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Abstract—Alzheimer’s disease (AD) is neurodegenerative,
caused by the progressive death of brain cells over time. One
non-invasive approach to investigate AD is to use electroen-
cephalogram (EEG) signals. The data are usually non-stationary
with a strong background activity and noise which makes the
analysis difficult leading to low performance in many real
world applications including the detection of AD. In this study,
we present a method based on local texture changes of EEG
signals to differentiate AD patients from the healthy ones, using
one-dimensional local binary patterns (1D-LBPs) coupled with
support vector machines (SVM). Our proposed method maps
the EEG data into a less detailed representation which is less
sensitive to noise. A 10 fold cross validation performed at both
the epoch and subject level show the discriminancy power of
1D-LBP feature vectors with application to AD data.

I. INTRODUCTION

Alzheimer’s disease (AD) is the most frequent cause of
dementia in the western world, and is caused by the progressive
death of brain cells over time (neurodegeneration) affecting
an individual’s cognitive ability as well as influencing their
psychological capacity [1]. Clinical diagnoses of AD are
made primarily on the basis of medical history, psychiatric
evaluation and memory and mental health tests [2], although an
indisputable diagnosis is only possible through necropsy [3].
While symptoms and their severity vary from patient to pa-
tient, early diagnosis is vital for reducing their effects with
available pharmacological treatments and through life style
adjustments [4].

Electroencephalograms (EEGs) have been used in the in-
vestigation of dementia for several decades [5]–[8]. As EEG
signals reflect brain electrical activity, they can be used to de-
tect electrical abnormalities in brain signals with non-invasive
cranial surface electrodes [9]. Generally EEGs in AD patients
show a shift to lower frequencies in spectral analysis, which
suggests a decreased cohesion of cognitive networks [10].
Moreover, AD patients’ EEGs display less complexity and
contain more regular patterns compared to those of control
subjects [9], [11]–[13]. Due to the intrinsic irregular and ape-
riodic nature of EEG signals, spectral analysis techniques may
be insufficient for characterising the dynamics of the events
underlying the EEG signals. Thus, additional techniques, have
been developed, including non-linear time series analysis [14]
(particularly utilising entropy based methods [11]–[13]), for
automatically distinguishing AD patients from control ones.

Recently in [15] such methods were utilised as features for a
machine learning classifier used to automatically distinguish
AD patients from control ones.

In this study, we present a feature extraction algorithm
based on one-dimensional local binary patterns (1D-LBPs) for
extracting quantitative histograms from EEG signals. LBPs
have been extensively used for texture analysis of images [16],
[17], which are 2D in nature. LBP has become a popular
method due to its fast processing requiring substantially less
computational power and its strong discriminative capabilities.
The use of 1D-LBP for signal processing was introduced
by Chatlani et al. [18] to detect voice activity in non-
stationary speech signals. Since EEG signals are also non-
stationary in nature, we applied 1D-LBPs in order to extract
patient specific signatures that are unique and salient features
when compared to controls. Kaya et al. [19] introduced the
approach of using 1D-LBP for feature extraction of raw EEG
signals coupled with a machine learning classifier. Their results
demonstrated a high classification accuracy of epileptic EEG
signals. Texture representation of timefrequency (tf) image-
based epileptic seizure detection was also proposed [20], [21]
using 2D-LBP. Here, we show LBP provides an alternative
feature space to classify AD from healthy subjects. Moreover,
the effect of LBP parameter selection, electrode selection, and
epoch and subject level evaluation on the performance are
examined.

Contributions of the paper are as follows: Although LBP
has been used extensively as a feature descriptor in the fields
of image [16], [17], [22], [23], speech [18], [24] and signal
processing [18], [25], its application to analysing AD patients’
data is novel. We show that 1D-LBP captures the descriptive
information, in terms of histograms representing the relative
changes in EEG amplitudes, in a way that can be readily
utilised by a support vector machine (SVM) for classification.

For evaluating the classification performance, we introduce
the half total error rate (HTER) for the first time in the field
of EEG signal processing. Although HTER has been used
extensively in the field of biometrics [22], [23], its usage in
biomedical applications is not very well known. HTER has
the advantage of not being affected by the overwhelmingly
large sample size of one class versus another because both
types of errors are weighted equally, thus coercing equal
contributions from both errors. Therefore, it has an advantage



over traditional performance evaluation techniques such as the
F-score or accuracy.

