
©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

AtomServ Architecture:
Towards Internet-scaled Service Publish, Subscription, and Discovery

Chen Wu, Elizabeth Chang
Center for Digital Ecosystem and Business Intelligence
Curtin University of Technology, Perth 6845, Australia

{Chen.Wu, Elizabeth.Chang}@cbs.curtin.edu.au

Abstract

With the surge of SOA-based infrastructure and

applications, increasingly end users and small-
medium-enterprises directly participate in the service
publish and discovery across the Internet. The recent
shutdown of public UDDI exposes critical problems of
existing Internet-based service discovery. Hence,
public service discovery becomes a central SOA issue.
In this paper, we present a light weight service
discovery architecture built upon widely-adopted
WWW technologies and proven software architectural
styles. Firstly, it provides a handy discovery facility for
personal web services providers and consumers, who
would not be expected to able to use complex UDDI
specifications with dedicated endpoint computing
capability. Secondly, it widens the adoption of service
discovery by allowing simple and uniform web user
interfaces (e.g. Internet Explorer7.0 and Firefox1.1) to
subscribe and access frequently changing business
services. This undoubtedly lowers the entry barrier for
end users to play the role of service providers or
consumers in a sheer Service-Oriented Environment
across the Internet.

1. Introduction

Service discovery is a key aspect in the SOA
research community. As an essential SOA activity, it
paves the way for conducting service binding, sharing,
reusing, and composing in a dynamically changing
business environment. With the increasing number of
service providers, service discovery is even more
crucial for those small-and-medium enterprises as an
ephemeral business opportunities could be the most
significant factor leading to their ultimate successes.
Moreover, with the enhanced personal computing
capability (e.g. wireless device), a myriad of online
personal service providers and consumers are
overwhelmingly playing their important parts in the

SOA practice. As a result, service discovery has
become a central issue for this large population of
service ‘players’ that are distributed across the Internet.

In contrast, the primary service discovery
mechanism – the UDDI registry – has shut down
permanently since January 12, 2006 [1]. However, this
does not imply that some form of ‘public’ service
registry is not necessary. It reflects that existing public
service discovery supported by the UDDI registry has
some issues [2, 3] that cause its suspension. One of the
reasons suggests that the public registry UDDI is “too
complex” for the end users, since the specification is
more driven by its primary members than the feedback
from the real world end users. This hinders its
ubiquitous adoption among Internet communities.

In this paper, we provide a light weight service
discovery architecture – AtomServ. It is built upon
widely-adopted WWW technologies and proven
software architectural styles. We introduce Atom-
based service feeds to realize the publish/subscribe
service discovery paradigm. Therefore, the practice of
publish/subscribe interaction style is extended from
RPC-based LAN to the HTTP-based Internet. As a
result, existing web browsers, news aggregators, and
feed readers can easily access and discover web
services metadata. This without doubt improves the
service advertisement capability given the prevailing
use of RSS/Atom feeds and weblogs. Furthermore, the
REST architectural style is firmly entrenched in the
AtomServ design so that established web architectural
principles ensure the feasibility when deploying the
AtomServ architecture in an Internet scale.

The rest of this paper is structured as follows.
Section 2 briefly reviews the related work in Atom-
based web services research. Section 3 elaborates three
types of architectural elements. This is followed by
three corresponding architectural views provided in
Section 4. Three architectural styles are then
summarized in Section 5. Section 6 introduces

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

implementation work. The paper concludes in Section
7, which identifies future research directions.

