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Abstract— We describe a custom, low-power surveillance 

camera for the control of isolated, peripheral areas, that are often 

chosen for illegal activities, like traffic of drugs, weapons and 

cigarettes. The camera embeds on chip an image processing 

algorithm for real-time event detection, exploiting a dynamic 

background subtraction approach to identify the so-called hot 

pixels, i.e. pixels undergone an intensity variation, and possibly 

corresponding to an abnormal action. Every time a group of 

hot-pixels is detected, the camera generates an alarm that can be 

sent to an external processor for further processing (e.g. scene 

classification) or to a surveillance officer to plan an intervention.  

The related frames are saved to be used as forensic evidence in a 

court. The presented vision sensor combines the image array with 

a bench of processors, frame buffer, timing control block and 

digital interface. Low-power performance are obtained through 

custom chip design techniques, combined with integrated image 

processing and different sensor operating modes to minimize the 

sensor average power consumption. The vision sensor 

performance has been evaluated by two European LEAs, which 

expressed a high level of interest in such a system and a positive 

vote about its event detection performance. 

Keywords—Video-surveillance, event detection, dynamic 

background subtraction, smart sensor, low-power sensor. 

I.  INTRODUCTION 

Surveillance systems are important tools to monitor indoor 
and outdoor environments, with the purpose of preventing 
crimes, and bringing criminals to the justice. Nevertheless, the 
surveillance systems currently adopted by the Law Enforcement 
Agencies (LEAs) are often bulky and power hungry. In fact, they 
usually employ commercial cameras, that continuously acquire 
videos of the observed area and send them to an external 
processor for further processing (e.g. extraction of features 
relevant to classify the acquired events) or to a surveillance 
officer, which performs a manual, often boring and error-prone, 
control. Moreover, these systems need to be supplied by an 
electricity infrastructure and require high power and bandwidth 
to record and transfer data. The amount of data delivered by 
these cameras is huge and generally redundant when compared 
with their final task, i.e. detection of anomalous actions. 
Therefore, the use of surveillance systems employing standard 
cameras is limited by (1) high power consumption; (2) the 
expensive infrastructure; (3) large amount of data to be 
transmitted. Smart cameras [1] might offer several advantages 
against a standard approach: low-power consumption thus long 
lasting operation; embedded image processing (e.g. edge 
extraction, histogram computation, binary classification of 

visual signal) [2]- [3]. These characteristics allow low-level 
image analysis to be performed at the early stage of the system 
(i.e. very close to the sensor). They would drastically reduce the 
amount of data to be transferred to the processor turning into an 
energy efficient system.  

In this work, we describe the general hardware architecture 
of a low-power surveillance smart camera, implementing a real-
time event detection algorithm [6]. The smart camera is  always 
ON. It continuously acquires images of the observed scene in a 
grayscale, QVGA (320x240 pixels) format, down-samples them 
to QQVGA (160x120 pixels) format, and processes each 
QQVGA frame to detect hot pixels, i.e. pixels whose intensity 
value varies during time and that may correspond to anomalous 
activities. The intensity variations are detected by comparing the 
pixel intensity with two thresholds, that are specific for each 
pixel and that are dynamically updated based on the pixel 
intensity (thus they are self-regulating). Hot-pixels are first 
filtered through a topological erosion removing noise, then they 
are projected along the horizontal (x) and vertical (y) axes of the 
image. Projections are binarized against two user-defined 
thresholds, filtered to remove small, irrelevant hot-pixel 
aggregations, and finally used to generate an alert: if both the x- 
and y- projections are not null, the camera sends an alert to the 
processor.  

The performance of the proposed smart camera has been 
assessed on a set of videos, simulating criminal actions. These 
videos have been processed by a Sensor Emulator, reproducing 
the sensor functionalities. The output has been evaluated by a 
group of LEAs surveillance officers through a questionnaire that 
aimed at measuring (1) the interest of LEAs in such a system as 
a tool for supporting the investigative and forensic activity, and 
(2) the LEA satisfaction about the event detection accuracy and 
about the usability of the information provided by the camera as 
forensic evidences. The results showed high interest and high 
satisfaction for the proposed technology. 

