7], [8]), these RLS-like methods would benefit from being
undertaken within one unifying framework. This paper intends
to provide a rigorous and systematic derivation of a unifying
algorithm in this class, based on such a unified approach,
so that it can be more accessible and more easily utilized.
The other important contribution here is that the framework
was derived in the quaternion domain which offers twofold
advantages; first, since quaternions are generalization of real
and complex numbers so that the derived algorithms will also
hold true for both these number systems; second, the adoption
rate of quaternions is increasing in a variety of applications,
such as modeling of 3-D rotational data (computer graphics [9]
and array signal processing [10], [11], [12]), color image pro-
cessing [13], [14] and source separation [15]. Hence, deriving
the proposed framework in the quaternion domain offers more
rigor and intuition in terms of physical interpretation, algebraic
generality and algorithmic elegance.

II. BACKGROUND

A. Quaternions and GHR Calculus

Since there is no shortage of excellent tutorials on basic
quaternion algebra [16], [17], we start from the generalized
HR (GHR) calculus, the recent concept which enables our
proposed method to have an elegant form in the quaternion
domain which is consistent with its real- and complex-valued
counterparts. For detailed information, we refer to [18], [19].

Consider a general case of functions f(q) : HM×1 → H,
where q = (q1, q2, ..., qM )T ∈ HM×1. Then, the quaternion
gradient and conjugate gradient are respectively given by [19]
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Similar to the complex domain, it was shown that the conjugate
gradient ∇q∗f yields the steepest descent direction of the
function f [20]. This makes the conjugate GHR derivatives a
natural choice for the optimization of our proposed algorithm.

Within the GHR calculus, the conjugate derivative is de-
fined based on a generalized orthogonal basis {1, iµ, jµ, kµ}
where µ is a rotating quaternion. In our work, a simplified
case where µ = 1 suffices and yields a neater form of the
HR conjugate derivative [20]. The left and right derivative



operators, which arise out of the non-commutative nature of
quaternions, are respectively defined as follows
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where q = qa + iqb + jqc + kqd, qa, qb, qc, qd ∈ R and i2 =
j2 = k2 = −1. Observe that when f is real-valued, both left
and right derivatives are identical, which is the case with our
analysis, and from now on, we will therefore implicitly refer
to the left derivative.

The key benefits of the GHR calculus are the novel product
rule and chain rule (not present in the HR calculus). These two
rules are integral in the derivation of the proposed framework.
For the product rule, if the function f, g : H → H are real-
differentiable, then so too is their product, that is,
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where qg∗ = gq∗g−1 is a quaternion rotation [18]. For the
chain rule, if g : S → H and f : T → H are real-differentiable
at the respective interior points, q ∈ S ⊆ H and g(q) ∈ T ⊆ H,
then the derivative of the composite function f(g(q)) is given
by
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B. Adaptive Filters

For completeness, we next briefly summarize the LMS and
RLS algorithms in their most general form - the widely linear
quaternion model (for general non-circular data [21]).

Denoted by yn, xn ∈ H , n = 1, ..., N the desired (output)
signal and input signal, respectively, the linear MSE estimator
of yn, denoted by ŷn, can then be expressed as [22]

ŷn = 〈ŵ,qn〉 , ŵHqn (3)

where ŵ is an estimate of the optimal solution wop, qn is
defined as

qn = [xTn xiTn xjTn xkTn ]
T

(4)

and xn = [xn, xn−1, ..., xn−M+1]
T for a filter of order M .

For a simple linear model (i.e. data is circular [21]),
qn = xn (5)

The goal of an online linear predictor is to minimize the mean
square error (MSE)

Jn(ŵ) = E{‖ξn(ŵ)‖2} (6a)

ξn(ŵ) = yn − ŷn = yn − ŵHqn, (6b)

recursively, with the weight update expressed as [18]

wn = wn−1 − αn∇ŵ∗Jn(ŵ)|ŵ=wn−1
. (7)

In the case of the LMS algorithm, eq. (6a) becomes an
instantaneous estimate, that is,

Jn(ŵ) ≈ ‖ξn(ŵ)‖2, (8)

which as a result gives the following update [23]

wn = wn−1 + αnqne
∗
n (9)

where en is a priori error, defined as

en , ξn(wn−1) = yn −wH
n−1qn (10)

and αn ∈ R is an adaptive stepsize. For the normalized LMS,
αn can be found via the minimum disturbance principle [3] as

αn =
1

‖qn‖2 + ε
(11)

where ε > 0 is a regularizer which prevents numerical
instability when ‖qn‖2 → 0.

On the other hand, the RLS filter iteratively solves the least
square solution, ŵ, of the given set of training pairs yn, xn via
the following deterministic cost function [25],

Φn(ŵ) =

n∑
k=1

λn−k‖ξk(ŵ)‖2 (12)

where 0 < λ < 1 is a forgetting factor used to suppress the
effect of early data which may be no longer relevant to the
current estimate. The core idea of the proposed method is
to derive an LMS algorithm which approximates MSE in a
manner similar to eq. (12). We did not describe the whole
RLS algorithm owing to page limits.

