
SmartRF: A Flexible and Light-weight
RFID Middleware

Anirudh Ghayal

Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur

June, 2008



SmartRF: A Flexible and Light-weight

RFID Middleware

A Thesis Report Submitted

in Partial Ful�llment of the Requirement

for the Degree of

Master of Technology

by

Anirudh Ghayal

to the

Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur

June, 2008



i

Certi�cate

This is to certify that the work contained in the thesis titled �SmartRF:

A Flexible and Light-weight RFID Middleware�, by Anirudh Ghayal , has been

carried out under my supervision and that this work has not been submitted

elsewhere for a degree.

June, 2008 �����������������������

(Dr. Rajat Moona)

Department of Computer Science & Engineering,

Indian Institute of Technology Kanpur

�����������������������

(Dr. A R Harish)

Department of Electrical Engineering,

Indian Institute of Technology Kanpur



ii

Abstract

Radio frequency based Identi�cation (RFID) is expected to be deployed in a

major way in the near future. The major issues for such a deployment are in the

design of a robust and �exible software system to interface various applications to

the RFID readers. There are few existing RFID software systems, most of which

are proprietary and the others are under development. The proprietary RFID soft-

ware solutions are costly, bulky, non-portable and heavily dependent on the support

software.

In this work, we present SmartRF, an open-source RFID middleware which is

�exible, simple and scalable. SmartRF allows us to interface RFID tags and read-

ers to multiple applications in a technology-neutral (protocols, air-interface, etc.)

manner. The object-oriented and layered design of SmartRF allows development

and integration of new features with little e�ort. The middleware provides the ap-

plication a �exibility to interact with one or more readers or even part of a reader.

SmartRF provides the application developer with a simple and hardware-independent

set of APIs to access and con�gure the hardware. It supports dynamic joining and

dis-joining of applications and hardware thus, providing �exibility to the system.

Two RFID systems � electronic �le tracking and postal bag tracking, were devel-

oped with the help of SmartRF and a supporting application framework.



iii

Acknowledgments

I wish to thank my thesis advisers, Dr. Rajat Moona and Dr. A R Harish for

all their support and guidance. Their encouragement and enthusiasm has been my

primary source of inspiration and motivation. The brain-storming weekly discussions

on the di�erent approaches involved in the middleware design and implementation

have been a valuable experience.

I thank Prof. Veena Bansal for her invaluable advice in my thesis. Her expertize

in understanding and analyzing the problems involved in the real world deployment

of a RFID system have been immensely helpful in developing a user friendly system.

I thank Mohd. Zuber Khan, my classmate, for being actively involved in all

phases of my thesis. Without his help and support, the thesis could not have pro-

gressed. The application framework and middleware GUI developed by him have

been extremely helpful in the development of the RFID system. I am also thankful

to all my MTech friends for constantly encouraging and supporting me throughout

my stay here at IIT Kanpur.

I thank the entire Computer Science Department for making such an enjoyable

place to work. The support of the administrative and technical sta� helped in easy

access of resources as and when needed.

Finally, I am grateful to my parents and my sister for all their love and support.

Their constant a�ection and encouragement has helped me achieve my goals.



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 RFID System Overview . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 RFID System Components . . . . . . . . . . . . . . . . . 5
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 RFID Middleware . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 RFID Applications . . . . . . . . . . . . . . . . . . . . . 11

1.4 Organization of the Report . . . . . . . . . . . . . . . . . . . . . 12

2 RFID Middleware 13
2.1 Middleware Components . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Reader Interface . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Data Processor and Storage . . . . . . . . . . . . . . . . 15
2.1.3 Application Interface . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Middleware Management . . . . . . . . . . . . . . . . . 16

2.2 Middleware Design Issues . . . . . . . . . . . . . . . . . . . . . 17

3 SmartRF � The RFID Middleware 19
3.1 Hardware Abstraction Layer (HAL) . . . . . . . . . . . . . . . . 20
3.2 Event and Data Management Layer (EDML) . . . . . . . . . . . 22
3.3 Application Abstraction Layer (AAL) . . . . . . . . . . . . . . . 23

3.3.1 Data Streams . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 SmartRF Implementation 28
4.1 Implementation Model . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Client-Server Model . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Multi-threaded Architecture . . . . . . . . . . . . . . . . 29

4.2 HAL Implementation . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 HAL Driver Functions . . . . . . . . . . . . . . . . . . . 33

4.2.1.1 Open Reader . . . . . . . . . . . . . . . . . . . 33
4.2.1.2 Close Reader . . . . . . . . . . . . . . . . . . . 33
4.2.1.3 Con�gure Reader . . . . . . . . . . . . . . . . . 34
4.2.1.4 Start Read Operation . . . . . . . . . . . . . . 34
4.2.1.5 Get Data . . . . . . . . . . . . . . . . . . . . . 35
4.2.1.6 Stop Reader Read . . . . . . . . . . . . . . . . 35

iv



CONTENTS v

4.2.1.7 Number of tags available . . . . . . . . . . . . . 35
4.2.1.8 Write Data . . . . . . . . . . . . . . . . . . . . 35
4.2.1.9 Select Antenna . . . . . . . . . . . . . . . . . . 36
4.2.1.10 Set Association . . . . . . . . . . . . . . . . . . 36
4.2.1.11 Check Reader Connectivity . . . . . . . . . . . 37

4.3 EDML Implementation . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 AAL Implementation . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 AAL API Speci�cation . . . . . . . . . . . . . . . . . . 40
4.4.1.1 Connect to Middleware . . . . . . . . . . . . . 40
4.4.1.2 Get Reader List . . . . . . . . . . . . . . . . . 41
4.4.1.3 Create Channel . . . . . . . . . . . . . . . . . . 41
4.4.1.4 Change Channel Con�guration . . . . . . . . . 42
4.4.1.5 Get Channel Con�guration . . . . . . . . . . . 42
4.4.1.6 Destroy Channel . . . . . . . . . . . . . . . . . 43
4.4.1.7 Read Data . . . . . . . . . . . . . . . . . . . . 43
4.4.1.8 Write data . . . . . . . . . . . . . . . . . . . . 43
4.4.1.9 Exit Application . . . . . . . . . . . . . . . . . 44

4.5 Initialization of SmartRF . . . . . . . . . . . . . . . . . . . . . . 44

5 SmartRF Applications 49
5.1 Application Types . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Application development on SmartRF . . . . . . . . . . . . . . 50
5.3 Postal Bag Tracking Application . . . . . . . . . . . . . . . . . . 53

6 Performance and Results 57
6.1 Setup Environment . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Performance Parameters . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Test Speci�cations . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4.1 Initialization Time . . . . . . . . . . . . . . . . . . . . . 59
6.4.2 Response Time . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.3 Runtime and Peak Memory Usage . . . . . . . . . . . . 60

7 Conclusion 62

A Hardware Abstraction Layer (HAL) APIs of SmartRF 70
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 71
A.3 API Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3.1 Open Reader . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3.2 Close Reader . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3.3 Con�gure Reader . . . . . . . . . . . . . . . . . . . . . . 73
A.3.4 Start Read Operation . . . . . . . . . . . . . . . . . . . . 74
A.3.5 Get Read Data . . . . . . . . . . . . . . . . . . . . . . . 75
A.3.6 Stop Reader Read . . . . . . . . . . . . . . . . . . . . . 76
A.3.7 Number of tags available . . . . . . . . . . . . . . . . . . 77