The smart camera prototype is currently under 
manufacturing. A first sensor prototype with reduced 
functionalities is already available and fully tested. It integrates 
the processors for hot-pixel detection and delivers both, a 
QVGA 8 bit grayscale image and a quarter QVGA (QQVGA) 
hot-pixel bitmap. 

II. EVENT-BASED APPROACH 

The main peculiarity of event-based vision application is that 

an event is not predictable and rarely happens. Under these 



assumptions, an event detection system, which in our case is 

based on a vision sensor connected to a processor, works as 

follows:  

• no detected event: the sensor continuously analyses the 

scene without delivering any data, while the rest of the 

system is in idle-mode, consuming very low-power; 

• detected event: the sensor provides information on the 

detected event, such as the position of the event inside the 

scene or a region of interest, and delivers images or short 

videos to the external processor for further processing. 

 

This approach allows efficient energy management, which is 

implemented through a hierarchical system architecture, made 

of three layers (Fig. 1).  

 
Fig. 1: Hierarchical approach for system energy-management. Layer 

1: Sensing Layer with low-level image processing and event detection 

(generates a trigger for Layer 2); Layer 2: Processing Layer with high-

level signal analysis, e.g. object/people/action recognition and 

classification; Layer 3: Communication Layer - data broadcasting. 

Layer 1 works continuously (100%) looking for events, while Layer 2 

is usually OFF and wakes up upon Layer 1 request. Layer 3 is normally 

OFF and starts working upon Layer 2 request. 

 

Layer 1 - Sensing: the vision sensor works continuously, 

acquires images and executes low-level visual processing in 

order to detect low-level events and to take simple decisions 

(e.g. generating a trigger for the processor);  

Layer 2 - Processing: the processing layer is usually OFF and 

is woken up by Layer 1 as soon as it detects a low-level event. 

In this case, a high-level image processing is required and a 

specialized hardware is needed.  

The power consumption of Layer 2 is much larger than one of 

Layer 1. This is the reason why Layer 2 is switched on only 

upon request. Its duty-cycle might range between 3% and 5% 

or even less in surveillance applications; 

Layer 3 - Communication: data are sent to an external device. 

Wireless communication is one of the most power hungry 

activities of the system, requiring tens to hundreds of mW. 

Therefore, its use has to be minimized (reducing data 

bandwidth and duty-cycle). One strategy to overcome this 

problem is to send only symbolic information, instead of 

images. This information will be broadcasted only after the 

event has been properly analyzed and recognized as an alert.  

This means that some image processing has to be accomplished 

locally instead of demanding all the computation to a remote 

server.  

III. THE HARDWARE-ORIENTED EVENT DETECTION ALGORITHM 

The event detection is performed by the proprietary algorithm 

[4] that processes any input image in search of pixels whose 

intensity varies during time. These pixels, that are named hot, 

are computed by means of a self-regulating background 

subtraction technique and they possibly represent the events to 

be detected. The term “self-regulating” indicates that the 

intensity variation at each pixel is determined by the 

comparison of the pixel intensity signal with thresholds that are 

specific for that pixels and that are dynamically updated based 

on the pixel intensity at each frame. 

Background subtraction is a very popular technique to detect 

event and it has been employed in several applicative scenarios, 

e.g. video-surveillance, life-assisted living, traffic monitoring 

[5] [6] [7] [8] [9] [10]. 

The algorithm [4] has been already employed in energy 

efficient systems [11], e.g. and it can be adapted to be low-

power and CMOS compliant. 
The final, hardware-oriented event detection algorithm 

workflow is sketched in Fig. 2 and consists of four main steps: 
(1) hot pixel computation; (2) noise removal; (3) x- and y- 
projections of the hot pixels and their binarization; (4) alert 
generation. 