The organisation of the paper is as follows: In section II
we present the methodology and in Section III the dataset is
described. In section II we present the 1D-LBP methodology as
well as the HTER evaluation criteria. Experiments and results
are discussed in section IV, including data preprocessing.
Finally, in section V we discuss the conclusions that can be
drawn from the results.

II. METHODOLOGY

In this section we present 1D-LBP as applied to EEGs,
and use SVMs with an RBF kernel to distinguish between
healthy and AD patients. The classification performance is then
evaluated by the minimum HTER criteria.

A. 1D-Local Binary Patterns

LBP, introduced by Ojala et al. [17], is a powerful operator
that extracts micro-texture information invariant to local grey
scale variations, and has gained significant popularity in the
field of image, speech and signal processing [16]. Using LBP,
each two-dimensional segment (window) is mapped to a binary
string with a fixed length. An LBP code summarises the
textural changes in images and frequency changes in speech,
while its histogram distribution shows how often each pattern
appears. These histograms are taken to be the feature vector
that represents the EEG signatures for the pathology or control.

LBP assigns a binary code to each sample by examining
its neighbouring points. By considering x(t) as the tth sample
of the numerical representation of an EEG signal, LBP can be
defined as:

LBP(x(t)) =

p/2−1
∑

i=0

{Sign(x(t+ i− p/2)− x(t))2i+

Sign(x(t+ i+ 1)− x(t))2i+p/2},

(1)

where p is the number of neighbouring points and Sign
indicates the sign function:

Sign(x) = {
0 x < 0
1 x ≥ 0

. (2)

Sign is used to assign a binary number by thresholding
the difference between each neighbouring point and the centre
point t. Consequently, each segment (window) of length p+1
is assigned a p-bit binary number. Each binary number is
converted to a LBP code using a binomial weight. An example
of the LBP operator can be seen in Figure 1 where p = 6.
The value of the centre point (in the square in Figure 1) is
compared with the six neighbouring points to produce the
LBP code. This code describes the data changes locally in
a compressed format. Finally, by considering all the obtained
codes, the distribution of the LBP codes can be defined as

hk =
∑

p/2≤i≤N−p/2

δ(LBPp(x(i), k), (3)

where k = 1, 2, ..., 2p and N is the signal length. Considering
the distribution makes the feature space independent on the lo-
cation of each pattern. Here, we apply LBP to one-dimensional
non-stationary EEG signals to extract pattern changes.

Fig. 1. Calculating the LBP code. A thresholding of the EEG amplitude of
a size 7 segment is determined by comparing the centre point (in the square)
and its neighbours. The LBP code is then obtained using binomial weights.

B. Classification Details

The LBP histograms are given as an input to the SVMs,
as they are known for their high classification accuracy. For
the SVMs, the radial basis function (RBF) kernel was used
with kernel scale σ = 1 and box constraint value set to 1. The
performance was evaluated using 20 repeated 10-fold cross
validation.

C. Performance and Threshold Criteria

Although the output of an SVM can be used to make a
hard decision, we use a soft output, defined as the distance
of a test sample from the SVM decision hyperplane. For all
experiments, we label samples derived from AD patients’ EEG
signals as positive, and those derived from the healthy subjects
(i.e., the control) as negative.

Let T be the domain of the SVM output. A decision is
made by comparing the SVM output t ∈ T with a decision
threshold, ∆ ∈ T , as follows:

decision(t) =

{

positive if t > ∆

negative otherwise,
(4)

Let T+ ⊂ T be the set of scores for the positive samples;
and T− ⊂ T , the negative samples. By applying the decision
threshold ∆, the system can commit two types of errors,
namely, false rejection rate (FRR) and false acceptance rate
(FAR). Their respective error rates are calculated as follow:

FRR(∆) ≡ P (t ≤ ∆|T+) (5)

≈
|{t ∈ T+, t ≤ ∆}|

|T+|
(6)

FAR(∆) ≡ 1− P (t ≤ ∆|T−), (7)

≈
|{t ∈ T−, t > ∆}|

|T−|
(8)

Note that the FRR is an increasing function of the decision
threshold, whereas FAR is a decreasing function of it.