2. Related work

Atom[4] (or RSS[5]) is an XML-based file format
that allows lists of information, known as “feeds”, to
be synchronized between publishers and consumers.
The current use case of Atom is to “syndicate” web
content such as weblogs and news headlines to other
web sites and end consumers. However, nothing
prevents it from being used for other types of content
such as web services metadata. This is one of the main
motivations for our research. Nevertheless, utilizing
Atom/RSS to facilitate SOA service discovery and
interaction still lies in its infancy. To our best
knowledge, [6] is the only existing work that explicitly
integrate Atom feeds in service description. The author
introduces and demonstrates a combined use of the
Atom 1.0 and WS-Addressing 1.0 [7] specifications. It
focuses on generating Atom feeds out of the Web
Services for J2EE (JSR-109) specification file located
in the specific service endpoint – IBM WebSphere
Application Server. A small portion of the Section 3 in
this paper corresponds to the work in [6]. However,
this paper aims to proposes a service discovery
architecture, which applies the publish/subscribe style
through the atom-based service registry that supports
service Atom feeds publish and subscription. From a
broader integration perspective, the work in [8] defines
the specification to enable loosely-cooperating
applications to use RSS2.0[5] as the basis for bi-
directional, asynchronous information sharing and
communication. Although it did not give any
implementation in terms of (web) service sharing and
reusing, it does reaffirm the significance of Atom/RSS
in the Internet-scaled computing environment.

3. AtomServ Architectural Elements

At the abstract architectural level, AtomServ
comprises architectural elements that interact with each
other. In this section, we explore each type of these
architectural elements in detail so that special
attentions can be given to the roles of elements and
constraints of interactions among them in Section 4.

3.1. Data Elements

Data elements are xml documents enclosing useful

request and replying message summarized in Table 1.
Table 1. AtomServ Data Elements

Data Elements
Atom Feed and All the service publish and

Entry subscription data.
Topic Space
Specification

Topic specifications and its subset

UDDI data For interaction with UDDI server

3.1.1. Atom Feed and Entry. The key data element in
AtomServ architecture is the atom feed and atom entry.
Atom describes related information organized into lists
termed as “feeds”. An atom feed comprises several
items known as “entries”, each of which encloses a set
of extensible metadata to self-describe the delivered
information. For example, each entry has a title, an
author, and a URI link, etc. While atom feed is
originally used for news aggregation and syndication,
we believe it is an expressive means to attach metadata
for advertising web services and hence for facilitating
the service publish and discovery. In AtomServ, an
atom feed essentially contains the necessary metadata
for a list of web services, each of which corresponds to
an atom entry. In other words, the metadata of a web
service is conceptually mapped to an atom entry, which
is enclosed in an atom feed represented in the form of
an XML document. By doing so, we are thus able to
introduce atom publish and discovery mechanism into
the world of web services. This is shown in Figure 1,
where the arrows represent the mappings between
service topic (see Section 3.1.2) and feed. Each entry
in the feed is mapped to one web service belonging to a
topic that corresponds to that feed. At the client side,
web browser (e.g. Firefox1.0.7, IE7.0 beta) and feed
aggregator are thus able to be notified of any changes
(e.g. new web services are registered under certain
topics) by polling the feed using common HTTP
requests. Although the topics are organized in a
hierarchy structure, it does not mean the feeds have to
maintain such relationships. Thus, feed and topic have
their own separate concerns. They do not need to
interact with each other as long as their mapping is
maintained via a valid URI that produces the
representation of the web services metadata when
being requested.

Figure 1. The mapping between feeds and web services

When narrowing down the atom feeds application
into the specific area of web services discovery and
publication, it is imperative to define the conceptual
binding scheme that helps such a specialization

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

consistent and compatible with the generalized syntax
and semantics. Figure 2 illustrates the structure of the
atom feed and entry, and their semantic binding in the
area the web services publication and discovery.

Figure 2. The Structure of Atom Feed and Entry

3.1.2. Topic Space Specification. A collection of
related topics can be used to characterize and
categorize subscription interests. Similar to the notion
of group, a topic associates with it a number of related
event contents, by which subscribers can subscribe or
reason about notifications of interests. Such a topic-
based notification mechanism is widely used in
publish/subscribe systems [9]. In our research, we use
the service Topic Space Specification (TSS) to store
and specify all the topics, each of which in turn relates
to a list of web services. The format of the
specification is represented in XML document. As
shown in Figure 3, a topic space organizes topics in a
hierarchical structure where each topic has one parent
element (either topic or the ‘root’ of the topic space),
and may have several child topics. A topic corresponds
to one atom feed by enclosing a sub-element named
“feed”. The feed element has an important attribute
“href” identifying a valid URI that can be dereferenced
to retrieve the representation of that Atom feed. In
doing so, we establish the mapping between the service
topic and feed illustrated in Figure 3. The description
element is used to provide subscribers with some
suggestions regarding the subscription options.

