
Incorporation of Semantic Segmentation Information
in Deep Hashing Techniques for Image Retrieval

Konstantinos Gkountakos, Theodoros Semertzidis, Georgios Th. Papadopoulos, Member, IEEE, and
Petros Daras, Senior Member, IEEE

Information Technologies Institute, Centre for Research and Technology Hellas, Greece

Email: {gountakos,theosem,papad,daras}@iti.gr

Abstract—Extracting discriminative image features for similar-
ity search in nowadays large-scale databases becomes an impera-
tive issue of paramount importance. To address the so called task
of Approximate Nearest Neighbor (ANN) search in large visual
dataset, deep hashing methods (i.e. approaches that make use
of the recent deep learning paradigm in computer vision) have
recently been introduced. In this paper, a novel approach to deep
hashing is proposed, which incorporates local-level information,
in the form of image semantic segmentation masks, during
the hash code learning step. The proposed framework makes
use of pixel-level classification labels, i.e. following a point-wise
supervised learning methodology. Experimental evaluation in the
significantly challenging domain of on-line terrorist propaganda
video analysis, i.e. a highly diverse and heterogeneous application
case, demonstrates the efficiency of the proposed approach.

Keywords—deep hashing; binary codes; deep learning; segmen-
tation mask; training; neural networks

I. INTRODUCTION

The tremendous increase that has been observed in the

recent years in the amount of the visual content that is

generated and stored on a daily basis has rendered the need for

search in the corresponding databases a big challenge. Hash-

ing methods constitute the dominating approach for efficient

image retrieval in terms of accuracy and computation time.

Hashing methods have very low memory requirements and

fast response compared to other approaches [1]. The merits

of hashing methods come from the efficient mapping of high

dimensional feature vectors to corresponding significantly low-

dimensional binary codes, which are subsequently used for

time-efficient image retrieval [2]. These mappings are also

known as hash functions and the generated binary vectors are

typically found as hash codes.

Numerous hashing methods have been proposed so far and

can generally be divided in two main categories, namely

data-independent and data-dependent methods [2], [3]. Data-

independent approaches are not using a training dataset sam-

pled from the target data and thus apply generic approaches

to learn or randomly select a mapping of the high dimen-

sional input feature vector to a lower dimensional one. Next,

a quantization step follows to result in a compact binary

vector that encodes the original vector [4], [5]. Representative

method of this category is the Locality Sensitive Hashing

(LSH) method [6] and its variants [2], which are selecting

projection matrices to lower-dimensional spaces and thresh-

old the vectors to binary codes. On the other side, data-

dependent methods aim at learning hash functions from the

target dataset to generate more efficient mappings of the input

data to the new hamming space [7]. The methods of the data-

dependent category can be further divided into supervised and

unsupervised ones [2]. The unsupervised approaches aim at

learning feature representations based only on the statistics

of the target data e.g. the variance of each dimension or

its cardinality [8]. Additionally to the statistics of the high-

dimensional vectors data, the supervised approaches take also

into account the labels of the training data, so that the

semantics of the data are also incorporated in the learned

hash functions. The advantage of using labeled data to guide

the learning process leads supervised methods to generate

hash codes that represent better the original data with fewer

bits (i.e. smaller hash code length), compared to the ones

attained by unsupervised techniques. Small hash code length

is desirable for building efficient image retrieval frameworks,

with respect to the required computational resources [9], [5].

Representative data-depended methods are Spectral Hashing

(SH) [10], Binary Reconstructive Embedding (BRE) [11] and

Iterative Quantization (ITQ) [12].