By plotting FRR versus FAR curve, one obtains a receiver’s
operating characteristic (ROC) curve. There are several useful
point-estimate criteria that are useful to find the operational
decision threshold, namely, equal error rate (EER), weighted
error rate (WER) and its special case, half-total error rate
(HTER).



The first one, EER, is the point where the two error rates
cross each other:

EER(∆∗) = FAR(∆∗) = FRR(∆∗) (9)

where ∆∗ ∈ T is the unique decision threshold of the EER.
In practice, the EER is found by searching for a threshold that
minimises the absolute difference between the FAR and FRR.

∆EER = argmin
∆

|FAR(∆)− FRR(∆)| (10)

The second threshold-optimizing criterion is WER, and is
defined as:

WER(∆) = α× FAR(∆) + (1− α)× FRR(∆)

When α = 1

2
, we have the HTER.

Throughout the experiments, we shall use EER to optimize
the decision threshold and report performance in HTER [22],
[23].

The significant advantage of reporing the performance in
HTER, is that it is not affected by the imbalance in the number
of samples in each class as both types of errors are weighted
equally, thus ensuring equal contribution from both errors (i.e.
enforcing equal prior probability for both classes). In our
case, this is particularly desirable as the prior probability of
a patient’s EEG signal is difficult to estimate in practice. In
the absence of any additional information, using equal prior
probabilities is a reasonable option.

III. DATASET

The database used in this pilot study included 11 patients
with a diagnosis of probable AD (5 men; 6 women; age:
72.5±8.3 years, mean ± standard deviation (SD)) and 11 age-
matched controls (7 men; 4 women; age: 72.8±6.1 years, mean
± SD). The average Mini-Mental State Examination (MMSE)
score for the AD patients was 13.1 ± 5.9 (mean ± SD). All
control subjects had an MMSE score of 30.

AD patients were recruited from the Alzheimer’s Patients’
Relatives Association of Valladolid (AFAVA), Spain. Informed
consent was obtained for the recording of the EEG signals at
the Hospital Clnico Universitario de Valladolid (Spain) using
the international 10 − 20 system and electrodes (Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6,
Fz, Cz and Pz) referenced to the linked ear lobes and with
subjects sitting on a chair and with eyes closed. More than
5 minutes of EEG data were recorded for each subject using
Oxford Instruments Profile Study Room 2.3.411 (Oxford, UK).
A hardware low-pass filter with a cut-off frequency of 100 Hz
was used before signals were sampled at 256 Hz and digitised
with a 12-bit A-to-D converter. Five second epochs with little
artefactual activity were selected for offline analysis by a
specialist neurophysiologist. The total number of artefact-free
epochs available for analysis was 9849 (5648 from AD patients
and 4201 from control subjects). On average, 28.0 ± 15.1
epochs (meanSD) were available from each electrode and each
subject.

IV. EXPERIMENTS AND RESULTS

In this section we present our experiments and results. Our
preliminary observation from the 1D-LBP histograms of AD
patients and controls have been considered. It shows that the
intensity levels differ between the groups (Figure 2), with AD
patients’ 1D-LBP histograms having greater levels of intensity
when compared to the controls. In this study, we therefore
propose to apply 1D-LBP to EEGs and use SVMs with an
RBF kernel to distinguish between controls and AD patients.
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Fig. 2. LBP histogram codes for electrode O2 in Alzheimer’s patients (top)
and healthy subjects (bottom). The AD patients have 363 epochs while healthy
ones include 264 epochs.

Moreover, the effect of following experiments have been
considered on the performance of the proposed method:

1) The choice of LBP parameters. In order to use LBP,
we first have to determine the optimal segment length
to use. Therefore, in this experiment we investigate
the optimal segment length for maximising perfor-
mance in terms of HTER.

2) Importance of electrodes. In this experiment we
investigate the performance obtained using each elec-
trode, in terms of the HTER.

3) Cross subject evaluation. Instead of performing
cross-validation at the epoch level, where the training
and test set may contain EEG signals from the same
subjects, in this experiment by using subject-level
cross-validation, we ensure that the training and test
sets (on a different fold) are two distinctive partitions
with data from different subjects.

For both experiments 2 and 3 above the optimal parameters
identified in experiment 1 were used. The results of these
experiments are reported in the subsections below.