For example, we can define a sample specification
presenting service topics in a domain “Online Financial
Services”. The topics are organized in a way that the
two root topics are “Insurance” and “Loans”.

Figure 3. The Schema Diagram of TSS

In addition, the subscriber can use the Xpath

expression to represent the subscription criteria. An
example of topic subscription represented as Xpath is
something like: “/Insurance/CarInsurance/StudentCar” or
“/Loans/MortgageHomeLoans”. Both topics can be
included in the topic space “OnlineFinancialService”.
The reply of the subscription request is actually the
subset of this TSS after calculating the Xpath against
the whole specification document. It is very useful in
replying the service topic subscription. At this stage,
we assume each domain has one topic space and
maintaining topics is out of the discussion of this
paper.

3.2. Connectors

AtomServ consists of a number of architectural
connectors listed as follows. At the protocol level,
these connectors mainly leverage the HTTP to move
data elements.

Service Provider Interface (SP). SP provides an
interface for the SP to publish their service.

Service Requester Interface (SR). SR enables the
SR to subscribe their interested topic, publish their
requests, and organize their subscriptions. Most
importantly, it provides the initial interaction probe for
SR to interact with SP based on their subscribed feed
entries. In addition, it provides the asynchronous
notification to the user agent by employing the smart
polling mechanism.

Service Cache (SC). SC stores the related service
metadata locally in the client side. Although use of a
cache adds some latency to each individual request due
to lookup overhead, the average request latency is
significantly reduced when even a small percentage of
requests result in usable cache hits.

HTTPDispatcher. It receives the HTTP requests
from the SP and SR, and forwards the modified
requests to server components described in Section 3.3.

Atom Filter. All the filters share the same interface
and form a chain to incrementally process the data.

Atom Cache. The atom cache keeps recent (most
frequently-used) feeds in the memory to enhance the
performance.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Admin. The Admin interface is used to maintain
the AtomServ, i.e. to manage the topic tree, to
configure the matchmaker, etc.

Topic Filter. The topic filter is used when topic
retrieve requests are made to get the recent topic
schema.

UDDI Client. It connects the UDDI server and
performs the fundamental operations on UDDI.

3.3. Components

AtomServ contains a number of important
architectural components – Atom Server, Topic Server,
Matching engine, and the UDDI server.

Atom Server. This component mainly deals with
the access and management of Atom files.

Topic Server. Topics are the major publish and
subscription mechanism. Topic manager handles the
management of all the service topics.

Matching Engine. This component maps the
appropriate services for the service requesters. It
achieves this by either searching the Atom files space
or looking up in the UDDI server.

UDDI Server. It is used as service metadata storage
in the RDBMS. In AtomServ, UDDI is not the major
service discovery instrument; rather it works as a
service repository.

4. AtomServ Architectural Views

In this section, we provide several architectural
views [10] to illustrate how elements presented in
Section 3 collaborate with each other to form an
architecture. Three types of view – process, connector,
and data – are particularly helpful in demonstrating the
nature of AtomServ architecture.

4.1. Process View

A process view focuses on the data flow though the

architectural components and some aspects of the
connections between these components concerning the
data elements [10]. Since we believe an architecture
portrays the run-time system characteristics as well as
the static system structure, we provide a process view
that captures a ‘snapshot’ of a AtomServ at a particular
point during which the server is responding to five
different service requests conveying different data
types. Such a process view is depicted in Figure 4,
where the user agent uses the client-side connectors to
initiate five different types of requests (from a to e),
which are then sent to the HTTPDispatcher to interact
with the server components. We now examine each
request in more detail.

Figure 4. Process View of AtomServ architecture

Request a – find feed. This request encloses some

criteria to actively seek appropriate services
(providers). Since its response is not cacheable to the
service cache, it is directly forwarded to the
HTTPDispatcher. The HTTPDispatcher checks the
request URI, and dispatches the request to the
matching engine for query processing. The matching
engine provides further access to Atom Server (e.g.
service metadata search), Topic Server (e.g. topic-
based search), and UDDI server (e.g. tModel-based
categorization search). All the search results are
populated using atom feeds maintained in the Atom
Server. This process complies with the “synchronous
read” service discovery pattern.