The above-mentioned hashing methods make use of tradi-

tional hand-crafted visual descriptors, such as GIST [13] or

HOG [14]. However, these hand-engineered descriptors (and

consequently the corresponding hash codes) do not efficiently

model the original images and their semantics and thus fail to

provide a retrieval mechanism of high accuracy. Fortunately,

the break-through of Deep Learning (DL) techniques in the

computer vision community affected also the binary hashing

methodologies, by replacing the hand-crafted descriptors with

learnable features extracted directly from deep neural net-

works, typically Convolutional Neural Networks (CNNs). The

corresponding methods that learn end to end representations

from the image to feature vectors and finally hash codes are

termed deep hashing [3], [5], [15]. Although multiple deep

hashing approaches have recently been proposed [16], [1],

[4], [2], [3], [5], [9], [15], all presented methods make use

of image-level features, i.e. they do not directly incorporate

locality and semantic information of the individual objects

that are present in an image. Performing the latter would

inevitably lead to the generation of more expressive and robust

hash codes that would combine image-level information with

978-1-5386-0774-9/17/$31.00 ©2017 IEEE 632



discriminative object-level information cues.

In this paper, a novel approach to deep hashing for image

retrieval is proposed, which takes into account object locality

information as well as cues from semantic segmentation of

the image objects, during the hash functions learning pro-

cedure. In particular, the fundamental consideration of the

proposed approach is, apart from global-level features, to

incorporate object-level information, so that the estimated

hash codes encode better the images’ content. In the current

work, deep semantic image segmentation techniques are used

for providing local-level cues and object classification. More

specifically, the proposed approach is essentially composed

of two consecutive steps. In the first step, a particular sub-

network is integrated to the overall deep architecture for esti-

mating semantic segmentation maps of the input images. Then,

in the second step, the network learns discriminative hash

codes that incorporate both global and local level information.

Experimental results from the application of the proposed

approach in the domain of on-line terrorist video content

demonstrate the merits of incorporating semantic segmentation

information in deep hashing schemes.

The remaining of the paper is organized as follows: related

work is discussed in Section 2. The proposed deep semantic

hashing approach is detailed in Section 3. Experimental results

are presented in Section 4 and Section 5 concludes the paper.

II. RELATED WORK

This section discusses the state-of-art in hashing techniques,

including both supervised and unsupervised learning schemes,

while also investigating both hand-crafted and deep methods.

Hashing methods can generally be divided into two main

categories, namely supervised and unsupervised ones. Unsu-

pervised hashing methods make use of raw features extracted

directly from the image, i.e. without exploiting semantic

information [5]. For instance, Iterative Quantization (ITQ)

aims at preserving the locality structure of the projected

data that have been processed using Principal Component

Analysis (PCA), by performing rotation so as to minimize

the discretization error [12]. Additionally, Isotropic Hashing

(IsoHash) learns projection functions, which can produce

dimensions with isotropic variance [17]. Spectral Hashing

(SH) initially applies PCA on the original data, then calculates

the analytical Laplacian eigenfunctions along the principal

directions and eventually hash codes are generated based on

the projections of these eigenfunctions [10].

Supervised methods make use of semantic information dur-

ing the hash function learning step. Supervised information can

be considered in three different forms, namely as point-wise,

pair-wise and ranking labels [16]. When point-wise supervised

information is used, the model simultaneously handles both the

problems of hash functions and image classification learning.

The method of [18], which learns the hash functions and

the classification layer at the same time, is representative

of the aforementioned category. More specifically, a latent

layer, placed before the classification layer, learns both image

features and the corresponding hash code in an end-to-end

fashion. Methods that make use of pair-wise supervised infor-

mation generally require pairs of similar or dissimilar images

for learning hash codes. The similarity or not of image pairs

is assessed on the basis of the estimated classification label of

each image. For example, Deep Pairwise-Supervised Hashing

(DPSH) [16] learns hash codes in a pairwise manner within

an end-to-end framework [16]. A similar approach that utilizes

pair-wise information for learning hash functions in two steps

is Convolutional Neural Network Hashing (CNNH) [7]. The

latter method learns hash codes using supervised information

in the first step and then, in a second step, estimates simulta-

neously both hash functions and image feature representations

using supervised information originating from the computed

hash codes (stage one) and the estimated image classification

labels. Moreover, methods that make use of supervised infor-

mation in the form of ranking labels typically generate triplets

of images based on their estimated classification labels [9],[5],

where one image constitutes the query and the remaining two

are similar/dissimilar to the query one.