III. AN RLS-INSPIRED LMS ALGORITHM

A. Derivation in Quaternions

Inspired by the RLS cost function in eq. (12), we re-
formulate the estimation of the MSE in eq. (6a) to

Jn(ŵ) ≈ 2Φn(ŵ) (13)

Here, the factor 2 is present to normalize the expressions in-
volving GHR derivatives [19] (which actually can be absorbed
into the stepsize αn). Then, we substitute eqs. (3) and (6b)
into eq. (13) to yield

Jn(ŵ) =ŵHRnŵ − 2R{ŵHrn}

+

n∑
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λn−k|yk|2
(14)

where R{·} is a real-part operator with
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H
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H
n , (15)
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∗
n = λrn−1 + qny

∗
n. (16)

We now follow the optimization path of LMS with the
MSE estimate as in eq. (12). Through eqs. (1) and (2), the a
priori gradient gn|n−1 is defined as

gn|n−1 , ∇ŵ∗Jn(ŵ)|ŵ=wn−1
= Rnwn−1 − rn. (17)

Then, the expression of the quaternion weight update becomes

wn = wn−1 + dnαn (18)



where dn is the descent direction, while the stepsize αn ∈ H,
unlike eq. (7), is non-commutative and has to post-multiply dn
so that it will not lead to Sylvester’s equation which has no
closed-form solution [26]. One convenient way to find αn is
by using exact line search (equivalent to method of minimum
disturbance in the NLMS case [27]), where ∂Jn(wn)/∂αn is
set to zero. Upon substituting into eq. (7), we obtain

αn = −
〈dn,gn|n−1〉
〈dn,hn|n〉

(19)

where
hn|n = Rndn. (20)

Observe that 〈dn,hn|n〉 is real-valued. Now, to reuse past
calculations efficiently, a posteriori gradient gn|n is defined
as

gn|n , ∇ŵ∗Jn(ŵ)|ŵ=wn
= Rnwn − rn, (21)

and after some manipulation, we arrive at the following dual
recursion

gn|n−1 = λgn−1|n−1 − qne
∗
n (22)

gn|n = gn|n−1 + hn|nαn. (23)

B. Choice of Descent Directions

Most works concerning the RLS-like LMS algorithm use
the conjugate gradient (CG) direction because it is the fastest
first-order solver of a quadratic-form equation; however, due
to the time-varying statistics of Rn, most proposed CG tech-
niques fail to sustain the conjugacy property (see [6] and
reference therein). To overcome this issue, some methods
were introduced to relax the conjugacy constraint, like control
Lyapunov functions [7] and a CG-like technique [8]. All
these methods can be considered under one unifying umbrella
termed Markov conjugacy.

Definition 1. A set of descent directions {d1,d2, ...,dn} is
Markov conjugate if, at any iteration i,

dHi Ridi−1 = 0 for i = 1, 2, ..., n. (24)

In the follow-up paper, we show this idea can easily generalize
into a more sophisticated technique. With only one degree
of freedom in eq. (24), the Markov conjugate direction is
expressed as

dn = −gn|n−1 + dn−1βn. (25)

Pre-multiplying with (dn−1)
H
Rn and substituting eq. (24)

into eq. (25) yields
βn =

〈dn−1,vn〉
〈dn−1,hn|n−1〉

(26)

where
hn|n−1 = Rndn−1 (27)

vn = Rngn|n−1. (28)

and after some manipulation, we arrive at the another dual
recursion

hn|n−1 = λhn−1|n−1 + qn(qHn dn−1) (29)

hn|n = −vn + hn|n−1βn. (30)

An interesting simplification is the steepest descent scheme
where βn = 0, ∀n so that dn in eq. (25) becomes

dn = −gn|n−1 (31)

and it can be shown that αn will become real-valued, i.e.,

αn =
1

πn
=
‖gn|n−1‖

2

〈gn|n−1,vn〉
. (32)

This is very beneficial in that all the techniques of variable
stepsize proposed in the real domain [28] are directly applica-
ble in quaternions, i.e.

αn =
1

πn + εn
(33)

where εn ∈ R is an adaptive regularizer [29]. The unified
routine of the RLS-like LMS algorithm, which we shall refer
to as the m-NLMS i.e. the NLMS with memory, is summarized
in Algorithm 1, where δ > 0 is used as a stopping criterion.