A. Impact of LBP parameters on the classification

In order to find the best parameters for the 1D-LBP, we
ran 20 repetitions of a 10-fold cross validation across all
16 electrodes. The results in Table I present the means and
standard deviations of the HTER across the 20 runs of 10
fold cross validation. From Table I we see that 1D-LBP with
a segment size of 5 gave the best performance (i.e., with the
minimum HTER value) when compared to other segment sizes.



TABLE I. MEANS AND STANDARD DEVIATIONS OF THE HTER (FOR

EACH ELECTRODE) ACROSS 20 RUNS OF 10 FOLD CROSS VALIDATION.

Electrode LBP segment size ( size of feature vector)

3 (4) 5 (16) 7 (64) 9 (256)

C3 0.22 ± 0.05 0.14 ± 0.05 0.20 ± 0.05 0.21 ± 0.07

C4 0.25 ± 0.04 0.14 ± 0.05 0.19 ± 0.04 0.20 ± 0.10

F3 0.28 ± 0.05 0.20 ± 0.07 0.26 ± 0.05 0.23 ± 0.10

F4 0.32 ± 0.05 0.24 ± 0.08 0.29 ± 0.05 0.34 ± 0.11

F7 0.26 ± 0.05 0.18 ± 0.05 0.27 ± 0.05 0.36 ± 0.13

F8 0.25 ± 0.05 0.17 ± 0.05 0.24 ± 0.05 0.31 ± 0.12

Fp1 0.25 ± 0.05 0.18 ± 0.05 0.27 ± 0.05 0.28 ± 0.13

Fp2 0.26 ± 0.05 0.14 ± 0.04 0.23 ± 0.05 0.22 ± 0.14

O1 0.28 ± 0.05 0.19 ± 0.05 0.25 ± 0.05 0.23 ± 0.13

O2 0.29 ± 0.05 0.12 ± 0.04 0.20 ± 0.05 0.23 ± 0.15

P3 0.27 ± 0.05 0.14 ± 0.04 0.21 ± 0.04 0.28 ± 0.10

P4 0.22 ± 0.05 0.13 ± 0.05 0.22 ± 0.05 0.26 ± 0.10

T3 0.26 ± 0.05 0.20 ± 0.06 0.25 ± 0.05 0.35 ± 0.14

T4 0.27 ± 0.05 0.20 ± 0.05 0.25 ± 0.05 0.29 ± 0.20

T5 0.28 ± 0.05 0.19 ± 0.06 0.29 ± 0.05 0.28 ± 0.15

T6 0.29 ± 0.05 0.23 ± 0.06 0.27 ± 0.05 0.33 ± 0.13

B. Importance of Electrodes

The electrode C4 gave a minimum HTER of 0.08 across the
20 runs of 10 fold cross validation, followed by electrode Fp2.
Although the results on the aforementioned electrodes were
minimal, they lie outside the interquartile range of the median
analysis, thus suggesting their values to be outliers. Electrode
O2 gave a consistent result with a HTER between the range of
0.08 and 0.16 across the 20 runs (Figure 3). Therefore, from
Table I, we see that electrode O2 has a HTER of 0.12± 0.04,
which is the minimum when compared to other electrodes.
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Fig. 3. Means (top) and standard deviations (bottom) of the HTER across
20 runs of 10 fold cross validation.

C. Cross Subject Evaluation

In the previous experiments, we were evaluating the per-
formance at epoch level, where the training and test sets
contained EEG signals from the same subjects. We suspect
that this will have positively biased the performance of our
classification model. Therefore, we created subject-level 10-
fold cross validation, as shown in Table II, to allow training
using one set of subjects and testing on a separate set of
subjects. The partitioning was carried out in such a way that
at least one subject with AD is always present in the test set.

The results from Table III show an increase in the HTER

TABLE II. NUMBER OF SUBJECTS CONSIDERED IN THE TRAINING AND

TEST SETS ACROSS 10 FOLDS.

Train size 20 19 19 20 20 20 20 20 20 20

Test size 2 3 3 2 2 2 2 2 2 2

across all electrodes for different LBP segment sizes. This
validates our hypothesis that the classification model reported
earlier was positively biased by epoch-level cross validation;
and the subject-level cross validation can mitigate this bias.

TABLE III. LBP PARAMETER TUNING USING CROSS SUBJECT

EVALUATION.