 

A. Hot Pixel Computation  

The algorithm processes all the frames of any input video 
stream. Each frame is acquired as a gray level image with 
QVGA resolution, i.e. the size is 320 x 240 pixels. The frame is 
down-sampled to QQVGA format, i.e. the size of the down-
sampled image is 160 x 120. The hot pixel detection is carried 
out on the down-sampled frame, in order to speed up the 
execution time and save energy.  

The hot pixels are computed as follows. Let 𝑉𝑖 be the 𝑖th 
frame after down-sampling. For each pixel 𝑥 of 𝑉𝑖, the algorithm 
compares the intensity level 𝑉𝑖(𝑥) with two thresholds 𝑉𝑖

𝑚(𝑥) 

and 𝑉𝑖
𝑀(𝑥), that - as suggested by the notation - are specific for 

each frame and for each pixel 𝑥. Thus, the hot-pixel detection is 
based on a self-regulating thresholding strategy. If 𝑉𝑖(𝑥) falls 

out of the interval Γ  = [𝑉𝑖
𝑚(𝑥) − Δ𝐻𝑂𝑇 , 𝑉𝑖

𝑀(𝑥), + Δ𝐻𝑂𝑇], then 
𝑥 is labeled as a hot pixel, i.e. it may correspond to an event of 
interest. Otherwise, it is said to be a cold pixel. 

The parameter Δ𝐻𝑂𝑇  is an integer number and it is an user 

input. The thresholds 𝑉𝑖
𝑚(𝑥) and 𝑉𝑖

𝑀(𝑥) are positive real-valued 

numbers with 𝑉𝑖
𝑀(𝑥) > 𝑉𝑖

𝑚(𝑥) for any pixel 𝑥. At the first frame 
𝑉0 the sensor does not perform any event detection, but uses the 
acquired data to initialize the values of the thresholds 𝑉𝑖

𝑚(𝑥) and  

𝑉𝑖
𝑀(𝑥), precisely: 

𝑉1
𝑚(𝑥) =  𝑉0(𝑥) − Δ𝐻𝑂𝑇   

𝑉1
𝑀(𝑥) =  𝑉0(𝑥) + Δ𝐻𝑂𝑇 .  

 



 

For each frame 𝑉𝑖 with 𝑖 ≥  1, and for each pixel 𝑥, the algorithm 
checks the membership of the intensity level 𝑉𝑖(𝑥) to the interval 

[𝑉𝑖
𝑚(𝑥) − Δ𝐻𝑂𝑇 , 𝑉𝑖

𝑀(𝑥), + Δ𝐻𝑂𝑇] and updates the thresholds as 
follows: 

• Threshold 𝑉𝑖
𝑀: 

1) if  𝑉𝑖
𝑀(𝑥) ≤  𝑉𝑖(𝑥) then  

𝑉𝑖+1
𝑀 (𝑥) = 𝑉𝑖

𝑀(𝑥) + Δ𝑂𝑃𝐸𝑁;                    (1) 

2) if 𝑉𝑖
𝑀(𝑥) >  𝑉𝑖(𝑥) then 

𝑉𝑖+1
𝑀 (𝑥) = 𝑉𝑖

𝑀(𝑥) − Δ𝐶𝐿𝑂𝑆𝐸;                     (2) 

• Threshold 𝑉𝑖
𝑚: 

1) if  𝑉𝑖
𝑚(𝑥) ≥  𝑉𝑖(𝑥) then  

𝑉𝑖+1
𝑚 (𝑥) = 𝑉𝑖

𝑚(𝑥) − Δ𝑂𝑃𝐸𝑁;                        (3) 

2) if 𝑉𝑖
𝑚(𝑥) <  𝑉𝑖(𝑥) then 

𝑉𝑖+1
𝑚 (𝑥) = 𝑉𝑖

𝑚(𝑥) + Δ𝐶𝐿𝑂𝑆𝐸.                    (4) 