CONTENTS vi

A.3.8 Write Data . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3.9 Select Antenna . . . . . . . . . . . . . . . . . . . . . . . 78
A.3.10 Set Associations . . . . . . . . . . . . . . . . . . . . . . . 79
A.3.11 Check Reader Connectivity . . . . . . . . . . . . . . . . 80

B Application Abstraction Layer (AAL) APIs of SmartRF 81
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 82
B.3 API Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3.1 Connect to the middleware . . . . . . . . . . . . . . . . . 83
B.3.2 Get reader list . . . . . . . . . . . . . . . . . . . . . . . 83
B.3.3 Create Channel . . . . . . . . . . . . . . . . . . . . . . . 85
B.3.4 Change channel con�guration . . . . . . . . . . . . . . . 86
B.3.5 Get channel con�guration . . . . . . . . . . . . . . . . . 87
B.3.6 Destroy Channel . . . . . . . . . . . . . . . . . . . . . . 88
B.3.7 Read data . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.3.8 Write data . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.3.9 Exit application . . . . . . . . . . . . . . . . . . . . . . . 90



List of Tables

4.1 Channel Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Reader port parameters . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Initialization time in milliseconds of SmartRF . . . . . . . . . . . . . 59

6.2 Response time in milliseconds of SmartRF . . . . . . . . . . . . . . . 60

vii



List of Figures

1.1 Example RFID System . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 RFID System Components . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 RFID Middleware Components . . . . . . . . . . . . . . . . . . . . . 15

3.1 SmartRF System Design . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Data Streams, Channels and Association . . . . . . . . . . . . . . . . 24

4.1 Client-Server Model of SmartRF . . . . . . . . . . . . . . . . . . . . 29

4.2 Multi-threaded Architecture of SmartRF . . . . . . . . . . . . . . . . 30

4.3 HAL Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 SmartRF � Application Interaction . . . . . . . . . . . . . . . . . . . 40

4.5 SmartRF Initial Con�guration File . . . . . . . . . . . . . . . . . . . 47

5.1 RFID Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Portal for the Bag Tacking Information . . . . . . . . . . . . . . . . . 55

5.3 Comparison between Tag A and Tag B . . . . . . . . . . . . . . . . . 56

6.1 Runtime memory usage of SmartRF . . . . . . . . . . . . . . . . . . 61

A.1 RFID System Architecture (hardware) . . . . . . . . . . . . . . . . . 71

B.1 RFID System Architecture (applications) . . . . . . . . . . . . . . . 82

viii



Chapter 1

Introduction

Radio Frequency based Identi�cation, known as RFID, is being described as �the

next big thing in technology�. The sudden spur in this technology is due to huge

corporate[30] and government[9] investments. These investments are also responsi-

ble for the increase in the research and development in this technology. RFID is

a technology which concerns auto-identi�cation (Auto-ID). There exist, a number

of auto-identi�cation systems like the barcode based systems, optical recognition

systems (OCR) which are used extensively.

The barcode based identi�cation systems use a binary code comprising �eld of

bars and gaps, arranged in a parallel con�guration. This sequence, made by narrow

and wide bars is interpreted numerically and alphanumerically by analyzing the

re�ected laser beam on the bar gaps. The interpreted value obtained, speci�es a

unique code which is used to identify the object. The problem in this system is that

of the need to expose the barcode manually to the laser beam. The barcode needs to

be aligned to be read by the laser scanner. Inspite of these drawbacks, the barcode

systems are one of the most widely used auto-ID systems. OCR based systems

consists of optical machine readers which are used in auto-identi�cation. These

readers recognize alphanumeric codes which are placed on the objects, to uniquely

identify the objects. The disadvantage of this system is in the cost of operation and

the complexity of the OCR readers[12].

1



CHAPTER 1. INTRODUCTION 2

RFID systems[16, 34] are relatively new entrants to the auto-ID systems and

have become very popular recently. Though, the RFID based systems have ex-

isted since 1960[12], the reason for their recent popularity is the development in

the �eld of semiconductors which has led to the decrease in cost of hardware. This

has made it possible to develop cheap[15] and reliable RFID hardware. RFID sys-

tems are being used in variety of areas ranging from inventory tracking to access

control systems[7, 8, 33]. The ability to identify items which are not in the line

of sight has given this technology an edge over other auto-ID systems. The inte-

gration of this technology in various business domains have reduced losses[9] and

improved the overall e�ciency of the working system. For example, losses in the

supply chain management systems have been huge due to mismanagement[37, 22].

RFID integration[4, 22] in such systems leads to improved visibility in various stages

of supply-chaining, thus increasing the e�ciency of the system.

In RFID systems, the identi�cations data is stored on an electronic data-carrying

devices known as tags[12]. These tags are placed on the objects which are then

uniquely identi�ed. The identi�cation takes place when these tags move in the

vicinity of the RFID readers. The RFID readers are devices which communicate

and access data from the RFID tags using radio waves. The readers physically

transmit and receive data through radio waves using the antennas connected to

them. The identi�cation data read by the readers is then processed by the software

system, known as the middleware. This data then can be accessed by various RFID

applications by communicating with the middleware. Thus, the middleware acts like

a server, which services a number of applications on one side and connects to the

hardware on the other side. The major advantages of using RFID as an auto-ID

system are the following.

• RFID readers do not need a line of sight to access data from the RFID tags.

• RFID systems can read data over varied distances. The range varies from few

centimeters to few hundred meters.



CHAPTER 1. INTRODUCTION 3

• RFID readers can interrogate, or read, RFID tags much faster.

• RFID systems can read and write di�erent sizes of data from / to the tag,

based on the type of tag.

• RFID systems can read tags in harsh environments, without any human inter-

ference.

There has been a lot of research[28, 15] in the development of e�cient, durable and

cheap RFID tags and readers. But very little has been done in the development of

the middleware and the application framework. There is a need to develop a simple

and robust middleware framework which allows easy development and deployment

of applications.

1.1 Problem Statement

The objective of this thesis is to design and develop a simple, light-weight and �exi-

ble RFID middleware. The middleware must provide the applications with a device-

neutral interface to communicate with the hardware. The middleware design must

support simultaneous communication of multiple applications with the RFID hard-

ware. The applications should be provided with a set of function calls to access the

functionality of the middleware. Similarly, the design must provide an API for the

hardware to be accessible from the middleware. The middleware must provide all

data processing capabilities like �ltering, grouping and duplicate data removal.

An objective of this thesis is to develop the middleware as an open-source soft-

ware which should allow integration of new features with little e�ort. Therefore the

middleware is desired to carry a modular and layered design. An important consid-

eration in the development and deployment of the middleware is its dependency on

other support software like database, application servers etc. The run time depen-

dency on these support software should be minimal making the middleware portable

and light-weight.



CHAPTER 1. INTRODUCTION 4

Figure 1.1: Example RFID System

Finally, an objective of this thesis had been to show the utility of the middleware

by developing an application � The Postal Bag Tracking System.

