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Abstract—Supply Chains have to be designed and managedEnterprise resilience is a response to expecteduafuteseen

holding simultaneously into account many differeqerformance
measures. Moreover, modern Supply Chains have to uems
satisfying performances despite an increasing degoé complexity
and market uncertainty as well as be capable to titie negative
impacts of disruptive events. A multi-criteria robness evaluation
framework is proposed to deal with these challengBse proposed
approach allows to separately assessing the impafctvarious

performance measures specifying tailor loss funct& being able
to deal with non-linearity and asymmetric impacts.dvkover, an
original Robustness Index is defined, in order togvide reliable
estimations even in the presence of outliers andtegrating

information about kurtosis and skewness in the robuosss
estimation. The proposed framework is applied to fative

industrial case to demonstrate its utilization argthow the kind of
analysis that can be done on the basis of the atedl results. The
approach, simply requiring the definition of someammeters and
the description of the characteristics of the SupplChain

configurations to be evaluated, is meant to be &asised by
practitioners.

Keywords—multi-criteria analysis; robustness; lossrfttion;
simulation; Supply Chain

. INTRODUCTION

changes, disruptive events and disturbances asdhé ability
for a company to adapt, respond and recover froeseth
changes [4]. Flexibility refers to the capacity afsystem to
adapt itself to a changing environment [3, 5]. Raibass is the
property of a given system to accommodate for facto
uncertainty and variability without significant
degradation/deviation from the initial desired stf, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16]. The main differenceagnthese
concepts is that resilience and flexibility imphat the system
configuration is not fixed and can evolve in fupatiof the
changing requirements, while robustness assumesven g
configuration.

The aim of this work is providing the tools supjgtthe
decision makers during the choice of a robust S@igaration
that can ensure satisfying performance in manyeuwdfft
market environment scenarios. For this reason, & ne
robustness index is proposed. First of all, a nrulteria
performance measurement system is developed im todgo
further the typical limitations of cost based pemiance
evaluation [17]. This implies to specify for eachPIKa
mathematical expression linking its value withdtntribution
to the overall suitability of a given SC. This isn& using
specifically developed asymmetric loss (respectivetility)

Supply Chain (SC) design and management is becomin@inctions in order to easily handle the inner riogdrity of SC

increasingly complex due to, on the one hand, tbéfgration
of Key Performance Indicators (KPIs) required fealihg with
economic, social and environmental performancesbé&o
satisfied, and, on the other hand, to the shiftatols a more
comprehensive and long term oriented assessmeneivark.
This implies the development of comprehensive etaln
frameworks covering multivariate performance measant
and allowing to perform various types of analysisegrating
scenario analysis and stochastic elements. In éffatiency is
not anymore the only aspect to consider becauseepts like
risk management, resilience and robustness arartieganore
and more important. Thus, it is necessary evaladtehe
aspects of the market environment uncertainty adbility,
going from the inner stochastic nature of custodemand to
the uneven and occasional occurrence of major mtisns.
This results into the development and applicatibrvarious
concepts such as robustness, flexibility and ek [1, 2, 3].
The different definitions of resilience have a coomelement.

behaviour. The elaborated overall loss functionused to
estimate the SC performance in each of the potesténarios
and constitutes the main input for the calculatioh the
proposed robustness index.

The application of the proposed robustness evaluati
framework is illustrated analyzing the behavior affictive
production system, which behavior is assessed dghroa
discrete event simulation model in order to appetply take
into account the stochastic nature of SC proces$és.
robustness is evaluated over a long time horizandimg on
the evolution of various customer demand scenargdgsch
result from the definition of various sales chasr&frategies.
For a comprehensive description of the demand siosha
characteristics see [18]. In the next section ascdbed the
selected KPIs and the suitable Loss Functions (LRsection
3 are defined the Robustness Index (RI) and thestokss
evaluation framework. In section 4 are summaritedresults
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obtained applying the proposed approach to a éctiase, in
order to determine the most suitable SC configomaiimong
15 alternatives considering the trade-off betwd&oaiency and
robustness. Finally, section 5 provides the commhss and
outlines future research perspectives.