Algorithm 1: The m-NLMS Algorithm
Input : xn, yn, M , λ, ε, δ and update scheme
Output: ŷn and wop

1 Initialize w0 = d0 = g0|0 = h0|0 = 0 and R0 = 0;
2 n = 0;
3 do
4 n = n+ 1;
5 Update qn by xn according to eqs. (4) and (5);
6 ŷn − (wn−1)

H
qn;

7 en = yn − ŷn;
8 Rn = λRn−1 + qnq

H
n ;

9 gn|n−1 = λgn−1|n−1 − qne
∗
n;

10 vn = Rngn|n−1;
11 if Markov conjugate scheme then
12 hn|n−1 = λhn−1|n−1 + qn(qHn dn−1);
13 βn = 〈dn−1,vn〉

〈dn−1,hn|n−1〉
(β1 = 0);

14 dn = −gn|n−1 + dn−1βn;
15 hn|n = −vn + hn|n−1βn;
16 αn = − 〈dn,gn|n−1〉

〈dn,hn|n〉
;

17 else steepest descent scheme
18 dn = −gn|n−1;
19 αn = 1

πn+εn
where πn =

〈gn|n−1,vn〉
‖gn|n−1‖2

;
20 end
21 wn = wn−1 + dnαn;
22 gn|n = gn|n−1 + hn|nαn;
23 while ‖en‖ > δ or n = N ;
24 wop = wn.

IV. NUMERICAL EXPERIMENTS

A set of numerical case studies was performed to bench-
mark the validity of the m-NLMS algorithm against the orig-
inal LMS and RLS algorithms.

For rigor, the simulations were conducted within a widely
linear quaternion framework which has found its potential
in MIMO channel identification [30]. Here, a widely linear
quaternion moving average of order 3 - WLQMA(3) was used,
where the input xn was drawn from 1000 samples of the
same distribution N (0, 1) for each component of xn, with
a moderate SNR of 40dB. Every experiment was conducted
over 100 independent realizations and the m-NLMS used in
the experiments, if not specified otherwise, was the steepest
descent (SD) scheme. For a fair comparison, the stepsizes



αn for the original LMS routines was calculated using the
minimum disturbance principle as in eq. (11) in which the
original LMS yields NLMS. For convenience, we shall omit
the term ‘quaternion’, as our primary attention is paid to the
algorithmic mechanism. The metric used to benchmark the
algorithms was the normalized misalignment, ηn, defined as

ηn ,
‖wn −wop‖2

‖wop‖2
. (34)
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In the first experiment, we tested how our new algorithm
performed against the NLMS and RLS with different parameter
settings but with a fixed εn = 0.01 just to ensure numerical
stability. As seen in Fig. 1, the m-NLMS converged faster and
achieved lower steady-state misalignment than the standard
NLMS. At λ = 0.99, the m-NLMS also converged faster
than RLS while at λ = 0.95, the m-NLMS converged slightly
slower but achieved better misalignment than RLS. Fig. 2
demonstrates the performance of the Markov-conjugate (MC)

m-NLMS. At λ = 0.99, the MC scheme converged slightly
faster than the SD scheme and achieved the same misalignment
as the RLS while at λ = 0.95, it converged even faster than the
RLS but achieved worse misalignment than the SD scheme. In
other words, the m-NLMS, regardless of its descent schemes,
behaves on par with the RLS.
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Fig. 3 shows the results of the second experiment which
examined the variable-stepsize version of the m-NLMS. Three
fixed-stepsize routines (RLS and m-NLMS) were benchmarked
against three variable-stepsize ones (NLLS and m-NLMS with
GSER scheme [28]). By inspection of m-NLMS at λ = 0.99
and 0.95 as well as comparison of NLMS between Fig. 3 and
Fig. 1, it is clear that making εn variable reduces misalignment
but also convergence rate. A closer inspection of m-NLMS
between λ = 0.99 and 0.95 reveals that the reduction in
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misalignment for the case λ = 0.95 is more significant than
that for λ = 0.99. It is also feasible to make the variable step-
size more effective by tracking whether the learning process is
in the transient or steady state. A technique like GNGD [29]
could be incorporated to render the algorithm achieving even
lower misalignment, without trading off convergence speed,
as illustrated by a dashed line in Fig. 4. We did not provide
further details on GNGD m-NLMS and experiments on real-
world signals, like 3-D wind, which will be covered in the
follow-up paper and supported with more analysis. Intuitively
however, it would behave as consistently as in this paper.

V. CONCLUSION

In an effort to explore the space of algorithms spanned
by the LMS and RLS, we have built on the work in [1],
based on the Kalman filter, to provide a unified and gen-
eralized approach to a class of RLS-inspired LMS adaptive
filters. This has resulted in the proposed m-NLMS framework
which has been derived in the quaternion domain so that
the resulting algorithm, which has the complexity comparable
to the RLS, can be straightforwardly simplified to complex-
and real-valued cases. Two options of descent direction have
also been derived rigorously, under the unifying notion of
Markov conjugacy proposed in this paper. Since the m-NLMS
is technically a variant of LMS, it is more numerically stable
than RLS, as no matrix inversion is involved in the update. The
experiments have demonstrated that the m-NLMS has been
able to achieve performance which is more or less identical to
the RLS, regarding both convergence rate and misalignment.
Sharing the virtues of both LMS and RLS, the m-NLMS has
been shown to admit further improvement through a variable
stepsize. The experiments in the system identification have
supported the analysis.
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