1.2 RFID System Overview

The basic RFID system (�gure 1.1) consists of tags which are placed on the objects

to be identi�ed. These tags are identi�ed by the RFID readers, when the object

passes through the antennas connected to the reader. The data read by the reader,

is then processed by the middleware and presented to the application. Thus, the

data �ows from the tags to the readers, then to the middleware and �nally to the

application. At each of these stages the data is stored and processed. This capture,

processing and handling of the data, hardware and software is a part of the RFID

system.

RFID systems are being use extensively in various domains. The requirements

from these systems vary depending on the type of application for which the system

is deployed. For example, a typical tag and ship application for a consumer good

manufacturer would mainly look into the physical needs of the hardware like the

placement of the physical readers in appropriate position for maximal tag reads,



CHAPTER 1. INTRODUCTION 5

e�cient tag placement on objects. In such applications, there is very minimal re-

port generation and processing of data. Whereas, applications like asset tracking

would need minute-by-minute update of data, which makes the software involved,

the critical part of the complete setup. An RFID system requires to take care of

di�erent needs of various applications. The RFID systems will continue to evolve to

meet wide spectrum of needs, requiring various architectures. Hence, it might not be

possible to de�ne a general RFID architecture but, there are certain functions and

capabilities which must be supported by all RFID systems.

1. The ability to encode the RFID tags with an unique ID to identify the object.

2. The ability of the RFID readers to identify the tags and the ability of the RFID

system to track tags as they move from one location to another (i.e reader to

reader).

3. The ability to access and process the data read by the RFID readers.

4. The ability to integrate the system to support enterprise applications.

5. The ability to share information between various applications.

An RFID system which supports all these basic capabilities can be easily extended

to support multiple kinds of applications.

1.2.1 RFID System Components

An RFID system generally consists of four major components[16], of which some

are a part of the hardware system and the others constitute the software system, as

shown in �gure 1.2.

RFID Tags are hardware electronic components that carry data. They are gen-

erally placed or embedded on the objects which are to be uniquely identi�ed. RFID

tags are accessed by the RFID readers using the radio waves. The tags are classi�ed



CHAPTER 1. INTRODUCTION 6

Figure 1.2: RFID System Components



CHAPTER 1. INTRODUCTION 7

based on a number of characteristic features[16] like power, air-interface, packaging,

protocols, storage capacity, form factor and cost.

Tags may be classi�ed as passive or active tags. Passive tags are the ones which

do not have a power source of their own. They are powered by the electro-magnetic

radio waves from the reader and generally have smaller range of communication.

Active tags on the other hand, have an inbuilt power source which allows them to

transmit radio waves independently without the support of the reader. Active tags

are costlier compared to the passive tags, but are more powerful and have a longer

range.

Tags provide storage capacity ranging from a few bits to a few hundred bytes.

Tags are further divided based on their access capability. The read-only tags are the

ones which do not permit the modi�cation of data and carry a permanent ID. The

read-write tags are the ones which permit multiple read and write operations. A tag

generally has two di�erent kinds of memories, one for the unique ID (UID) and other

for the user data. The UID memory varies from 4 byte[12] to 12 bytes depending

upon the RFID protocol. On the other hand, the user data memory is optional and

comes in 0 to few kilo bits capacity.

The tags can be communicated with only over the the radio frequency supported

by them. HF, UHF and Microwave are some of the standard frequencies supported

by the tags. A tag can be accessed only by the reader which transits and receives

radio waves in the same frequency range. For example - EPC Gen 2 tags are designed

to support UHF frequency range (865 MHz to 915 MHz), these tags can be read only

by the UHF readers having the same or a subset of the tag's frequency. Some of the

companies which manufacture tags are - Alien[10], UPM RAFLATAC[32] etc.

The RFID readers are hardware components of the RFID system which commu-

nicate with the tags using radio waves. The readers transmit these waves via the

antennas connected to them. Readers are connected to computer systems running

the suitable reader access software. The readers are characterized by a number of

features such as air interface, protocol, host-side interface etc.



CHAPTER 1. INTRODUCTION 8

As in the case of tags, the readers are also designed to support a speci�c frequency

range. RFID tags and the corresponding readers use a speci�c protocol for data

communication. These protocols de�ne how the data is organized in a tag and the

access mechanism to be used by the reader to communicate and access data from

the tag. RFID readers are generally developed to support a single protocol, but they

may also support multiple protocols. Some examples of protocols are EPC Gen2[14],

ISO 15693[3], ISO14443A[2] etc.

The readers are connected to the computer system using various communication

interface like USB, Serial Port, Ethernet port. The computer then uses this interface

to communicate with the reader. All the commands and data which �ow from the

computer to the reader and vice versa follow the same communication interface.

The middleware is the data processing software that manages data and control

�ow between the RFID readers and applications. It interfaces with the RFID hard-

ware on one end and with the RFID application software on the other. A middleware

standardizes the way of dealing with the �ood of tag information from the readers.

It also hides the physical details of the system from the applications � so that appli-

cations can be written in a device-neutral manner. The middleware performs data

processing operations like �ltering, grouping of the data based on the con�gura-

tion done by the application. The middleware thus plays a very important role in

managing the complete RFID system.

Applications are the software components which con�gure the middleware and

logically interpret the data. Applications act as the end-user interface to the com-

plete RFID system. RFID applications serve various purposes ranging from article

tracking to theft management. The applications are serviced by the middleware.

1.3 Related Work

RFID provides an e�cient way of automatically identifying the objects. This prop-

erty of the RFID devices has enabled it to be used in many applications concerning

identi�cation. There has been some work in development of the RFID software sys-



CHAPTER 1. INTRODUCTION 9

tem. This work is manly focused in two areas, the RFID middleware and RFID

applications.

1.3.1 RFID Middleware

The sudden growth of RFID in the application space has generated quite an interest

in the RFID middleware development. Most of the middleware solutions which are

available today are commercial in nature. A few middlewares from commercial play-

ers are Microsoft BizTalk RFID[27], Oracle Fusion[23] and Sun RFIDMiddleware[20].

There are also some middlewares which have been developed in the research �eld,

of which some prominent ones are - WinRFID[31] by UCLA and Accda[13] by ETH

Zurich.

Sun provides a Java based middleware platform called the Sun Java System

RFID software. The Sun middleware is a part of the Java Enterprise System (JES)

and supports standards-based integration with leading enterprise integration servers,

including the Sun Java Enterprise Integration Server. The four components of this

middleware are the RFID Event Manager, the RFID Management Console, the RFID

Information Server, and a software development kit (SDK). The RFID Event Man-

ager is a Jini-based event management system that facilitates the capture, �ltering,

and eventual storage of events generated by RFID readers. The RFID middleware

console provides a browser based management interface, which allows con�guration

of various attributes and parameters of the middleware. The information server is

responsible for storing and querying the EPC related data, it also manages inter En-

terprise handling of the data. The SDK provides a development platform the build

custom applications. The Sun middleware exposes to the application, the hardware

as logical readers. These logical readers may be a collection of one or more physical

readers. The application can then select one or more logical readers and apply the

various processing parameters to the group.