Request b – subscribe feed. The user agent, via the
SR connector, subscribes to some interesting service
topics against the topic schema. This part of request is
sent to the HTTPDispatcher as HTTP GET, and is then
forwarded to the topic filter connector. Since it is a
subscription request, the topic filter simply passes the
subscription criteria to the Topic Server, which is
responsible for analyzing the subscription and
returning a subscription tree – a subset of the topic tree
defined in the topic schema. Once the SR obtains the
local cache of subscription tree, it parses the tree and
converts into a list of URIs that represents the
corresponding feeds for the subscribed service topics.
For all the upcoming interactions, the SR uses this
local cache unless it obtains newer version through the
regular polling.

Request c – notify feed. The SR connector simply
performs the polling to each one of the URIs in order
to get the updated service topics. Each polling request
is passed towards the Atom Server by the
HTTPDispatcher. However, the atom filter first
examines the requested URI and decides whether it is
necessary to send it to the server. If it is not, the atom
filter simply bounces back the request using the Not
Modified HTTP response. Otherwise, the atom cache
attempts to retrieve a copy from the memory based on
the requested URIs. If the cache version is not

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

available, the Atom Server is resorted to find the feed
entries from the atom feed files systems. Considering
the connection performance, the multiple pollings
share the same HTTP1.1 persistent connection with the
AtomServ. Request b and c together form the
“asynchronous read” discovery pattern.

Request d – publish. The user agent publishes its
services to the AtomServ via the SP connector. This
HTTP POST request contains a normal atom feed entry
that entails enough service meta-data information
including service endpoint, WSDL file location, and
links to some other semantic description, etc. The
HTTPDispatcher forwards the request to Atom Server,
bypassing both the atom filter and the atom cache since
it is a fresh publication request. The Atom Server
stores the feed at the appropriate location according its
specified URI that represents the service topic feed
location, and appends the entry content to the service
topic atom feed file. Moreover, if the UDDI server is
available, the Atom Server parses the atom entry and
produces a UDDI publication request that is then sent
to the UDDI server via the UDDI client connector.
Request d follows “synchronous write” pattern.

Request e – change topic. The user agent sends the
update HTTP PUT request to the discovery agent via
the Admin connector. The request is in effect a new
version of the topic schema file in the form of an XML
document. The Topic Server receives the request and
updates the topic schema appropriately. The updated
topic schema will be returned when it is requested by
the following HTTP pollings initiated from any SR,
SP, or Admin connector. This follows “synchronous
write” interaction pattern.

4.2. Connector View

Since connectors move data around from
component to component, they exhibit some properties
required by the data elements [10]. Such properties are
examined with particular focus from the connector
view in this section. Furthermore, the AtomServ
connectors also induce two overall architectural
properties: scalability and extensibility.

Section 3.1 illustrates two types of data that
connectors are transferring: atom feeds and the topic
specification. The naïve polling of atom feeds can
cause one well-known issue: the network traffic
increases exponentially under the circumstances that
all the service requesters perform regular polling to the
server components. Addressing this issue essentially
requires two properties for the connector: lower
bandwidth and fewer roundtrips. For the first property,
the connectors have to be ‘smart’ enough so that only
necessary atom feeds or entries are transferred during
the polling. In AtomServ, this is achieved by adding

filters to the data flow between sender and receiver
connectors. Each filter examines one particular aspect
of the information, removes redundant data, and passes
on the reduced data. Once the information has gone
through all the filters, only needed data are actually
traveling over the Internet. The bandwidth problem is
thus alleviated. For example, in our implementation
work, we add one filter that implements the delta-
encoding specification stated in [11]. This filter can
retrieve the delta part of the feeds against some criteria
such as “Modified Since”. Moreover, such an filter-
based processing also considers two top level
requirements specified in [12].