The parameters Δ𝑂𝑃𝐸𝑁 and Δ𝐶𝐿𝑂𝑆𝐸  are real-valued numbers, 
input by the user, with the constraint Δ𝑂𝑃𝐸𝑁 > Δ𝐶𝐿𝑂𝑆𝐸 .  
Specifically, Δ𝑂𝑃𝐸𝑁 (Δ𝐶𝐿𝑂𝑆𝐸, resp.) is the increment (decrement, 

resp.) applied to 𝑉𝑖
𝑀(𝑥) (𝑉𝑖

𝑚(𝑥), resp.) when the signal 𝑉𝑖(𝑥) is 
out of the range Γ. The parameter Δ𝐶𝐿𝑂𝑆𝐸  is subtracted (added, 

resp.) to 𝑉𝑖
𝑀(𝑥) (𝑉𝑖

𝑚(𝑥), resp.) when 𝑉𝑖(𝑥)  is inside Γ. 

Fig. 3 shows an example of a pixel changing its intensity 
over 16 frames. At 2nd frame, 𝑉𝑝𝑖𝑥 ∶=  𝑉2(𝑥) increases abruptly 

above 𝑉𝑚𝑎𝑥 ∶=  𝑉1
𝑀(𝑥), in particular 𝑉𝑝𝑖𝑥 − 𝑉𝑚𝑎𝑥 = 𝑑2 > 0. 

Consequently, 𝑉𝑚𝑎𝑥 is increased by Δ𝑂𝑃𝐸𝑁  at every new frame 
until 𝑉𝑝𝑖𝑥 returns back inside the gray region. Moreover, since 

between 2nd frame and 4th the distance |𝑉𝑝𝑖𝑥 − 𝑉𝑚𝑎𝑥 | exceeds 

Δ𝐻𝑂𝑇 , 𝑥 is labeled as a hot-pixel. A complementary situation 
occurs during frames 13 and 14, where an hot-pixel occurs 
versus 𝑉13

𝑚. We observe that, in a steady state condition, the two 

thresholds 𝑉𝑚 and 𝑉𝑀 periodically switch between the 

conditions described by the Equations (1),(3) and (2),(4), 
without exceeding Δ𝐻𝑂𝑇 .This period depends on the values of 
Δ𝑂𝑃𝐸𝑁 and Δ𝐶𝐿𝑂𝑆𝐸 , that usually are chosen upon the applicative 
scenario. In the example discussed here, Δ𝑂𝑃𝐸𝑁 = 6LSB, while 
Δ𝐶𝐿𝑂𝑆𝐸  = 1LSB, so that the periodicity is 7 frames. Setting up 
the optimal values of the algorithm parameters definitely 
depends on the task and on the general scene characteristics. In 
particular, under low-light conditions, the pixels usually do not 
undergo large variations, thus Δ𝑂𝑃𝐸𝑁 and Δ𝐶𝐿𝑂𝑆𝐸  should be kept 
small. If the scene continuously varies, i.e. it is highly dynamic, 
the values of Δ𝑂𝑃𝐸𝑁 and Δ𝐶𝐿𝑂𝑆𝐸  should be kept large, in order to 
reduce persistency effect (i.e. a pixel remains hot for long time). 
Finally, the smaller the value of Δ𝐻𝑂𝑇 , the higher the sensitivity 
to intensity variation is.  

Fig. 4 shows the algorithm behaviour under a periodic optical 
stimulus. Here, the role of the thresholds Δ𝑂𝑃𝐸𝑁 and Δ𝐶𝐿𝑂𝑆𝐸  is 
even more evident and consists of inhibiting any signal 
variations according with their time response. Any signal 
variation occurred at a rate much lower or much larger than the 

rate at which the values 𝑉𝑖
𝑚(𝑥) and 𝑉𝑖

𝑀(𝑥) can change, after 
some frames is suppressed. In this case, the signal rate is much 
larger than the time response of 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛. Therefore, after 
a certain number of frames (about 100 in this example) the pixel 
reaches a new steady-state condition. At the higher level, this 
pixel does not contribute to the event detection phase anymore. 
Nevertheless, the fact that the pixel is no more hot does not 
necessary mean that the scene is static. 

The output of this step is a binary QQVGA image, called the hot 
pixel bitmap: the hot pixels are displayed in white color, while 
the rest, i.e. the static background, is depicted in black color. 