Microsoft also provides a .NET platform based RFID end to end solution known

as the Biztalk RFID Server. The Biztalk RFID middleware supports device abstrac-



CHAPTER 1. INTRODUCTION 10

tion and management to help customers manage and monitor devices in a uniform

manner. Their �plug and play� architecture allows standard or non-standard devices

to be supported. The middleware server supports an event processing engine that

allows creation of business rules and manage the RFID events. It also enables en-

terprises to integrate RFID events into the business process server and provide real

time visibility of the RFID data.

WinRFID is an RFID middleware from University of California Los Angeles

(UCLA). Their study reports di�erent challenges and the research approach in de-

veloping a RFID middleware to provide an e�cient solution in connecting to the

enterprise network. The important features discussed in WinRFID are the encap-

sulation of communication details, large-scale network management, intelligent data

processing and routing, hardware and software interoperability, system integration

and system extendability. The WinRFID middleware is supported by novel algo-

rithms and data representation schemes capable of processing large amounts of data,

rectifying errors in real-time, identifying patterns, correlating events, reorganizing

and scrubbing data and recovering from faults and exceptions. It provides the sup-

port for simultaneous working of readers and tags at di�erent frequencies, using

di�erent protocols through a layer transparent to the applications. An XML based

framework in the middleware helps the �ltered data from the RFID tags data streams

to be formatted as per the custom plug-ins, which can be added to the middleware

easily.

Accada by ETH Zurich is an RFID prototyping platform which facilitates RFID

application development. The Accada platform manages readers, �lters, aggre-

gates RFID data, and helps interpreting the RFID data in the application's con-

text. The Accada infrastructure uses EPCglobal based speci�cations for the reader

protocols[14, 2], the application level event speci�cations and the EPCIS[19] capture

and query interface to handle RFID data �ow of across enterprises. The platform

consists of three main modules � the reader, the �ltering and collecting middleware

and the EPC information services module. The Accada reader implementation uses



CHAPTER 1. INTRODUCTION 11

the standard edition of SUN Java Virtual Machine rather than a micro edition. This

forces the reader implementation to be embedded only on the devices with signi�cant

computing resources. Also, there are a number of features which are optional and

yet to be de�ned in the EPC Reader Protocol 1.1[18], which re�ects on the reader

module of Accada, making the application development a signi�cant challenge.

1.3.2 RFID Applications

RFID is being used widely in a number of applications. Some institutions where

RFID is being extensively deployed are Wal-mart[38], Speedpass[9], postal system

of various countries[29], toll collection at highways[5], animal tracking[11], library

management[6] etc. A number of pilot projects like construction tool tracking[17]

pertaining to tracking of construction tools, mobile healthcare service system[25] used

to track people inside and outside a hospital have all been implemented successfully.

One of the most widely used application is the access control systems, where RFID

based plastic cards are used to identify and authenticate the card-holder's entry to

the facility. The RFID systems are extensively used in the warehouses and stores for

the supply chain management, inventory management and movement management.

This has led to huge increase in the e�ciency of the warehouse operations and keeping

the optimum inventory in the stores.

Pharmaceutical companies have been grappling with the high increase in the drug

counterfeiting. Thus, the pharmaceutical industry reports that it loses $2 billion

per year due to counterfeit drugs[24, 1]. Besides the �nancial losses to the industry,

counterfeit drugs adversely a�ect people's lives by preventing patients from receiving

needed medication. There has been a lot of e�orts to �ght this menace by using

many di�erent technologies including bar-codes, holograms, etc. RFID tags helps in

detecting products that are counterfeit or fake. It also helps to identify tampered

with, adulterated or substituted drugs.

RFID also �nds a use in library management[6]. The various operations done in

the library management includes circulation, shelf management and sorting of books.



CHAPTER 1. INTRODUCTION 12

In the current mode of operation, the books are attached with bar codes which are

used to identify a book. The information stored in these barcodes generally contains

the identi�cation number. The circulation and sorting still requires a lot of human

intervention. RFID presents a very good solution for library management. The

books being RFID tagged, are taken out and returned many a times, thus the RFID

tag is re-used again and again.

1.4 Organization of the Report

The organization of the rest of the report is as follows. In chapter 2, we present the

background of RFID middleware and a few design constraints. We give a detailed ar-

chitectural description of the SmartRF � the RFID middleware, in chapter 3 and talk

about the implementation details of SmartRF, describe the communication architec-

ture, initial con�gurations and various system requirements in chapter 4. We then

describe an RFID system built using SmartRF for the postal bag tracking system

in chapter 5. Finally, we conclude this thesis and provide results on the middleware

evaluation in chapter 6. The appendix provides the list of APIs supported by the

SmartRF middleware and few other middleware related information.



Chapter 2

RFID Middleware

An RFID middleware is the software subsystem which sits between the RFID hard-

ware and the RFID applications. It is an interface between the software components

and the hardware components of the RFID system. An RFID middleware provides

certain advantages.

• It insulates applications from the RFID hardware.

• It handles the huge raw RFID tag data read by the RFID readers and processes

the data before passing on the aggregated data to the applications.

• It provides an application-level interface for the uniform management of the

RFID readers and querying the RFID data.

The RFID middleware provides the application with standard interfaces to access

the RFID hardware. Every RFID reader has its own proprietary device driver to

access its functionality. If the application is provided with the device drivers of all the

connected readers, it will be a hard job to manage and interface each of the devices. In

such a design the application writer will need to understand all the hardware speci�c

internals and operations. A software layer of the RFID middleware incorporates all

the device drivers of di�erent hardwares and exposes to the application a standard

set of interfaces to access any hardware. Secondly, the amount of raw tag data,

which is read by the readers is huge. For example, consider an RFID system with 3

13



CHAPTER 2. RFID MIDDLEWARE 14

UHF readers continuously reading RFID tag data at the rate of 20 tags per second.

Considering, each data item to be of 12 bytes, the amount of data read by all the

three readers in one second is (3 readers x 12 bytes x 20 tags) = 720B, or, 5.76Kbps.

An application if provided with this data, will �nd it very di�cult to process it in real

time. An RFID middleware can process this raw tag data and provide the application

with clean and �ltered data. The RFID middleware also provides a standardized

way of dealing with the �ood of information created by the tiny RFID tags. The

application-level interface provides application-level semantics for the collection of

RFID data from the RFID tags.

2.1 Middleware Components

An RFID middleware generally consists of four major components or layers (�gure

2.1).

1. Reader Interface

2. Data Processor and Storage

3. Application Interface

4. Middleware Management

2.1.1 Reader Interface

The Reader interface component of the middleware is responsible for handling the

interaction with the RFID hardware. It is the lowest layer of the RFID middleware.

This layer maintains the device drivers for all the devices supported by the system.

It manages all the hardware related parameters like the host-side communication

interface of the reader, the air interface of the reader, etc.



CHAPTER 2. RFID MIDDLEWARE 15

Figure 2.1: RFID Middleware Components

2.1.2 Data Processor and Storage

The Data processor is responsible for handling and processing the raw data coming

from the readers. This component is also responsible for storing the raw tag data,

so that it can be processed. Some of the important processing logic carried out here

are �ltering and grouping of the RFID data. This component also manages the data

level events associated with the application. As an example, when the applications

requests for all data capture between a time interval, the processing of the time stamp

is carried out by this component and then the data is given to the application.