Scalability. Scalability indicates the capability of
the architecture to increase the load – large numbers of
components, or interactions among components –
without degrading performance (e.g. the server
response time). One principal approach to improve
scalability is to adopt the “scale-out” strategy [13],
where the high loads are evenly distributed across a
number of server nodes. Following this strategy, the
dedicated filter that deals with the ‘delta’ feed in fact
distribute the workload from one centralized server to
multiple components without affecting the overall
functionality. This enhances the system scalability
within the Internet environment.

Extensibility. Extensibility refers to the ability of
the architecture to dynamically accommodate changes
without impacting the system. One important approach
to achieve extensibility is to create loosely-coupling
relationships between components that are subjective
to frequent changes. Embedding the delta processing
component within the server component is obviously
deviates from loosely-coupling by mixing both
business logics into a monolithic big component. We
move additional delta calculation into dedicated filters,
each of which reads data from its inputs and produces
to its outputs the augmented data that is internally
processed by the filter. Such a chain of filters systems
can be easily maintained and enhanced: new filters can
be added to existing systems and old filters can be
removed in an ad-hoc manner without changing the
system architecture, design, and binary compilation.

The roundtrip issue is solved by implementing the
HTTP1.1 Condition Get in the client connector so that
the cache and the proxy server can ensure the actual
polling will not be performed unless the actual changes
are made and relevant to the service providers (e.g.
new services are registered, existing services are
updated, or unregistered).

4.3. Data View

A data view exposes the application state whilst
information flows throughout the components [14].

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

This can be achieved by capturing the “application-
oriented properties” [10], which describes the states of
a data structure that are of significance to those
architectural components. In this paper, we summarize
application-oriented properties in Table 2.

Table 2. Application properties

has-outdated-feeds
(O-feeds)

has zero or some feeds, some
of which are not updated

will-have-updated-
feeds (WU-feeds)

subscribed the feeds, but has
not received the updated feeds
yet

has-updated-feeds
(U-feeds)

has the updated feeds against
the server

has-outdated-topic
(O-topics)

either has not downloaded any
topics, or the topics are not
updated against the changes

will-have-updated-
topic (WU-topics)

Subscribed the changes to the
topics, new changes have not
been applied in the
subscription tree yet

has-updated-topic
(U-topics)

The subscription tree that the
client has is updated against
the version on the Topic
Server

These states are solely captured from the “client-

side” perspective. This is due to the reason that in order
to enhance the scalability of the architecture, we
intentionally let the client side maintain these
applications state. The server focuses on stateless
computation such as matchmaking, topic intersection
etc. AtomServ concentrates all of the control state into
the results received in response to the interaction. In
doing so, the architecture undoubtedly exempts the
server from managing complex states for each one of
the numerous clients across multiple interactions.
Hence, the scalability of the system is improved by
‘scaling-out’ the heavy workload from one centralized
server to countless clients distributed across the
Internet.

We now provide the visualization of such a states-
oriented data view. As the process view and the data
view are intertwined [10], we therefore examine these
states according to the process view. For all possible
processes, we walk-through all of its possible
application states summarized in Table 2. This is
shown in Figure 5, where the five requests studied in
process view are included to demonstrate their
corresponding state transitions. Each node represents a
particular application state, which is the property
combination of the two architectural data elements: the
feed and the topic. The arrow edge between any two
nodes presents the process that leads to the transition

from one application state to another. Such a process is
accomplished when the requests initiated from the
client are all appropriately responded by the AtomServ
server. In other words, the AtomServ reaches a steady-
state whenever it has no pending requests and all of the
responses to its current requests have been thoroughly
received and interpreted.

Figure 5. Application States transition

The data view directly supports the client design

and implementation. A subset of such an application
states transition in effect constitutes the core business
logic of the client – service provider, service consumer,
and the administrator. These clients are the most
important stakeholders of AtomServ. The
accomplishment of the state transition leads to the
fulfillment of end user requirements. Moreover, it
provides some hints on improving the application in
terms of end user experience. Since the data view
determines the whole application states, it also
explicitly specifies the behaviour that the AtomServ
server side is able to perform. Lastly, the combination
of both data view and process view provides a
consistent tool for designers to understand the
AtomServ architecture.