I KPIS AND LOSSFUNCTION IDENTIFICATION

A new LF, called the Satisfaction Bounded Linex
(SBLinex), is proposed in order to overcome the rigki
Taguchi “nominal the best” approach, which it ig saitable
for SL analysis. The parameterisation of the SBXih& is
influenced by the necessity to apply an asymmaeipigroach,
where SL degradations are penalised more thaneavarded
equivalent SL enhancements. The value of the SBLirteis
computed according to (2).

The proposed robustness evaluation framework can be

applied to any number of quantitative KPIs. In thisrk for
simplicity the focus is restrained to some econordels
dealing with well-known production management issuén
extension to social and environmental KPIs canded in
[19]. The use of quantitative KPIs avoids the peoid related
to the use of qualitative indexes. In fact, théelaimplies the
recourse to subjective evaluations, which can Ilfécdlt to
establish and for their inner nature can be queahite, raising
validity issues for the definition of suitable L&sd thus for the
entire framework.

The considered aspects are customer satisfaatieentory
level and equipment utilization. These widely ugdels have
been selected in order to facilitate the comparisomng
various industrial sectors and for because of fent are
available widely known benchmarks,
simplifies the identification and parameterizatiohthe loss
functions. The KPIs are used for measuring theoperdnce
achieved by a given SC configuration for each deman
scenario. The LFs are computed on the basis afdkimtion of
the actual value of a KPI from a Reference Valuéjciv
represents a satisfying performance level.

A. Customer satisfaction

The Service Level (SL) describes the capacity sefstem
to deliver the required product/services to itdauer within a
previously established lead time. It is thus a measof
customer responsiveness and it constitutes orteeafrivers of
customer satisfaction. Various SL definitions aypidally
employed in practice. In this work the SL is definas the
percentage of orders that are fulfilled on-time. -tme
fulfillment means the instantaneous availability af-hand
inventory in a Make-To-Stock (MTS) environment, {ghin a
Make-To-Order (MTO) or in an Assembly-To-Order (AJO
context implies to deliver the goods/services te thstomer
within a pre-specified lead time.

NO
—__~0or (1)
NO
where NOot Number of orders fulfilled c-time
NO Number of customer received orc

Usually the impact of SL on customer satisfactiean i
characterised by a nonlinear relationship [20,221,23]. Thus,
the suitable LF has to be nonlinear and also asyrioni the
case of an asymmetric LF both the sign and the et of
the SL deviation from the satisfying SL referenedue (Sky)
influence the resulting loss value. The use of asgtric LFs,
for instance Linex and BLinex, has been alreadgmenended
while evaluating aspects related to the interactigith
customers and people in general [21, 24, 25, 237

which existence

LsgLinedS) =—Sign(51_—S_Rv)B} 1- o mmea(a-aMl_ Al -y -1 @)
where  sgn(SL-SLgy) =-1 for SL<SL
=0 for SL=SL
=1 for SL > SL
>0 bounding parameter (the loss
bounded between 0 and/1/
b>0 asymmetry parame
a<( scale parameter (curve flatne

and specifying which S
deviations are more penalised

Fig. 1 and Fig. 2 allow to gain an understandingthef
influence of SBLinex parameters on the resultings lwalues
and its ability to represent correctly the impadt SL
degradation.
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B. Inventory Level

Inventory related measures are typically applied fo

production system performance analysis [29]. Theettory
Turnover Ratio (ITR) is selected as inventory edakPl in
order to ensure an easy comparison of the resottsned by
different production systems as well as to fadditahe
establishment of reliable inventory level thresBoltTR is a
suitable inventory KPI because it establishes aticglship
between the inventory level and the demand levgl T8e
availability of ITR data facilitates the estimatiof industrial
sector benchmarks that can be used as first appatixin of
the inventory level reference value required foe tloss
calculation.