2.1.3 Application Interface

The Application interface component manages the middleware's interface with the

application. It provides the application with an API to communicate and con�gure

the RFID middleware. It accepts requests from applications and translates them

down to the underlying components of the middleware. This component is respon-

sible for the integration of the enterprise applications with the RFID middleware.

Most of the commercial players which provide the middleware, not only provide

these core components but also certain enterprise level solutions. These solutions

help building complete RFID systems.



CHAPTER 2. RFID MIDDLEWARE 16

2.1.4 Middleware Management

The middleware management component helps in managing the con�guration of

RFID middleware. It provides information on all the processes running in the mid-

dleware. The middleware management provides the administrator the following ca-

pabilities.

1. Add, remove and modify the RFID readers connected to the system.

2. Modify various parameters like �lters which were con�gured by the applica-

tions.

3. Enable and Disable various features supported by the middleware.

RFID middlewares typically provide certain abstraction to the application layer.

Usually, readers are abstracted as logical reader which may be a collection of several

readers or a part of the reader. Logical reader is a name associated to the group of

readers. This is a grouping mechanism provided by most middlewares where there

is a need to have a set of readers capturing observations from a particular area. For

example, in a warehouse with 10 loading docks, each of which had a couple of readers,

can be grouped under one or more logical readers. The application can then query a

small number of logical readers for incoming product information rather than having

to aggregate events from each of the individual readers.

The applications are usually provided with a standardized interaction model with

the middleware. These interaction models de�ne the communication between the

middleware and the application clients. A client can either request services on de-

mand (synchronous mode) or register for information to be sent to it when certain

conditions are met (asynchronous mode). In the synchronous mode of operation,

the client requests for a particular service from the middleware and suspends exe-

cution till it receives a response. In the asynchronous mode of operation the client

subscribes to events at the middleware. The middleware can then asynchronously

delivers data back to the clients.



CHAPTER 2. RFID MIDDLEWARE 17

The RFID tag data is usually needed to be �ltered to remove unwanted infor-

mation. Filtering provides the capabilities to tune into speci�c patterns in the data.

Sometimes, it might be required to report only certain type and value of the tag

data to the client. RFID middlewares usually provide some kind of data �ltering

mechanism. Here, the client provides a set of pattern in a de�ned format to the

middleware. The middleware then allows only that data which matches the pattern,

to be reported to the client. For example if an application needs to see all tag data

which start with a speci�c pattern such as 19AD, the associated �lter for this can

be provided by the client as - [ 19AD**** ].

2.2 Middleware Design Issues

The RFID middleware must have a robust and �exible design. Some of the issues to

be considered during the design of an RFID middleware are the following.

1. Real time handling of incoming data from the readers � Huge amounts of

RFID tag data �ows into the middleware from the various readers connected to it.

The middleware should be able to process this real-time data without read misses.

2. Multiple Hardware Support � The middleware must support multiple kinds of

tags and readers by providing a common interface to access them. Di�erent RFID

hardware o�er di�erent features, the middleware must be in a position to access all

the features and capabilities of the hardware.

3. Synchronization and Scheduling in the middleware � The middleware is typ-

ically realized using multiple processes for handling readers, applications, data pro-

cessing elements and bu�ers. There should be intelligent scheduling and synchroniz-

ing among all these processes. These factors de�ne the latency and e�ciency of the

middleware.

4. Servicing Multiple Applications � The middleware design must be capable of

servicing multiple applications simultaneously. Di�erent applications have di�erent

requirements, the middleware must cater to all the requirements of the applications

with minimal latency.



CHAPTER 2. RFID MIDDLEWARE 18

5. Device Neutral Interface to the applications - The middleware should provide

the application a device independent view of the hardware. The application writer

should be able to develop applications using only the generic set of interfaces provided

by the middleware. The applications development should be totally independent of

the type of hardware connected to the system.

6. Scalability � The middleware design must allow new hardware to be easily

integrated in the RFID system. This calls for a modular design, where modules can

be added or removed based on various con�gurations. The design must also allow

easy integration of newer data processing features into the middleware.



Chapter 3

SmartRF � The RFID Middleware

In this thesis, we developed an RFID middleware called SmartRF keeping in mind

the design issues discussed in the previous chapter. Our RFID system is organized

as a three tier architecture (�gure 3.1) with applications, middleware (SmartRF)

and the RFID hardware. The RFID hardware represents the RFID readers and the

tags. The middleware (SmartRF) is a software component which provides the RFID

applications with a device independent interface to access the RFID hardware. The

RFID applications are independent softwares which use the services of SmartRF for

various consumer requirements. These applications are developed using a generic

application framework. This framework uses a device independent visualization of

the RFID hardware provided by SmartRF to build applications.

The RFID readers generally have multiple antennas connected to it. These anten-

nas may be placed in groups at di�erent locations for tracking purposes. A group of

antennas at one tracking point may belong to single or multiple readers. There may

also be readers whose antennas are part of various groups allowing a single reader

to be a part of multiple tracking points. SmartRF renders this functionality by in-

troducing a notion of channels which allows us to combine multiple reader-antenna

pairs. The channel is a virtualization of a tracking point and is used to associate

multiple reader-antenna pairs to the tracking point.

SmartRF has a novel design which provides the application a device neutral,

19



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 20

protocol and platform independent interface. It incorporates three subsystems �

Hardware abstraction layer (HAL), Event and data management layer (EDML) and

Application abstraction layer (AAL).

3.1 Hardware Abstraction Layer (HAL)

The HAL is the lowest layer of SmartRF and is responsible for interaction with the

RFID hardware. It provides access to the devices and tags in a manner independent

of their various characteristics through tag and reader abstraction layers.

SmartRF provides the view of tag data as a stream of bytes. This level of

tag abstraction provides independence from various tag characteristics like protocols

(ISO 14443[2], EPC Gen2[14], ISO 15693[3], etc.), air interfaces[16] (HF, UHF) and

memory sizes[12]. The reader abstraction provides a common interface to access

the RFID hardware devices with di�erent characteristics such as protocols (ISO

14443, EPC Gen2, ISO 15693), air interface (UHF, HF) and host-side communication

interface (RS232, USB, Ethernet). The reader abstraction exposes simple functions

like open, close, read, write, etc. to accomplish complex operations of the readers.

The reader and tag abstractions in SmartRF make it extendable to support various

tags and readers.

The Device Management Module in the HAL is responsible for dynamic loading

and unloading of the driver libraries depending upon the usage of the hardware

devices. This allows the system to be light weight as only the required libraries are

loaded. This layer con�gures the devices for various operations as speci�ed by the

upper layers. It is also responsible for monitoring and reporting the device status.

Some of functions provided by the HAL to access the RFID hardware are the

following.

• OpenDevice � Open device function is responsible for opening a connection

with the device. The connection parameters are provided as an argument to

this function. On a successful connection with the reader, a handle is returned



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 21

Figure 3.1: SmartRF System Design



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 22

by this function. This handle is then used as a reference to access the device

in subsequent calls.

• ReadDevice� Read device function reads the data from the reader's internal

bu�er. The read parameters like the protocol to be read by the reader, the size

of data to be read, are speci�ed as arguments to this function. The function

returns successfully with data if valid data is present in the reader bu�er or

with an error code.