5. AtomServ Architectural Styles

Software architectural style portrays a cluster of
architectures that are related by shared structural and
semantic properties. It can be used for multiple
purposes such as categorizing architectures, defining
common characteristics of architecture, and composing
new architectures [15]. In this section, we demonstrate
how three existing architectural styles are applied.

5.1. Publish/Subscribe Style

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

The Publish/Subscribe (Pub/Sub) paradigm[9] is a
widely accepted, many-to-many asynchronous
communication model used in distributed systems. In
the context of service discovery, a typical scenario of
Pub/Sub can be as follows: the service provider
publishes its services in the discovery agent. Service
requesters can then ‘subscribe’ by registering their
interests with the discovery agent at anytime regardless
of service providers. Whenever necessary, the
discovery agent notifies related service requesters
about the changes in terms of updated services
(providers). The service requesters are then able to
retrieve the service information based on the received
notification. When thinking of applying Pub/Sub into
AtomServ, we mainly concern one issue – scalability.
In existing Pub/Sub styles, subscription server has to
maintain a large number of subscriptions. Once any
changes occur, the server compares them against each
of the subscription, generate the notification messages,
and reliably push notifications back to involved
subscribers (i.e. the requesters). When subscription
loads increase dramatically, it is unfeasible to scale
properly without degrading the performance. To
overcome this difficulty, we move part of the
complexity from the AtomServ server to the service
requesters. In particular, the notification (i.e. ‘push’) by
the Atom Server is replaced with the passive update
polling (i.e. ‘pull’) by the requester. Therefore, it is a
requester’s responsibility to keep itself updated to the
latest changes. The Atom Server simply generates
feeds of providers and makes them available for
polling. The subscribers have to decide when and what
to poll from the server based on their subscribed topic
tree. Hence, the server frees itself from burdensome
notification task and is thus more scalable when loads
increase. Furthermore, loosely-decoupling is achieved
in that the AtomServ server does not need to know
who subscribes what. It is exempted from holding any
references of service requesters, a tightly-coupled
notification method suited for RPC rather than HTTP.

5.2. Pipe-Filter Style

Pipe-filter style is a very effective way to
incrementally process a stream of data flow. Filters are
completely independent with each other: they do not
share state, control resources, or identity. Hence, it is
very easy to add or remove different filters to change
data processing dynamically according to the actual
requirements. As stated in Section 4.2, atom filters and
topic filters are used to reduce the web traffic during
the feeds polling.

5.3. REST Style

REST architectural style [14] is in effect a constrain

version of the current architecture of web, the most
successful large-scale distributed system. One of the
most important constrains that REST imposes on the
interactions between connectors is to keep a small set
of uniform interfaces (POST, GET, PUT, DELETE)
supported by HTTP. It requires architects treat HTTP
as an application protocol rather than a transport
protocol. The latter case is, however, a common
approach widely used in current web services research
and practices. For example, the UDDI specification has
defined over one hundred function calls, through which
SOAP messages are transported via the HTTP. In this
paper, we adopt this principle in order to achieve the
Internet-scale architecture. This is reflected in the
process view, where all the interactions are carried out
solely by the HTTP operations and semantics.

6. AtomServ Implementation

Currently, we have implemented the proof-of-
concept prototype for AtomServ. The main aim of this
prototype is to verify the architectural design in terms
of the styles application, the data elements
arrangement. The prototype is built on Java and
Windows platform. We believe various technologies
can be applied to implement AtomServ. For the client
connector implementation, we leverage the code base
from open source ROME0.81, which provides basic
feeds fetch utility. In addition, we provide an
asynchronous proxy dealing with the polling on behalf
of the user agent so that the user agent does not need to
be aware the actual polling process. Rather, it behaves
as if the notification is sent back from the server
against its subscription. When a feed’s updated version
is retrieved by the proxy, it calls back interested feed
listeners. In our implementation, the parameter of such
a call back is a list of updated service entries, which
are then highlighted as bold items in the user agent
GUI as shown in Figure 6. The user agent GUI is based
on the Thinlet2, a very light weight GUI toolkit that can
easily port our implementation to the J2ME-enabled
wireless device.