 

B. Noise Removal  

Isolated hot pixels often do not correspond to event of 
interest, but they are mainly due to pixel saturation or to noise in 
scene acquisition. Since they are irrelevant, they are filtered by 
a topological procedure.   

Fig. 2: Workflow of the event detection algorithm. 



Experiments showed that in general a standard 
morphological erosion filter may be too much aggressive, thus 
we implemented a slight erosion function, that works as follows. 
Let 𝐻 denote a hot-pixel map; a hot-pixel 𝑥 of 𝐻 is retained if it 
is adjacent to at least b hot-pixels, where the threshold b is an 
integer, positive number, ranging over {0, …, 8}. If b = 0, no 
erosion is performed and thus isolated hot-pixels are retained. If 
b = 8, our erosion function equals to the standard erosion 
morphological operator shrinking a region by one pixel.  

C. X- and Y- Projections and Binarization 

The hot pixels retained after the noise removal step are 
projected along the horizontal (x-) and vertical (y-) axes of the 
image. This operation is implemented for two reasons: (1) to 
perform a further filtering of the data; (2) to decide whenever to 
generate an alarm or not (i.e. weak up the external processor and 
start delivering data and/or advise a surveillance officer).  

 

Fig. 4: Event detection algorithm in the case of a pixel stimulated 

periodically by a light source. The x-axis represents the number of 

frames, while y-axis is the signal amplitude coded into a 8-bit. After 

10 frames of steady-state conditions, 𝑉𝑝𝑖𝑥 (i.e. the light impinging on 

the photodiode) starts oscillating with an amplitude of 80 DN (Digital 

Numbers) and with a period covering 30 frames. The red segments 

identify the frames where hot-pixels conditions occur, either on 

𝑉𝑚𝑎𝑥 = 𝑉𝑀 or 𝑉𝑚𝑖𝑛 = 𝑉𝑚. When hot pixels are detected, 𝑉𝑚𝑎𝑥 (𝑉𝑚𝑖𝑛) 

is increased (decreased) by 𝛥𝑂𝑃𝐸𝑁. In case of cold-pixels, 𝑉𝑚𝑎𝑥 (𝑉𝑚𝑖𝑛) 

is decreased (increased) by 𝛥𝐶𝐿𝑂𝑆𝐸. 

Precisely, the horizontal and vertical projections of any hot-
pixel map 𝐻 are defined as two 1D vectors 𝑝ℎ and 𝑝𝑣 with size 
𝑁𝑐 and 𝑁𝑟 respectively, where 𝑁𝑐 and 𝑁𝑟 indicate the numbers 
of columns and rows of the image 𝐻. The entries of 𝑝ℎ (𝑝ℎ ,  
resp.) range over {0, …, 𝑁𝑟} ({0, …, 𝑁𝑐}, resp.).  

The projections are binarized as follows. Any entry of 𝑝ℎ 
(𝑝ℎ , resp.) with value smaller than 𝑇ℎ (𝑇𝑣, resp.) is cast to 0, 
otherwise it is cast to 1. The thresholds 𝑇ℎ and 𝑇𝑣 (both integer 
numbers, strictly greater than zero) are user parameters that 
define the minimum and maximum linear size of the event to be 
detected. As the other thresholds of the algorithm, the optimal 
values of 𝑇ℎ and 𝑇𝑣 must be fixed according to the applicative 
scenario (e.g. people or car detection) and to the geometric 
constraints of the camera (e.g. its position and focus).  

If  𝑝ℎ and/or 𝑝𝑣 after binarization are identically null, then 
no alarm is generated. Otherwise, an alert is delivered to an 
external processor and/or to a surveillance officer, along with the 
gray level QVGA image, the hot pixel map and the binarized 
projections. 