• WriteDevice � WriteDevice function writes data to the tag. The arguments

speci�ed to this function are the unique ID partially or wholly, which identi�es

the tag to be written, and the data to be written to this tag. The function

returns successfully if data is written to the tag or returns an error code (for

example when the tag is not identi�ed uniquely).

3.2 Event and Data Management Layer (EDML)

The EDML manages various reader-level operations such as reading tags and handles

reader noti�cations such as device-disconnected, tag-write-failures, etc. The EDML

layer acts as a conduit between the hardware abstraction layer (HAL) and the ap-

plication abstraction layer (AAL). It accepts commands from AAL, processes them

and accordingly issues commands to the HAL. Similarly, the responses are carried

from the HAL, processed and passed on to the AAL by this layer.

This layer acts as a temporary storage for incoming data from the reader. It

processes the data by grouping, �ltering and duplicate removal as described below.

Grouping: Grouping involves accumulation of the data from various readers.

Initially the readers read data into their own private bu�ers. In grouping, the data

form these reader bu�ers is accumulated to a single location. This accumulation is

based on the hardware con�guration done by the applications. This grouped data is

then used for further processing by SmartRF such as sorting them channel wise.

Filtering: There are cases where applications needs only speci�c tag-IDs to be



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 23

reported. Filtering provides this functionality by selective reporting of the tag data.

In SmartRF abstraction tags are viewed as a stream of bytes. Therefore, we choose

the �lter values as provided by the application, in the form of consecutive bytes.

This o�ers �exibility in handling multiple tag-data formats.

Duplicate Removal: Tags in the vicinity of the readers are read continuously.

This results in large amount of repeated data from the readers. Duplicate removal

is a feature provided by SmartRF, to prevent reporting of duplicate data. It is

characterized by a time value speci�ed by the application. Same tag data read by

the reader within the speci�ed time duration is only reported once.

3.3 Application Abstraction Layer (AAL)

The Application abstraction layer (AAL) provides various applications with an in-

terface to the RFID hardware. The interface is designed as an API through which

the applications use services of the SmartRF. All the application level operations

such as read, write, etc. are interpreted and translated to the lower layers of the

SmartRF by the AAL.

The AAL provides an abstraction of the hardware as data streams and channels

(�gure 3.2).

3.3.1 Data Streams

An RFID reader typically connects to multiple antennas. A tag might be seen by one

or more antennas depending upon the air interface and tag illumination. SmartRF

therefore de�nes the concept of data stream as a reader-antenna pair. The number of

data streams for a reader is equal to the number of antennas connected to it. Thus,

every data stream acts as an independent source of data received by the middleware

from the reader. SmartRF exposes to the applications all the available data streams.

For example, in a system with two readers R1 and R2 with antennas A10, A11, A12,

A13 and A20, A21, A22 connected to them respectively, SmartRF will provide the



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 24

Figure 3.2: Data Streams, Channels and Association



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 25

following data streams (R1, A10), (R1, A11), (R1, A12), (R1, A13), (R2, A20), (R2,

A21) and (R2, A22).

There are some readers which use di�erent antennas to transmit and receive RF

signals. This puts a limitation on the usage of a single antenna as an independent

data source. This limitation is incorporated in SmartRF by introducing the concept

of `Association'. This concept forces the dependent antennas (transmitter and re-

ceiver) to be grouped together forming a single data stream. Such a grouping may

be based on illuminator and communicator or any other related pairing.

3.3.2 Channels

The channels are representation of an RFID gate that incorporates one or more

data streams (i.e reader-antenna pairs). A channel is a logical grouping of di�erent

data streams. Applications de�ne channels by grouping data streams as per their

requirements. For example, if a door has two antennas placed orthogonally, the

channel will be de�ned to incorporate both of these data streams. Multiple data

streams in a channel may belong to same or di�erent readers. The data streams in

the channels are used in a mutually exclusive manner. Once a data stream is selected

as a part of a channel, it cannot be used further by other channels, until the channel

is destroyed. An application can create any number of channels as long as there are

data streams available.

During the creation of a channel, the associated antennas are automatically pulled

in as a part of the channel, whenever an antenna is selected that is a part of an

association.

An example of channels and data streams is given in �gure 3.2. In the �gure, R1

and R2 are the readers connected with A10, A11, A12, A13 and A20, A21, A22 antennas

respectively. In this example, four channels C1, C2, C3 and C4 are created here.

Channel C1 and C3 have two data streams each, whereas channel C2 and C4 have

one data stream each. The concept of association is shown by channel C2. Here,



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 26

antennas A12 and A13 are part of an association. Thus when A12 or A13 is selected

as part of a channel, the other associated antenna is automatically selected as a part

of the channel.

In the APIs of the AAL, channels are indicated by a channel handle. The chan-

nel information is maintained by the SmartRF and only the handle is returned

to the application at the time of channel creation. Subsequent function calls for

read/write/delete channel use the channel handle. The channels are independent

of the type and nature of the applications connected to it. This makes SmartRF

scalable to support a variety of applications.

Some of the functions which are available to an application as provided by the

AAL are the following.

• CreateChannel � CreateChannel function speci�es a list of reader-antenna pairs

to be grouped together in a single channel. A handle identifying the channel

is returned to the application for further communication. This call translates

down to EDML, where SmartRF keeps a mapping of the channel and the

corresponding reader-antenna pairs. The EDML is responsible for aggregating

tag-data from the reader-antenna pairs belonging to a single channel.

• Read_data � Read_data function reads the data from the channel. SmartRF

replies back with the tag data as bu�ered by the EDML for the speci�ed

channel. This function call supports blocking as well as non-blocking read

operations. In the case of a blocking call, SmartRF replies to the application

with tag data for that channel. If the tag data is not available the function

waits for that to become available. In the non-blocking call, the Read_data

replies to the application immediately with data or a status indicating that

data is not available.

• Destroy_channel � Destroy_channel function deletes the channel speci�ed by

the application. All the reader-antenna pairs associated with this channel are

subsequently made available for grouping into another channel.



CHAPTER 3. SMARTRF � THE RFID MIDDLEWARE 27

• Con�gure_channel � Con�gure channel function con�gures various channel

speci�c parameters like �lter masks, time window for duplicate removal and

data aggregation speci�cation.

• Write_data �Write_data function writes data to the speci�ed channel. SmartRF

translates this call to a tag-write command. This is done by identifying the

tag to be written, and then writing the required data to the tag. In the case of

multiple tags being identi�ed the Write_data proceeds without writing data

to the tags and returns a suitable status.



Chapter 4

SmartRF Implementation

SmartRF � The RFID middleware is an open-source and platform-independent mid-

dleware. The computing architecture used by SmartRF is a Client -Server based

distributed system. It internally uses a multi-threaded architecture to handle di�er-

ent middleware processes.

4.1 Implementation Model

SmartRF uses the Client Server Computing model for external communication and

Multi-threaded model for internal implementation.

4.1.1 Client-Server Model

The Client-Server computing model of SmartRF (�gure 4.1) consists of two indepen-

dent softwares, the middleware server and the application clients. An application

client initiates a communication session while the server waits for a requests from

the client over a socket interface. This computing model allows �exibility as the

client can be designed independently and can even reside on a remote host. In

such a case, communication between the middleware and the application takes place

over the network. In SmartRF, the network based communication also takes place

through sockets. The middleware creates a socket and listens for incoming client

connections on a pre-de�ned TCP port (11002 in our implementation). The client

28



CHAPTER 4. SMARTRF IMPLEMENTATION 29

Figure 4.1: Client-Server Model of SmartRF

applications can then initiate a connection with SmartRF by connecting on this port.