1 https://rome.dev.java.net
2 http://thinlet.sourceforge.net

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Figure 6. User Agent GUI

7. Conclusions and Future work

In this paper, we have proposed a light weight
service discovery architecture that lowers the entry
barrier for end users to play their role of service
providers or consumers in the Service-Oriented
Environment. From the architectural perspective, two
architectural properties – scalability and extensibility –
are thoroughly considered and induced in our
architectural design by leveraging the polling pub/sub
and pipe-filter architectural styles. The REST style is
also firmly rooted so that all the interactions comply
with the current WWW architectural principle, which
directly supports the Internet-wide scalability in
AtomServ architecture. Finally, AtomServ architecture
also supports the standard UDDI service discovery
when necessary, thus keeping the compatibility with
existing web services architecture. For the future work
under this project, we aim to achieve two major goals.
First, extensive experiments are to be carried out to test
the two architectural properties: scalability and
extensibility. To test the scalability, certain simulation
designs are also needed. Second, following the
Internet principle, we aim to leverage existing web
search engines to discover the service feed. Some
proven and successful web search engines (e.g.
Google) have already started to support the news feed
discovery. Since our architecture is based on the atom
feed, it is very natural to link them together, thus
utilizing the powerful search capability provided by
Google to discover service feeds maintained by the
AtomServ server. One research implication from doing
this can also be arguably stated as: transforming
service discovery paradigm from registry-based to
index-based, where the index does not centrally control
the information that it references. This is, however by
far, the most successful mechanism for current WWW
resource discovery.

8. References

[1] http://www.theserverside.net/news/thread.tss?
thread_id=38136, 2006.
[2] U. Ogbuji, "UDDI 3.0? Who really cares?,"
Oreilly, 2005.
[3] D. Chappell, "Who Cares About UDDI?," Addison
Wesley, 2002.
[4] M. Nottingham and R. Sayre, "The Atom
Syndication Format," in RFC 4287: The Internet Society,
2005.
[5] "RSS2.0 Specification,
http://www.rssboard.org/rss-specification," 2005.
[6] J. Snell, "Advertise Web services with Atom 1.0,
http://www-
128.ibm.com/developerworks/webservices/library/ws-
atomwas," in IBM developerWorks, 2005.
[7] D. Box and F. Curbera, "Web Services Addressing
(WS-Addressing)," http://www.w3.org/Submission/ws-
addressing/, 2004.
[8] J. Ozzie, G. Moromisato, and P. Suthar, "Simple
Sharing Extensions for RSS and OPML," in Microsoft
MSDN: Microsoft Corporation, 2006.
[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-
M. Kermarrec, "The Many Faces of Publish/Subscribe,"
ACM Survey, vol. 35, pp. 114-131, 2003.
[10] D. E. Perry and A. L. Wolf, "Foundations for the
Study of Software Architecture," ACM SIGSOFT Software
Engineering Notes, vol. 17, pp. 40 - 52, 1992.
[11] RFC 3329, "Delta encoding in HTTP," 2002.
[12] D. Austin, A. Barbir, C. Ferris, and S. Garg, "Web
Services Architecture Requirements," W3C Working Group
Note, 2004.
[13] Microsoft Corporation, "Implementing a Scalable
Architecture," Microsoft Windows Server 2003 White Paper,
2002.
[14] R. T. Fielding, "Architectural Styles and the
Design of Network-based Software Architectures," PhD
Dissertations, University of California, Irvine CA, USA,
2000.
[15] E. D. Nitto and D. Rosenblum, "Exploiting ADLs
to specify architectural styles induced by middleware
nfrastructures," Proceedings of the 1999 International
Conference on Software Engineering, pp. 13 - 22, 1999.
[16] S. Cheshire and M. Krochmal, "DNS-Based
Service Discovery," in Internet Draft: Apple Computer, Inc.,
2005.
[17] Microsoft Corporation, "Enterprise UDDI Services:
A Synopsis," Microsoft Windows Server 2003 White Paper,
2003.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