Demand
ITR=— 3
IL
where Demanc Overall demand over a specific tir

horizon (usually one year)
IL  Average Inventory Lev

An asymmetric LF is implemented for measuring thes|
induced by the deviation of the ITR from the estigd
reference value. An increase of the ITR is berafisecause it
is linked to an inventory level decrease and resuito a
negative loss value. On the other hand, an ITR edeer is
associated with a positive loss, because it imgiesmventory
level increase with the relative additional codtkus, in this
case a “the greater the better” Taguchi approadbllmved.
Making the hypothesis that the modification of [V&ues only
influences the amount of inventory carrying coitis possible
applying the asymmetric linear based LF, called-LIN [24,
26, 30, 31, 32, 33] The broad applicability of LLNWN LF is
further confirmed by the fact that this LF can beed to
approximate other asymmetric LF [33]. The propdsi&dLIN
LF (4) specifies the loss value on the basis of daeiation
from a benchmark, called ITR reference value @J)RThe
latter can be fixed looking at the performancehaf top class
companies belonging to the same industrial seatpif dhe
focus is mainly the company under analysis, it dan
elaborated starting from the current company perémce in
terms of inventory management.

-dQITR-1TR,) if ITR<ITR
Lun-un(ITR = _ _ . ~ (4)
elITR-1TRy) if ITR>ITRgy
where d,e>0  the |oss magnitude is greater for ITR
d>e degradations than for ITR enhancements

In the framework of the asymmetric LIN-LIN LF the
choice of penalising more stock increase than reiwgrstock
reduction is justified by the fact that an ITR iease, thus a
stock decrease, directly implies only a decreagbefinancial
component of the inventory carrying costs. On ttieiohand,
the decrease of the ITR, which results into a stockease,
provokes an increase of all the variable componenits
inventory carrying costs.

C. Resource utilisation

A straightforward measure of resource utilisatienthe
workload, calculated as “the ratio of the direntdicharged for
production activities (setup and processing tingejhe clock
time scheduled to be available for a given peribtinee” [29].
However, the information that can be gathered freonkload
analysis provides a too aggregated vision of theouece
utilisation. For this reason, this work proposesther KPI
related to resource utilisation, which clearly asss the impact
of setup time and processing time. The Setup TieredPtage
(SUT%), calculated according to (5), can be coteelavith the
total production cost. Furthermore, given a fixadduction
system infrastructure and a specified constant ymiich
volume, measuring the SUT% can allow to monitor émd
explain the workload variations induced by the okdifferent
production planning and control strategies.

N YUt
WTY%=—L E
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where n number of fulfilled orde
SUT,
OPT,
UPT

0Q

Setup time for ordei
Order Processing Time iorderi
Unitary Processing Time constant

Order Quantity for ordii (the pattern o
the OQ is strongly dependent from
manufacturing constraints and the
chosen PP&C strategy)

A simple linear loss function (LIN), defined in (8% used
to quantify the impact of the deviations from th&TS%6
reference value (SUTS). The use of a linear loss function to
approximate the influence of SUT% is derived frorcast-
based” estimation. The SUT® mainly reflects the
specificities of the production system under analgsd can
thus be fixed equal to the currently achieved SUTiBtess the
performance of the production system is considened
satisfying.

LN (SUT%)= f [((SUT% - SUT%gy) (6)
where >0 coefficient controlling the los
magnitude

The coefficientf has to be defined taking into account the
criticality and the cost associated to the produrctiesources.
The value off is also influenced by the workload level, if the
production resource utilisation is close to sataratthe
negative impact of an increased SUT% is magnifiegause it
can increase the queuing time.

D. Loss discounting factor

In this work each scenario is evaluated over a tiogzon
spanning various years. In order to give a graéatportance to
the performance achieved in the periods closehdopresent,



the application of a discounting factor to the lasdues is
proposed (7). The use of discounting factor is comipractice
in multi-period cost evaluation and has been alréanioduced
in robustness analysis [34].