 

IV. SENSOR ARCHITECTURE 

Fig. 5 shows the block diagram of the sensor architecture. The 

array of pixels has a QVGA format, while the algorithm runs 

on a QQVGA image. The chip consists of 320 Column-level 

Amplifiers; an array of 160, 8bit column-level Processors, for 

parallel-wise row-selected pixel computation; a 10bit SRAM, 

used as frame buffer to store the threshold values 𝑉𝑚(𝑥) and 

𝑉𝑀(𝑥) for each pixel; a Control Register storing the algorithm 

parameters (Δ𝑂𝑃𝐸𝑁 , Δ𝐶𝐿𝑂𝑆𝐸 , Δ𝐻𝑂𝑇 , ), thresholds (𝑇ℎ, 𝑇𝑣) and type 

of erosion filter; a Controller managing the sensor interface.   

 

V. EXPERIMENTS 

In this Section, we report our experiments, aimed at evaluating: 

(1) the interest of LEAs in the presented smart camera; (2) the 

Fig. 3: An example of hot pixel detection. Vpix (in black) is the current photo-generated voltage. Vmax (in red) and Vmin (in blue) are the two 

threshold voltages used to determine the hot pixel condition. 



performance of event detection and of the usability of the visual 

information in forensic context (Subsection A). In addition, an 

estimation of the sensor power consumption is reported in 

Subsection B. 

 

 

 
 

Fig. 5: Block diagram of the low-power vision sensor architecture. 

 

A. Event Detection Performance 

As already specified in the Section I, the proposed vision sensor 

has been developed as a smart tool for supporting the 

surveillance and forensic activities of LEAs. According to this 

scenario, we asked LEAs to participate in the evaluation of our 

technology. 

For this task, we used our sensor simulator, reproducing the 

functionalities of the smart camera, on 30 videos acquired with 

a commercial VGA monochrome camera [7], where people, 

involved in the project, simulated possible crimes. To be as 

much realistic as possible, videos have been captured in 

different places and under different illuminant conditions.  

 

For each video, the Sensor Emulator computed frame-by-frame 

the hot pixel map and the hot pixel binary projections, and 

marked the frames where an alert is generated. Precisely, for 

each benchmark video, the Sensor Emulator produced a new 

video, where: 

• the left part displays the original input video; 

• the right part shows the same video, where, frame-by-

frame, the hot pixels (if any) and a maximum bounding box 

containing them are marked in pink and blue color 

respectively; 

• the bottom banner becomes green as soon an alarm is 

generated. 

 

The output generated by the Sensor Emulator is shown in  

Fig. 6. 

 

The questionnaire consists of six questions: 

• Q1: How much such an alert system may help a 

surveillance officer? 

• Q2: How is the video quality, i.e. how evident are the 

details and the actions depicted in? 

• Q3: How accurate is the alert generation indicated by the 

green banner? 

• Q4: In the frames marked by the Sensor Emulator, how 

accurate is the bounding box delimiting the region of 

interest, i.e. the hot-pixels? 

• Q5: In some cases, during an action depicted in the video, 

some frames are “missed”, i.e. no hot-pixels are detected 

in, so that the green banner is blinking. How much this 

could adversely affect the intervention of the surveillance 

officers? 

• Q6: Do you think that the video sequence with the event 

marked by the Sensor Emulator could provide good 

evidence of a possible crime? 

 

Q1 aims at measuring the interest of LEAs in such a system as 

a tool for supporting and facilitating their activities. Q2 aims at 

measuring the quality of the visual information provided by the 

QVGA format. Q3 aims at measuring the accuracy of the event 

detection: the participants have been requested to pay attention 

to possible missed alarms and/or false positives. Q4 aims at 

evaluating how well the sensor extracts the image region 

containing all the events detected in the image: this operation 

could help the surveillance officers to focus their attention on a 

specific part of the image. Q5 raised up by the analysis of the 

sensor behaviour: in some cases, we observed that, despite the 

sensor generates correctly an alarm when an event occurs, the 

detection of the complete action was interrupted, i.e. 1 or 2 

frames were not highlighted as a part of the event (i.e. no hot-

pixels were detected). Therefore, we asked LEAs to judge the 

scene understanding from the frames saved by the sensor, i.e. 

from the frames were the sensor recognized an event. Q6 aims 

at evaluating the information provided by the sensor as 

evidences of a crime to be presented in a court. 