The application and the middleware communicate by sending data packets contain-

ing speci�c commands and responses in a pre-de�ned format. On receiving a packet

from the application, SmartRF parses it, and decodes the incoming command and

other packet parameters. It then executes the required functionality and replies back

to the application.

4.1.2 Multi-threaded Architecture

SmartRF internally uses a multithreaded architecture (�gure 4.2) for handling vari-

ous actions. After the middleware is set for operation, a thread is created that listens

forever for incoming connections from the applications. For every application that

connects to this thread, a new thread is spawned by the middleware. The new thread

continues to serve the requests from the application while the older thread goes back

to listening for new connections. For application requests pertaining to the global



CHAPTER 4. SMARTRF IMPLEMENTATION 30

Figure 4.2: Multi-threaded Architecture of SmartRF

middleware information like the request to get the list of readers connected, or to

get the list of channels created, etc., the newly created thread gives the response

and terminates. For channel speci�c functions like Create_Channel, which involves

setting up a separate data exchange interface between the the application and the

SmartRF, the newly created thread services this channel, until the channel has been

destroyed. Thus, for every channel created by the applications, a dedicated channel

servicing thread is created by the SmartRF. Every channel is assigned a bu�er in

SmartRF which stores channel speci�c data. On a read or on a write request from

an application, the channel speci�c thread handles the corresponding request.

In addition to the channel speci�c threads, a dedicated thread is created inter-

nally for each reader connected to the SmartRF. This thread, known as the reader

thread, is responsible for collecting data from the reader bu�er. The reader thread

also redirects the data to the channel bu�er based on the channel-data stream con-

�guration.



CHAPTER 4. SMARTRF IMPLEMENTATION 31

Thus, the SmartRF has the following types of threads during its execution.

• Application Listening Thread - This thread listens for incoming connections

from the application.

• Channel Servicing Thread - This thread services one channel.

• Reader Servicing Thread - This thread handles and communicates with one

reader.

The synchronization constructs used by SmartRF are Semaphore and Mutex. Syn-

chronization is needed between the following threads.

1. Between the Reader Servicing Threads - Every reader has its own thread in

SmartRF. All readers which are part of a particular channel will compete to

access the channel bu�er. These threads will be responsible for writing data

into the channel bu�er.

2. Between Channel Servicing Thread and Reader Servicing Thread - The Chan-

nel Servicing Thread reads data from the channel bu�er and passes on that to

the application. Thus, there is a need of synchronization between the reader

servicing threads that write to the channel bu�er and the channel servicing

thread that reads from the channel bu�er.

This problem of synchronization is similar to that of classic multiple writers, single

reader problem.

4.2 HAL Implementation

SmartRF provides the RFID applications an interface to the RFID hardware. This

access to the hardware by the SmartRF is carried out by the Hardware abstraction

layer (HAL). Generally, the RFID readers are accessed by a set of APIs provided

by the reader manufacturer, which are speci�c to each reader. These APIs are pro-

vided as DLLs or Shared Objects, as a part of the RFID reader package. For any



CHAPTER 4. SMARTRF IMPLEMENTATION 32

Figure 4.3: HAL Device Driver

reader to be accessible through SmartRF, it must implement the set of APIs de�ned

by SmartRF. Thus, in our implementation we use wrappers for the manufacturer-

provided reader APIs to make the readers accessible through SmartRF. These wrap-

pers internally call the reader speci�c API to implement the desired functionality.

Readers which are accessible through SmartRF have their drivers in the form

of DLLs or shared objects as part of the HAL. If there are multiple similar kind of

readers connected to the middleware, then all accesses to these readers takes place

through a single instance of the reader driver (�gure 4.3). For example, if one reader

(Reader 1) is connected to the system on the serial port interface and the other

similar reader is connected via the USB interface, both these devices will be accessed

using the same device driver. The driver is internally responsible for maintaining

a mapping between the connection type of the reader (Serial Port, USB, Ethernet)

and the API to be called internally. During the initial connection setup, the driver

returns a reader handle, which identi�es the type of connection. SmartRF, then uses

this handle for all further communication with this reader.

The HAL carries out this functionality by loading the manufacturer speci�c

reader libraries on demand. The information regarding these drivers (such as the

�le name, its location on the �le system) is provided in the SmartRF con�guration

�le. The SmartRF scans this con�guration �le in the beginning at the start up time.



CHAPTER 4. SMARTRF IMPLEMENTATION 33

It then identi�es the DLL and dynamically loads them for each device supported by

the SmartRF.

4.2.1 HAL Driver Functions

The HAL wrappers for the manufacturer-speci�c reader drivers interface to the

SmartRF middleware. For this, a wrapper must provide certain functions which

are called by the HAL layer. The following are the functions that must be imple-

mented by the wrappers for device drivers for the RFID readers. These functions

constitute the HAL API.

4.2.1.1 Open Reader

The Device_Open_Reader function is responsible for initiating a connection with

the reader. If the reader can be successfully connected, a handle identifying the

connection is returned otherwise the function returns a NULL value. All further

operations for this connection are identi�ed by the reader handle. This function must

take as an input the connection type of the reader. The connection type in SmartRF

is identi�ed by Port_Location:Port_type. For example the valid connection types

are COM:COM1, IP:172.27.20.5. More details on this are given in the Appendix.

Prototype:

void * Device_Open_Reader(char *Connection_Identi�er)

4.2.1.2 Close Reader

The Device_Close_Reader function call is used by SmartRF to close the connection

with the reader. This function must take the reader handle as an input argument.

On the successful execution of this function call, all reader operations are stopped

and the reader handle becomes invalid. The function returns with a success code

upon successful execution or with an error code.

Prototype:

int Device_Close_Reader(void* Reader_Handle)



CHAPTER 4. SMARTRF IMPLEMENTATION 34

4.2.1.3 Con�gure Reader

The Device_Con�gure_Reader function is used by SmartRF to set the reader spe-

ci�c parameters like the power level of operation, antenna operation speci�cations,

etc. The input arguments to this function must be the reader handle and a con�g-

uration structure which speci�es the list of the parameters and their values to be

set by the driver. The reader speci�c list of parameters to be set must be initially

speci�ed in the SmartRF con�guration �le. SmartRF parses this con�guration �le

in the beginning and con�gures the device using this API. The function returns with

a success code upon successful execution or with an error code.

Prototype:

intDevice_Con�gure_Reader(void * Reader_Handle, struct Con�g_Params

Con�g)

4.2.1.4 Start Read Operation

The Device_Start_Read function is used by SmartRF to start the read operation

at the reader. The wrapper must implement this function to be a continuous read

operation, until explicitly stopped by the HAL. The function must accept as input

arguments the reader handle which identi�es the reader connection and a structure

specifying the read parameters � the size of data to be read by the reader and the

protocol used by the reader for tag identi�cation. This function only initiates the

read operation. The driver or the wrapper must internally store the data read by the

reader and return it later using the Get Data operation. The function must return a

success code or an error code depending upon whether the operation was successful

or not.