As in all cases of supervised learning, the use of supervised

information is advantageous in learning hash functions, with

the cost of depending on labeled data that are not always

available. Additionally, the recent trend of simultaneously

learning both hash functions and classification labels (deep

hashing methods) has also resulted into significantly improved

retrieval results. However, to the best of our knowledge, incor-

porating object-level information in deep hashing schemes has

not been investigated so far, while it is very likely to further

reinforce the expressiveness and the discriminative power of

the estimated hash codes.

III. PROPOSED METHOD

In this section, the deep hashing approach using point-

wise labels is initially outlined and subsequently the proposed

framework is detailed.

A. Point-wise Deep Hashing

Let X = {x1, xi, ..., xN} ε R
d×N be the set of training

images. Deep hashing methods aim at learning a set of L
hash functions that estimate the desired binary hash codes.

Given an image x and it’s classification label the network

learns the corresponding class which the image x belongs. An

individual hash code bi, which is a L-length binary vector,

is computed for each input image xi. L is the number of

hash functions that export the L-length binary vector b for

each x image. The ultimate goal is to learn hash functions

that will extract low-dimensional and discriminant bi vectors.

For achieving this, the target during the training phase is

to produce hash codes that are as close as possible in the

hamming space for images of the same class and as far as

possible for images belonging to different semantic classes.

Vectors bi are computed by applying a binarization step to

the real-valued output of the corresponding hash functions.

The binarization step is typically implemented using the sign

function, which maps all input real values to the two discrete

ones {−1, 1}, according to the following equation:

633



Fig. 1. Graphical representation of the proposed framework.

634



sgn (ψ) =

{−1 , if ψ < 0
1 , if ψ � 0

(1)

B. Proposed Framework

In this sub-section, the proposed framework for incor-

porating object-level (semantic segmentation) information in

deep hashing schemes for image retrieval is detailed. The

fundamental idea of using local-level information for increas-

ing the discriminative power of the generated hash codes

can be applied so as to extend any already proposed deep

hashing method. Nevertheless, since a particular scheme needs

to be used for experimental evaluation, the method of [18]

is selected in this work, due to its relative implementation

simplicity that is, however, coupled with increased retrieval

performance. The proposed deep hashing framework com-

prises four distinct parts and it is graphically illustrated in

Fig. 1.

The first part of the proposed framework comprises of a

Neural Network pre-trained on the ImageNet dataset [19].

In the current wok, this base network is the VGG with

configuration ’C’ [20], which consists of a total of 16 layers.

The primary goal of this work, as already discussed, is not

to focus on particular base network architectures, but it is

on directly incorporating semantic information regarding the

objects present in the image. To this end, different well-known

base network architectures, such as ResNet [21] or VGG with

different configurations, can also be utilized.

The second part of the framework is responsible for in-

tegrating semantic segmentation information. In the current

implementation, the well-known Pyramid Scene Parsing (PSP)

network [22] is incorporated for that purpose. In particular,

the PSP architecture receives as input the feature map of the

semifinal VGG convolution layer. Then, average pooling layers

of different size are applied to the feature map. Subsequently,

convolution layers with kernel size 1 × 1 are used, followed

by respective up-sampling layers. Eventually, the generated

features are stacked with the original ones, as can be seen

in Fig. 1. Information for supervised training of this part of

the network is given in the form of an image segmentation

mask. More specifically, the PSP module receives as input a

feature map of size 28×28×512. Then, four average pooling

layers with bin size 28×28, 14×14, 9×9 and 7×7 are again

applied. Each pooling layer is followed by a convolution layer

with kernel size 1× 1 and outputs N/4 features, where N is

the number of features in the input feature map. Sequential

application of batch normalization, ReLU (Rectified Linear

Unit) activation and up-sampling layers over each pooling

stream enables the reconstruction of the input feature map.

The original feature map and the four reconstructed ones

are stacked. Subsequent activation of convolutional, non-linear

and up-sampling layers lead to the restoration of the original

(ground truth) image segmentation mask dimensions. In the

current implementation, the spatial dimension of the PSP

module input is equal to 28× 28.