1 Holoss(it)
Loss (i) = ’ @)
0 Hor [TZ:;‘ @A+r)
where Hor number of periods included in t

considered time horizon

Loss(i,t) loss valueof KPI j for scenarioi and
time periodt
Loss(i) average loss value KPI j for scenaric

i considering the entire time horizon
(Hor)

j=/SL, ITR, SUT%)

r discounting factc

The choice of a suitable value pthas to be done on the
basis of the decision maker risk aversion.

E. Overall loss

The losses, calculated on the basis of the valuoaslly
achieved by the various KPIs and of the establigkézrence
values, provide the foundation for developing austbhess
evaluation tool, which aims at supporting the decisnakers
for the identification of the critical SC configti@n
parameters. Due to the concurrent recourse to uarikPls,
two alternatives are available for the performaasavell as for
the robustness evaluation.

The first alternative relies upon the definitiondsfinition
of a vector of losses, which allows to manage damgously
the various KPIs and to keep them distinct. Thesetors can
be compared in order to obtain a Pareto frontiet, [35],
constituted by the non-dominated solutions, which
represented by a hyper plan of cardinality equiviale the
number of implemented KPIs. This approach allows
compare the scenarios preserving their diversithaut being
obliged to establish from the beginning trade-affoag them.
However, this approach is extremely time consunaging due
to the difficulty to discriminate many non-dominatsolutions
especially in high dimensional space and to thehlhig
subjectivity of this phase, the quality of the firanking can be
unsatisfying when dealing with real-world applicas.

The second alternative transforms the multi-citePI
vector into a unique mono-criteria index estabfighirade-off
among the various KPIs usually relying upon a limedditive
model, which results in a weighted sum of the usitobsses
[13, 36, 37, 38]. This approach allows a fast dakion and
can be simply integrated in many tools. This apgha@quires
the explicit specification of the decision makeefprences and
the establishment of trade-offs among the varioB$sKwhich
are then translated into weighting parameters.rébeurse to a
unique index, implies the risk of losing informatiabout the
solution diversity, thus about the contributioneakch loss for a
specific case. The strong dependency of the fiaaking by
the weighting results can raise some concerns aklimait

validity of the weights’ estimation, the latter hasrely upon
formalised and structured approaches in order ¢eease the
confidence about the obtained results. For instarnhe

Analytical Hierarchical Process (AHP), which is édson

pairwise comparison among the KPIs, is an interggtol for

weight estimation in the framework of robustnesalysis [13,

36] and multi-criteria decision making [37, 39].

In this work, in order to simplify the decision neaktask
and to automate as much as possible the variops sfethe
robustness evaluation framework, the second appraac
chosen. Thus a unique index, called Overall Losk),(@s
calculated applying a linear additive model as sham (8).
The relative importance of the various performandes
established by the decision maker defining someghizg
coefficients (). The weighting coefficients also play a role in
scaling the contributions of losses defined oveiouws range
of values in order to assess that all KPIs arectffely taken
into account in the performance evaluation.

OL(i) = iwj [Loss, (i) .

J

>w, =1

j=1
W, >0

whele OL(i) overall loss for scenarii considering

the entire time horizon

number of KPIs included in the mt-
criteria performance measurement

In the application case described in section I\Vorider to
deal with three KPIs the weighting factors definedrable I
have been applied.

: [ll.  ROBUSTNESS DEFINITION AND ASSESSMENT

to The interest for SC robustness is continuouslyeasing as
proven by the results contained in [3], which shioaw the
number of publications dealing with the subjecsignificantly
increasing from 2001. However, an unambiguous roi@ss
definition does not exist yet. Furthermore, some tludse
definitions are at least partially overlapping withther
concepts, being a merger of robustness, flexibiligd
resilience concepts [2, 3, 5, 13].