 

 
 

Fig. 6: An example of a video output by the Sensor Emulator and used 

for evaluating the sensor performance. On left: a frame of the input 

video. On right: the same frame with hot pixels (in pink) and their 

maximum bounding box (in blue). On bottom: the banner is green, 

indicating that an event has been detected. 

 

The questionnaire has been filled in by 15 surveillance officers 

of the Local Policia of Valencia (Spain) and of the Policia 



Judiciaria of Lisbona (Portugal). The participants were asked to 

give a vote from 1 (unsatisfactory) to 10 (very good) to Q1, Q2, 

Q3, Q4 and Q6, while a vote from 1 (no matter) to 10 (bad, 

useless evidence) to Q5.  

 

The results are summarized by the plot in Fig. 7 that reports the 

average votes given by the participants. These results show a 

high interest of LEAs in such a sensor and a high satisfaction 

about its event detection performance.  

 

 

B. Power Consumption 

As shown in TABLE 1, the sensor power consumption has been 

estimated for a frame rate of 15 fps, 3.3V for the analog part 

and 1.2V for digital core and IOs. Three operating modes are 

considered for different duty cycles:  

• no event (NE). The sensor does not deliver any 

information off-chip; 

• event detected (EB). The sensor delivers the hot-pixel 

bitmap to the processor; 

• event detected (EBG). The sensor delivers both hot-pixel 

bitmap together with the grey-level image to the processor. 

It is worth to notice that the duty-cycle associated to each 

functional block depends on the specific application.  

 

 
Fig. 7 Summary of the results from the questionnaire evaluating the 

event detection performance. The votes reported here are averaged 

over the number of participants to the questionnaire. 

 

The minimum power consumption of the sensor is in Mode 1, 

when no event is detected, thus no data are delivered by the 

camera. The power consumption starts increasing as soon as the 

sensor starts communicating with the processor, dispatching 

only the hot-pixel bitmap (Mode 2) or the entire grayscale 

image (Mode 3). However, if we consider that in a typical 

application the duty cycle for Mode 2 might be 3% while that 

one of Mode 5 is 2%; under these assumptions the estimated 

average power consumption of the sensor will be about 860W. 

This means that, in a typical surveillance application, powered 

with 2 AA-1.5V batteries (2850 mAh), the presented smart 

camera can operate for about 11 months. In this estimation, we 

didn't take into account the power consumption of the system, 

which will be relevant according with the number of detected 

alerts in the operating period.   

 

VI. CONCLUSIONS 

In this work, we described the basic architecture of a low power 

smart camera for battery-powered long-lasting operation, which 

is tailored to event detection as a potential tool for crime 

fighting. The sensor can be used to monitor remote areas, with 

infrastructures, that might be chosen for illegal activities (e.g. 

traffic of weapons, cigarettes, drugs). The simulated event 

detection performance of the camera have been evaluated by a 

group of LEAs employers, that judged the accuracy of event 

detection and the usability of the visual information provided 

by the camera as crime evidences in a court. The LEAs 

responses denoted a high interest in such a camera and a high 

satisfaction for its performance.  

The first version of the presented vision sensor, with reduced 

functionalities, is going to be tested in real application 

scenarios. The final camera will be embedded into a wireless 

node to be part of a network of vision systems capable of  

covering large areas to be monitored.  

 

TABLE 1: Chip Estimated Power Consumption at 15fps 

Chip Block Mode 1 

No Event 

Mode 2 

Hot Pixels 

Mode 3 

Gray Level 

Pixel 

Amplifiers 

DAC 

Processor 

Array 

IO Pads 

645 W 

 

93.5 W 

112 W 

 

0 

645 W 

 

93.5 W 

112 W 

 

12W 

1290W 

 

93.5W 

112W 

 

96W 

TOTAL 850.5 W 862.5W 1591.5W 

Duty Cycle 1 0.1 0.01 
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