In the hash code learning phase (third part in Fig. 1), the

TABLE I
SUPPORTED LOCAL AND GLOBAL SEMANTIC CONCEPTS

Global Local

Battlefield Barrel
City Scape Book
Crowd Building
Desert Electrical Device
Graphics Fire
Indoors Furniture
Interview Gun/Rifle
Monuments Logo
Mountain Person
Terrorist Campus Prisoner

Sign
Sky
Smoke
Truck
Vegetation

network learns the hash codes and the classification labels

simultaneously. For achieving this, the softmax layer of the

PSP module is removed and four new fully-connected layers

are added; the first two comprise 4096 nodes, the next one

48 (for extracting the hash codes) and the last one is a

softmax layer (which has as many nodes as the number of

supported semantic classes). ReLU layers have been added

after each fully-connected one, except from the hash layer (48
nodes) which is followed by a sigmoid activation function. The

sigmoid layer outputs are in the range [0, 1], which facilitates

the extraction of the binary hash codes.

The final part of the framework is responsible for the task

of retrieving relevant images. Having trained the network

architecture that corresponds to the first three framework parts,

a binary hash code can be generated for each query image

and can be used here for retrieval purposes. In particular, as

an input image xi passes through the developed network, the

latent layer in the third part outputs a vector ri of real numbers

in the range [0, 1]. For generating the respective binary hash

code Hi, the following operator is used:

Hi = sgn (ri − 0.5) , Hi ε {−1, 1} (2)

Passing all the images of the employed training set through

the developed framework generates results in the generation

of a table of hash codes. During the retrieval step, the

estimated hash code of the query image is compared with

the aforementioned hash code table entries using hamming

distance and the top-K most similar images are returned.

IV. EXPERIMENTAL RESULTS

A. Employed Datasets

The proposed framework is generic and can be directly

introduced to any relevant deep hashing application case.

However, in order to demonstrate its efficiency, particular

datasets need to be employed for training and evaluation.

In order to train the semantic segmentation architecture

(second part of the framework), the PASCAL-VOC2012 [23]

dataset is used. This dataset contains approximately 2, 912
images with pixel-level ground truth annotation and supports

635



20 semantic classes. It was selected on the basis that the

defined semantic classes correspond to commonly met real-

world object categories, such as person, car, TV/monitor, etc.

For learning the hash code functions (third part of the

framework), the CIFAR-10 [24] dataset is used. This dataset

consists of approximately 60, 000 images. The training set

(50, 000 images) was used for modeling the hash functions

and 1, 000 (100 for each supported class) images (out of the

10, 000 instances of the test set) were used for cross-validation

purposes.

The overall proposed framework is evaluated in the highly

challenging domain of on-line terrorist propaganda video anal-

ysis, i.e. a highly diverse and heterogeneous application do-

main. For that purpose, a large-scale real-world video dataset

has been collected from on-line sources, where keywords or

phrases commonly met in propagandistic videos have been

used for identifying the relevant video content. The collected

dataset consists of several hundreds of hours of video material.

For processing the formed dataset and enabling search/retrieval

operations, a set of approximately 27, 000 key-frames was

formed, which were uniformly selected. For the experimental

evaluation, two set of concepts, namely global- and local-

level ones, were defined. In particular, 10 global and 15
local concepts were considered, as can be seen in Table I.

The global concepts are used for describing the whole image

(e.g. ’Battlefield’, ’City Scape’, etc.), while the local ones

correspond to the different object types depicted in local

regions of the image (e.g., ’Barrel’, ’Book’, etc.). Indicative

key-frames of the formed dataset are given in Fig. 2.

B. Implementation Details

For training the part of the proposed framework that corre-

sponds to the semantic segmentation step (second part in Fig.