A first classification concerning robustness déiims in
the context of production management focuses orwtein
which the insensitivity of a solution with respetct input
variability is estimated. Quality robustness islgsed focusing
on the objective function space and thus estimating
performance variability. A given (fixed) SC configtion is
considered as “quality robust” if the performaneenains at
satisfying levels while the company environmentvéying.
Quality robustness is widely applied in production
management [3, 5, 6, 7, 9, 11, 12, 15, 40, 41] iandther
contexts [10, 14, 42]. On the other hand, solutayustness is
estimated analysing the solution space. A SC idutiem
robust” if the configurations achieving the bestfpenance for



the various market environments scenarios to bsidered are
similar to the baseline configuration. Thus, santrobustness
is closely related to flexibility.

In the following the analysis will be concentratadquality
robustness. Quality robustness is usually estimfaeasing on
input data that are external to the SC configunatiesign and
mainly beyond the control of the SC shareholdess.irAthis
work the company environmental factor that is noashmonly
used in robustness estimation is customer demand, [&1,
15]. However, internal and external sources of ttaggy can
be simultaneously considered in robustness evaluftil, 43].

Many robustness definitions exist, these reprediferent
interpretations of the robustness concept alsaénited by the
considered specific risk attitude. Moreover, manhustness
evaluation frameworks and equations are proposkd.|dtter
differentiate themselves also with respect to thantjty and
typology of data required for robustness estimatidime
robustness definitions (absolute, deviation, redgtiproposed
in [44] are very conservative, thus reflect a sfrorisk
aversion, because they focus robustness calculatiorthe
worst case performance. The main advantage of thistwase
based robustness measures is that they do notreequi
explicit computation of the probability of existenof the
various market environment scenarios. However,
considering the scenario probability of existerealso one of
their main drawbacks, because the robustness ¢istimtan be
based on a scenario having a little probabilitgxittence and
thus not reflecting the overall market environmiaenivhich the
SC evolves.

In order to take into account the information sténgn
from all potential market environment scenarioseotiypes of
robustness measure have been introduced. For cestdme
“compromise robustness” proposed in [13] impliesttha
robust solution is one that is satisfactory to dleeision maker

not

the quality robustness of a given SC configuratiwhich is

supposed to remain unchanged, facing significarterial

market environment modifications due to the didugpt
modification of sales channel strategy (outer rtfess). For
each scenario is estimated the demand evolutioeritmy 10

years as well as the probability of occurrence,tbeealetails in
[45].

The availability of the probability of occurrencé each
scenario allows the use of a wide range of robsstnaasures.
In such a context an approach based on weightethgee
measures provides a better representation aboubvaell
performance of a solution. However, the risk of
underestimating the negative effect of an unactéptpoor
performance for some scenarios has to be minimized,
especially when dealing with outer robustness.

A new Robustness Index (RI) is proposed (9) in otde
combine the strengths of the previous robustnesisititen
typologies.

1
Rl =
@ {0l ~OLgy) + BHOLyg, ~OLy, )+ y Ly, ~OLg, ) + 6 HOLyg, ~OLsy) (9)

where OL;o, OL for i percentile of cumulated
scenario probability of occurrence

(oL, -0L,)  OL difference between two
cumulated probability percentile
a, B,y 6 >0 weights modulating the impact of
a+ B+ yro=1 the fourOL differences on th&l
a<pB<y<s Weights for “big losses” are

greater (risk adverse decisions)

Fig. 3 illustrates how starting from the OL valwhieved
by a given SC configuration, in the various scevwriis
possible computing the RI and thus specifying ative
robustness. The probability of occurrence of theious

in as many scenarios as possible without being togcenarios can be not uniform. First of all, the &g ordered

unsatisfactory to the decision maker in any sirggenario”
[13]. This definition takes into account all theesarios, even if
their probability of existence is not required, dgse the idea is
having a production system showing satisfying pennce in
as many scenarios as possible without being toatisfectory
in any scenario. Some robustness definitions reqthat the
performance is within an acceptability zone, thughiw a
range of deviation from optimality that is consielr
acceptable by the decision maker, for all scenamabe great
majority of scenarios [9, 10].