Electrode LBP segment size (size of feature vector)

3 (4) 5(16) 7 (64) 9 (256)

C3 0.29 ± 0.16 0.29 ± 0.18 0.27 ± 0.17 0.50 ± 0.00

C4 0.34 ± 0.15 0.32 ± 0.16 0.36 ± 0.14 0.50 ± 0.00

F3 0.34 ± 0.14 0.33 ± 0.15 0.30 ± 0.17 0.50 ± 0.00

F4 0.41 ± 0.10 0.41 ± 0.12 0.35 ± 0.16 0.50 ± 0.00

F7 0.28 ± 0.16 0.35 ± 0.15 0.30 ± 0.17 0.50 ± 0.00

F8 0.32 ± 0.15 0.37 ± 0.13 0.38 ± 0.14 0.50 ± 0.00

Fp1 0.37 ± 0.14 0.37 ± 0.15 0.30 ± 0.18 0.50 ± 0.00

Fp2 0.36 ± 0.15 0.35 ± 0.15 0.32 ± 0.18 0.50 ± 0.00

O1 0.34 ± 0.17 0.34 ± 0.15 0.29 ± 0.15 0.50 ± 0.00

O2 0.38 ± 0.13 0.27 ± 0.15 0.31 ± 0.18 0.50 ± 0.00

P3 0.39 ± 0.15 0.40 ± 0.12 0.31 ± 0.15 0.50 ± 0.00

P4 0.33 ± 0.16 0.31 ± 0.16 0.30 ± 0.18 0.50 ± 0.00

T3 0.39 ± 0.14 0.40 ± 0.11 0.32 ± 0.17 0.50 ± 0.00

T4 0.38 ± 0.13 0.31 ± 0.17 0.40 ± 0.14 0.50 ± 0.00

T5 0.41 ± 0.15 0.39 ± 0.14 0.35 ± 0.16 0.50 ± 0.00

T6 0.41 ± 0.11 0.44 ± 0.11 0.30 ± 0.17 0.48 ± 0.07

Although we see an increase in the HTER across all the
electrodes, the results in Figure 3 are consistent with the results
shown in Figure 4. Electrode O2 also still proved to be the
best at discriminating between the AD and control patients.
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Fig. 4. Means (top) and standard deviations (bottom) of the HTER across
20 runs of 10 fold cross validation using cross subject evaluation.

V. DISCUSSIONS AND CONCLUSIONS

In this study, we presented a method using 1D-LBPs for
effectively discriminating between AD and control patients
based on their EEG signals. Our preliminary observation
showed differences between the groups, with AD patients’
1D-LBP histograms having greater levels of intensity when
compared to the controls. Our implementation included 20
repetitions of a 10-fold cross validation across all 16 elec-
trodes. Furthermore, we found that 1D-LBP with a segment



size of 5 gave the best performance (i.e., with the minimum
HTER value) when compared to other segment sizes. Please
note that, we have reported only the performance of single
electrodes to demonstrate the viability of the 1D-LBP method,
as a preliminary study. In practice, however, all electrodes
must be used jointly through multivariate methods, including
feature selection and feature extraction (projection into lower
dimensional space), which will be constituted in our future
study.

Our results showed that mean HTER varies substantively
between electrodes both in the epoch- and subject-level exper-
iments. In the case of the epoch-level experiments, electrodes
covering the frontal and temporal lobes were consistently less
useful in discriminating between AD and healthy subjects.
However, this pattern was not observed in the subject-level
experiments, with no discernible trend in performance across
lobes or hemispheres. Despite this, electrodes C3, C4, O2 and
P4 showed high discriminative power across both experiments.
Previous research using this database and non-linear analysis
methods has highlighted AD changes mostly at electrodes in
the parietal (P3, P4) and occipital (O1, O2) regions, but rarely
in the central region (C3, C4) [26]. Therefore, our preliminary
results suggest that the method presented in this paper could
provide additional information with diagnostic potential and
complement what is already known about the EEG in AD.
Nevertheless, further studies with a much greater sample size
are required to test the possible clinical usefulness of this
methodology.
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[20] A. Şengür, Y. Guo, and Y. Akbulut, “Time–frequency texture descriptors
of EEG signals for efficient detection of epileptic seizure,” Brain

Informatics, vol. 3, no. 2, pp. 101–108, 2016.

[21] L. Boubchir, S. Al-Maadeed, A. Bouridane, and A. A. Chérif, “Time-
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