1), learning rate equal to 10−3 was initially selected and was

subsequently decreased to 10−4 after 20 epochs. The negative

log-likelihood criterion was used during training, along with

Stochastic Gradient Descent (SGD) for implementing back-

propagation with momentum equal to 0.9. The total number

of epochs was 30 and the defined batch size was set equal

to 32. For hash code learning (third part in Fig. 1), the same

training configuration as above was followed; the difference

being that a batch size equal to 96 being used. All input

images were cropped, using a square window placed at the

center of the image with spatial dimension equal to the smaller

image dimension, and then resized to 224x224 pixels. All

implementation activities were carried out using the Keras [25]

framework and a Nvidia GTX 1070 GPU with 8GB memory.

C. Evaluation Metrics

For evaluation, the metric defined in [18] was used. In

particular, a ranking Mean Average Precision (MAP) value

was calculated for each query image. For the calculations, the

retrieved images that belonged to the same semantic class with

the query image were considered relevant. MAP values were

calculated for the top-10 and top-50 retrieved images.

TABLE II
GLOBAL CONCEPTS RETRIEVAL RESULTS

Concept
Top-10 Top-50

Proposed Baseline Proposed Baseline
Battlefield 50.40% 32.60% 36.60% 31.20%
City Scape 73.48% 54.80% 42.80% 38.38%
Crowd 44.20% 47.00% 37.40% 35.80%
Desert 67.26% 55.60% 55.64% 49.60%
Graphics 54.80% 30.20% 30.00% 28.00%
Indoors 27.60% 30.00% 23.00% 18.00%
Interview 78.60% 60.80% 61.60% 48.00%
Monuments 20.00% 22.60% 21.00% 15.00%
Mountain 58.20% 48.40% 39.00% 40.60%
Terrorist Campus 10.20% 6.20% 11.20% 8.80%

Overall 48.47% 38.82% 35.82% 31.33%

TABLE III
LOCAL CONCEPTS RETRIEVAL RESULTS

Concept
Top-10 Top-50

Proposed Baseline Proposed Baseline
Barrel 36.66% 4.00% 28.30% 3.88%
Book 5.47% 15.61% 8.87% 13.81%
Building 72.29% 82.88% 47.32% 58.27%
Electrical Device 28.41% 26.66% 30.54% 23.66%
Fire 34.24% 45.10% 27.52% 26.00%
Furniture 39.43% 15.00% 33.72% 14.78%
Gun/Rifle 43.58% 11.19% 42.02% 11.67%
Logo 35.56% 28.19% 25.37% 20.37%
Person 89.71% 75.75% 78.43% 73.27%
Prisoner 44.50% 41.16% 39.27% 22.74%
Sign 56.33% 39.60% 42.62% 19.68%
Sky 92.62% 85.74% 84.09% 73.49%
Smoke 61.19% 55.20% 22.98% 37.29%
Truck 42.93% 42.66% 32.10% 37.81%
Vegetation 48.10% 55.73% 39.19% 42.50%
Overall 48.73% 41.63% 38.82% 31.92%

D. Evaluation Results

The proposed framework was evaluated using the global

and local semantic concepts defined in Table I. Tables II and

III illustrate the obtained retrieval results for each semantic

concept, while the performance of the baseline method of

[18] (which does not make use of semantic segmentation

information for estimating the image hash codes) is also given.

Additionally, an average MAP value over all defined concepts

(which are equally represented in the conducted retrieval

experiments) is also estimated.

Global Concepts: From the results presented in Table II,

it can be seen that the proposed framework outperforms the

baseline model by approximately 9.65% and 4.49% for the

top-10 and top-50 cases, respectively. From a detailed exami-

nation of the estimated results, it can be seen that for certain

concepts (such as ”Battlefield”, ”City Scape”, ”Crowd” and

”Interview’) where local concepts have an increased role (e.g.

clearly visible human figures) the proposed method achieves

to introduce significant performance gains, compared to the

baseline method. This suggests that incorporating local-level

information (semantic segmentation) in the hash code learning

process can significantly boost the retrieval performance of

global concepts. Additionally, it can be seen that this improve-

636



Fig. 2. Indicative key-frames of the formed dataset.

ment in performance is greater for the more challenging top-10
retrieval case.