The availability of the probability of occurrencd all
scenarios, or in alternative an assumption abasifptiobability
distribution, allows to apply robustness probabdis
approaches [43] or approaches based on weightecgese
where the importance of the performance degradatiained
in a specific scenario is weighted according tdikislihood of
occurrence [7, 11, 12, 16].

A. Robustness index definition

The characteristics of the robustness index styodegpend
on the objectives of the established robustnesduatien
framework and on the nature and quantity of data ¢lan be
gathered. In this research context the objectivéetermining

following an increasing order. This allows to detare for
which OL values the cumulated scenario probability
occurrence reach some specific percentile. Fivecgntite
values (5%, 25%, 50, 75%, 95%) have been choserdar to
provide information about the OL cumulated disttibn
function.

Considering various percentiles allows to bett@resent
the entire probability distribution pattern, cajrgr the
influence of the third and fourth moments of thehability
distribution (skewness and kurtosis). The propo$dd is
calculated discarding the loss values below OL5% aove
OL95%. In this way, the bias due to potential @utBcenarios
characterised by extreme loss values is limiteds T$ done
making the hypothesis that these scenarios refresdn a
negligible cumulated probability of occurrence.

All the differences are measured with respect t&®%| the
focus on the best performance is quite uncommaabiostness
literature, where often the reference points ageworst case
performance or the boundaries of the acceptablee.zon
However, in this way the RI definition well represethe
objective of ensuring the closeness to the bedbmeance.
The RI equation also facilitates the tailoring, thie basis of
decision maker risk aversion, of the weighting fioeits @,



B,V, d) involved in its estimation. The value of weiglgtithese » efficacy dealing with potential outlier scenaride

coefficients applied in the specific case of setth are shown RI computation, is based on the OL comprised
in Table 2. The ranking of SC configuration on basis of the between the 5% and the 95% percentile. The
proposed RI proves to be quite robust against tileéce of the considered subset of OL does not contain the most
weighting parameters. The choice of the weightinefficients critical and least critical values, decreasing the
do not alter significantly the robustness rankifdhe various influence of potential outliers with not signifidan
SC, allowing to identify the most robust and thasterobust probability of occurrence.

configurations. In practice, the choice of a subak

weighting mainly shrink the differences among tHevRlues * the solution ranking based on robustness values is

[45] independent from the established values for referen
' values and other parameters. Using RI is always
Loss A possible discriminating the most robust SC

configurations from the non-robust ones.
IMAXE - = e -

5% 25% 50% 75% 95%

‘ IV.  APPLICATION OF THE ROBUSTNESS EVALUATION
ol il i 1 -~ 1 1 FRAMEWORK TO A SPECIFIC CASE

R B R | ---rH | In this section, all the steps of the proposed stimss

evaluation framework are applied to numerical dataerder to

L50% | - I' T I‘ T '—”_ I clarify the followed approach and the kind of as&ythat can

| | be undertaken. 28 demand scenarios are generagslintate

the performance of 15 SC configurations. In thipligation,

| I the number of scenarios and SC configuration isnitibnally

| kept low in order to propose an example of managesibe. A

discrete event simulation model is applied to estémthe

I behaviour of the various configurations accurataeking into

| R account the stochastic nature of the market deraaddof the

5% 100%  prob (L<L)| Production processes. The detailed descriptiorhefuarious
demand scenarios and SC configurations can be fiolAd)].

L5% [ I

Lmin I I

0% 25% 50%

L25% _l' = I
7

Fig. 3. lllustrative application of the proposed Robustrasiex The 15 SC configurations are obtained modifying =om

inventory management parameters of the original SC
configuration. For doing that Central Composite iDegCCD)

is selected, it is a well-known Design Of Experittsealready
used in robustness evaluation [41]. The value efpérameters

of the original SC configuration have been respebti
decreased and increased of 20%. A modification @%b 2s
chosen because it is expected that can produceficigm
performance modifications without completely chamgithe
SC behavior. CCD has also been chosen becaudeviisatio
estimate quadratic Response Surface Models (RSWI.

It must be noticed that RI measures only the viitalof
the performances. The evaluation of the SC conrdigpm
overall suitability requires the use of the progbsRl in
association with another index, specifying the ek
performance. The Average Overall Loss (AOL) is uiedhis
purpose (10). The OL weighted average is prefaivdtie OL
median, because the former takes into accoundsdek and is
better suited for dealing with potentially skewebhmbility
distributions.

Nscen application of RSM or other meta-modelling techmsisuin
AOL = Z p(i) COL(i) (10)  order to gain qualitative and quantitative insigiifout the
i=1 relationship linking Rl and AOL values to those tbe SC
where Necen overall number of scenarios parameters, is the natural following step of robqs_)s
. . . . assessment. The recourse to meta-modelling teatsigs
p(i) probability of existence scenauiio particularly suitable for real industrial applicats, where the
OL(i) Overall Loss related to scenario high number of involved factors makes almost imjimesto
Necen Because all the considered €xtract valuable information from the direct anaysof
> p(i)=1 : simulation results.
oy scenarios have to be evaluated

In order to apply the robustness evaluation apgrohave
) ) ) ) to be specified the parameters related to the fpddts and
The proposedRl is characterized by some interesting features:ine weighting factors for OL and RI, which are fdzd in
« correctly accounting for the impact of performancetable | and Il. The weighting coefficients and tfiscounting
variability, skewness and kurtosis. Basing the RIfactor, which is fixed to r=0.1, are specified acting to the
estimation on the OL corresponding to five decision maker attitude and risk aversion and camibectly
meaningful percentiles allows to capture in a sampl specified by the user or inferred using decisioppsut tools

and computationally parsimonious manner the shapkke AHP.

of the cumulated probability distribution.



TABLE 1. LF PARAMETERS FORSL, ITR AND SUT% .
® 12
KPI SL ITR SUT%
Reference Value 90% 70 42% ? W
Loss Function SBLINEX LIN-LIN LIN 15
LF Parameters a b| A d e f 3
Assigned values -0.5 1 0.0L 0.25 0.125 0.5 ! e ¢
11
0.5
TABLE II. WEIGHTING FACTORS FOROL AND RI ESTIMATION a
0
Overall Loss weighting Robustness Index weighting 024 025 026 o1 028 029 03
coefficients coefficient "
elm6A7 48411012
wSL wITR wSU a B y 0
0.4 0.3 0.3 0.1 0.2 0.3 0.4 Fig. 5. AOL and RI characterisation for the most promisipgduction
system configurations
As already specified, the values of these paramdtave
only a relative influence on the obtained resutts #us can be In this illustrative case, RSM is applied in orderestimate
chosen also making reference to the literature plyang  the influence of the considered design factorsti@nbasis of
simple decision making rules. the available data, the parameters of various mnsodeah be

estimated: linear, linear with interactions, pureadyatic, and

system configurations is investigated. In this wiig benefits Ul quadratic. The possibility to test various &ble models
of the proposed robustness evaluation frameworkbeagasily alloyvs to better d|scr|n_1|nate the importance of thmou.s
assessed. As can be remarked in Fig. 4 the behaofoine design factors. Thg estimated parameter of twocfuﬁdrz_mc
various SC configurations differs significantly. particular, ~MCdels, thosed ulsmg afcompleted sicondh ord;ar poligtom
the following configurations show completely unsiing '€9ression model, one for RI and the other for AQLe
values of AOL: 2. 3. 4, 5, 10 and 14. This is daeatdrastic provided in order to determine the impact of theowes design
degradation of SL, which results into high valuétoses due to  factors on each performance measure (Table lllcah be
the use of a SBLinex loss function. On the otherdhanother '€Marked as for both RI and AOL the only statislyca
group of configurations (1, 6, 7, 8, 11 and 12)vsfatisfying significant factor is b1, which describes the citattd by the
results both in terms of AOL and RI (Fig. 5). Theselnventory management parameters for a speuﬂc&sﬂ'mbly,
configurations achieve in comparison with the refiee SC namely subassembly A. Due to the arbitrary selacab the
(configuration 15) better results both in termsA@iL and RI. parameters and of the levels to be included irDiE for this
This simple application demonstrates that the psego aPPlication, as well as to the fact that not a# frarameters
robustness evaluation framework allows to deterntiree SC hgve been tested, the regression a.”a'YS'S has itudspreted
critical factors and to support the choice of atahle circumspectly and the obtained indications havéddurther
configuration. It is interesting noticing that thec Validated with more comprehensive studies. Nevéatise the
configurations achieving the best results are retessarily indications about the statistical significance afdnd the sign
similar. This suggests that the interaction amdrgy arious of t_h|s regression coefﬁment seem cqnﬁrmed logkat the
parameters plays an important role and thus cosfithe Various SC configurations. Considering Rl the fauost