Local Concepts: Table III illustrates the top-10 and top-50
retrieval results obtained by the application of the proposed

framework. From the provided results, it can be seen that

the proposed framework outperforms the baseline approach

by approximately 7.10% and 6.90% for the top-10 and top-

50 image retrieval cases, respectively. More specifically, for

particular local concepts (such as ”Furniture”, ”Person” and

”Prisoner”), which exhibit well-defined appearance partners,

the proposed framework introduces a significant performance

increase over the baseline approach. The above observations

suggest that incorporating local-level information, regarding

the objects that are present in the image, during the hash

code learning phase is advantageous also for the cases of local

concepts. It needs to be mentioned that there is no significant

difference in the performance improvement over the baseline

for the cases of top-10 and top-50 evaluation for the local con-

cepts, as opposed to the case of global concepts. Additionally,

it can also be observed that the proposed framework performs

on average better for the cases of local concepts.

V. CONCLUSION

In this paper, a novel deep hashing architecture for con-

structing binary hash codes that incorporate local-level in-

formation in the form of semantic segmentation masks was

proposed. The introduced framework was evaluated in the

challenging domain of on-line terrorist propaganda video

analysis and exhibited significant image retrieval performance

gains over a corresponding baseline method that makes use of

only whole image information for estimating hash codes. The

experimental evaluation showed that the introduced framework

is advantageous both for global and local concepts. Future

work includes the investigation of alternative ways for incor-

porating local-level information in deep hashing schemes.

VI. ACKNOWLEDGMENT

The work presented in this paper was supported by the

European Commission under contract H2020-700367 DANTE.

REFERENCES

[1] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang.
Bit-scalable deep hashing with regularized similarity learning for image
retrieval and person re-identification. IEEE Transactions on Image
Processing, 24(12):4766–4779, 2015.

[2] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou.
Deep hashing for compact binary codes learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2475–2483, 2015.

[3] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep
semantic ranking based hashing for multi-label image retrieval. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1556–1564, 2015.

637



[4] Guoqiang Zhong, Hui Xu, Pan Yang, Sijiang Wang, and Junyu Dong.
Deep hashing learning networks. In Neural Networks (IJCNN), 2016
International Joint Conference on, pages 2236–2243. IEEE, 2016.

[5] Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised hashing
with triplet labels. arXiv preprint arXiv:1612.03900, 2016.

[6] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search
in high dimensions via hashing. In VLDB, volume 99, pages 518–529,
1999.

[7] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan.
Supervised hashing for image retrieval via image representation learning.
In AAAI, volume 1, page 2, 2014.

[8] Theodoros Semertzidis, Dimitrios Rafailidis, Michael Gerassimos
Strintzis, and Petros Daras. The influence of image descriptors dimen-
sions value cardinalities on large-scale similarity search. International
Journal of Multimedia Information Retrieval, 4(3):187–204, 2015.

[9] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous
feature learning and hash coding with deep neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3270–3278, 2015.

[10] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In
Advances in neural information processing systems, pages 1753–1760,
2009.

[11] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstruc-
tive embeddings. In Advances in neural information processing systems,
pages 1042–1050, 2009.

[12] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin.
Iterative quantization: A procrustean approach to learning binary codes
for large-scale image retrieval. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(12):2916–2929, 2013.

[13] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International journal of
computer vision, 42(3):145–175, 2001.

[14] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages

886–893. IEEE, 2005.
[15] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep

supervised hashing for fast image retrieval. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2064–
2072, 2016.

[16] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning
based deep supervised hashing with pairwise labels. arXiv preprint
arXiv:1511.03855, 2015.

[17] Weihao Kong and Wu-Jun Li. Isotropic hashing. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2012.

[18] Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and Chu-Song Chen. Deep
learning of binary hash codes for fast image retrieval. In Proceedings
of the IEEE conference on computer vision and pattern recognition
workshops, pages 27–35, 2015.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[20] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016.

[22] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya
Jia. Pyramid scene parsing network. arXiv preprint arXiv:1612.01105,
2016.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[24] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

[25] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

638



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