complex and extreme interrelated nature of the ymrtion satisfying. configurations (number 11, 1, 8 and lap
characterised by the lowest level of the inventmgnagement

The use of Rl and AOL for ranking various produatio

system. parameter of subassembly A, as suggested in the RE8&!
200 by the negative value of bl coefficient. The pwositvalue of
180 s A2 emu bl coefficient for AOL model implies that the masttisfying
62 “ production configurations are also characterisedhieylowest
] O level of the inventory management parameter of ssdrably
3 100 A; this is the case for the four most satisfyingfoguration in
i terms of AOL (humber 7, 11, 1, 8).
01 —ug Better regression results can be obtained analymioge
” i o uo SC configuration parameters as well as applyingiaite
o 005 01 01 0z oz ° o3 035 transformation. However, in this phase these refgm®s are
T TTIITT i‘a_g_m“mz e not considered necessary because the primary ttajexftthis

application is simply providing an explanation dftuse of
meta-modelling techniques for analyisng the dataceming
RI and AOL and not furnishing the best parametémegions
to be subsequently used in a real industrial agtitio.

Fig. 4. AOL and RI characterisation of the 15 productionstesn
configurations



V. CONCLUSIONS

The proposed framework covers the robustness di@iua
process, starting from the choice of a multi-cidter
performance metric to arrive to the definition of new
robustness index and to the development of thes tamjuired
for its computation. The simultaneous use of veidoss
functions to describe the impact of KPIs deviatidnem
targets as well as the recourse to asymmetric fimsstions

estimation method and allows to better take intcoant the
trade-offs among the various KPIs also during thieustness
estimation.

The defined RI has the advantage of fully explgitihe
information about the probability of occurrencetioé various
scenarios, when they are available, and thus &giate in the
robustness calculation a reach description of tbenario
distribution pattern.

constitute a

refinement of the

traditional

perfonta

TABLE ll1. PARAMETER ESTIMATION OFRSMFULL QUADRATIC MODELS FORRI AND AOL
RI AOL
coef se tstat pval coef se tstat pval
b0 0.1153 0.0415 2.7789 0.039 93.0543 37.957 2.451 0.0578
bl -0.0677 0.0244 -2.7734 0.0392 55.781 22.3319 2.4978 0.0546
b2 0.0395 0.0244 1.6194 0.1663 25.3215 22.3319 39.13 0.3083
b3 0.0309 0.0244 1.2662 0.2612 -14.7863 22.3319 6620 0.5372
b1b2 0.0466 0.0273 1.7084 0.1483 35.9486 24.9679 4398, 0.2095
b1b3 -0.0032 0.0273 -0.1172 0.9112 -2.8077 249679  -0.1125 0.9148
b2b3 -0.0102 0.0273 -0.3728 0.7246 2.7659 24.9679 1108 0.9161
b1? 0.1379 0.0481 2.8646 0.0352 -28.0301 44.0392 65,63 0.5525
b2? -0.085 0.0481 -1.7647 0.1379 38.5954 44.0392 @.876 0.4209
bZ 0.0307 0.0481 0.6388 0.5511 -48.8444 44.0392 9110 0.3179
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