Prototype:

intDevice_Start_Read (void * Reader_Handle, struct Read_Param Params)



CHAPTER 4. SMARTRF IMPLEMENTATION 35

4.2.1.5 Get Data

The function Device_Get_Data is used by SmartRF to read data from the driver or

the wrapper bu�er. The input arguments to this function provided by SmartRF are

the reader handle and a pointer in memory which is used to return the data upon

successful execution of the function. The function call is expected to return the size

of data stored in the bu�er and this value may even be zero.

Prototype

intDevice_Get_Data(void * Reader_Handle, struct Get_Read_Info *Params)

4.2.1.6 Stop Reader Read

The Device_Stop_Read function is used by SmartRF to stop ongoing read operation

of the reader. The reader handle is provided by SmartRF as an argument. The driver

returns a success code on the successful execution or an error code specifying the

error.

Prototype

int Device_Stop_Read(void * Reader_Handle)

4.2.1.7 Number of tags available

The Device_Num_Tags function implemented by the driver/wrapper must return

the number of tags available in the reader bu�er which are not yet read by SmartRF.

This helps SmartRF to determine the number of read operations needed, to empty

out the reader bu�er. The input argument to this function is the reader handle. An

error code specifying the error is returned by the driver if the function fails.

Prototype

int Device_Num_Tags(void * Reader_Handle)

4.2.1.8 Write Data

The Device_Write function is used by SmartRF to write data to the speci�ed tag.

The input arguments provided to this function are the reader handle and a structure



CHAPTER 4. SMARTRF IMPLEMENTATION 36

that must specify the partial or full tag ID to uniquely select the tag to be written

to, the data to be written to this tag and the protocol to be used for the data write

operation. A code must be returned to indicate success on the successful execution

of this function or an error as the case may be.

Prototype:

int Device_Write (void * Reader_Handle, struct Write_Params *Params)

4.2.1.9 Select Antenna

The Device_Select_Antenna function is used by SmartRF to power up the antennas

of the reader. The input arguments to this function provided by the SmartRF are

the reader handle and a list of the antenna IDs to be powered on.

Prototype

int Device_Select_Antenna(void * Reader_Handle, int Selected_Antennas[],

int Num_Antennas)

4.2.1.10 Set Association

The Device_Set_Association function is used by SmartRF to set associations be-

tween antennas of a reader. Some readers are unable to use the same antenna for

transmit and receive operations. In such cases, the readers use a set of associated

antennae to perform the RFID operation. This association may be �xed by the hard-

ware or programmable at hardware but �xed by the installation. The illuminator

antenna transmits radio waves and the receiver antenna reads the data from the tag.

These two (illuminator and the receiver) antennae then form an association. This

function is implemented by the driver to check if the speci�ed association is possible.

The input arguments are the reader handle and a set of transmitter and receiver

antenna which are to be associated. If the association has been successfully set, a

success code is returned or otherwise an error code is returned.

Prototype

int Device_Set_Association(void * Reader_Handle, struct Associations As-



CHAPTER 4. SMARTRF IMPLEMENTATION 37

sociate)

4.2.1.11 Check Reader Connectivity

The Device_Check _Connected function is used by SmartRF to check if the reader

device is connected to the system. The input argument to the function must be the

reader handle. A success code is returned if the reader is connected or an error code

is returned to indicate an error.

Prototype

int Device_Check _Connected(void * Reader_Handle)

4.3 EDML Implementation

The EDML is the data processing layer of SmartRF. The main functionality of this

layer is to maintain an internal database of a per-channel bu�er and to process the

RFID tag data in a manner con�gured by the application. The data into the channel

bu�ers is inserted by the reader thread whenever it reads the value of a tag. The

EDML then processes the data by the process of duplicate removal, data replacement

policy, grouping and �ltering.

Duplicate removal functionality allows the application to con�gure the time win-

dow during which same tag data read multiple times is not reported by the middle-

ware to the application. The duplicate read time window is speci�ed in seconds. For

duplicate removal processing, there is a need to search for tag data read by the reader

for existence in the middleware bu�er and ignore those entries which fall within the

duplicate time window. To reduce the search time, SmartRF uses a hash table. The

reader thread of SmartRF, on reading data from the driver/wrapper bu�er computes

its hash. If the corresponding entry in the hash table is marked valid, it compares

the previously stored data with the tag data. If this is indeed a duplicate, the tag

data is discarded. Otherwise the tag data is inserted into the hash table when the

corresponding hash table entry was invalid or did not match with the tag data. In

the case of a duplicate entry, the new data is accepted only if the time gap between



CHAPTER 4. SMARTRF IMPLEMENTATION 38

the existing and the new data item is more than the duplicate time window. Thus,

this allows us to search and insert data into the channel bu�er in O(1) time. Any

request for the data from the application is then carried out by the channel thread,

by serially accessing the channel bu�er and invalidating the hash table entry for the

outgoing data.

The data replacement policy allows the application to specify the action to be

taken by SmartRF in case of a channel bu�er over�ow. In SmartRF, the readers

continuously insert tag data into a �nite sized channel bu�er. Usually, the rate at

which the tag data is inserted in the channel bu�er by the readers is much slower

than the read rate of the applications. However when the application is slow or

when the application is not executing, the channel bu�er may get full. This leads

to a bu�er over�ow problem, when there is no free bu�er available for the new data

read by the reader. To handle this problem, SmartRF provides the application with

an ability to specify a data replacement policy to be used at the channel bu�er. The

following are the two policies.

1. Replace the oldest � In this policy, the oldest bu�ered data gets written with

the new data when the channel bu�er is full. Thus, the channel bu�er always

contains latest data read by the readers.

2. Do not replace � In this policy, the readers stop inserting new data into the

channel bu�er once it is �lled. New data is accepted only when the old data is

read by the application and a free bu�er becomes available.

The �ltering feature provided by SmartRF allows the application to request for

selective reporting of tag data. The �ltering speci�cation can be provided by the

application on a per-channel basis. This speci�cation consists of a �lter value and a

mask value speci�ed as sequence of bytes. During the �ltering, SmartRF performs a

bit-wise and operation between the RFID tag data and the provided mask value. It

then compares the masked value with the �lter value. Only the matched values of

the tags are forwarded to the application. This �ltering process is carried out after



CHAPTER 4. SMARTRF IMPLEMENTATION 39

the �lter speci�cations are set by the application. In our implementation, the �lter is

disabled initially and thus all the data read by reader is reported to the application.

As an example consider the scenario where the application needs to specify a

�lter such that SmartRF returns to the application the tag data which have a value

of hexadecimal 55 in their 3rd and 4th byte locations.

The �lter mask for this purpose shall be 0xFFFF0000

The �lter value to be matched shall be 0x55550000

Now consider that at some point in time the following tag data are present in a

channel bu�er.

1111 2222 3333 4444 5555 9911

1111 2222 3333 4444 2222 9911

1111 2222 3333 4444 8888 9911

1111 2222 3333 4444 5555 8888

The tags which will be selected by SmartRF after applying the �lter are the

following.

1111 2222 3333 4444 5555 9911

1111 2222 3333 4444 5555 8888

4.4 AAL Implementation

SmartRF is implemented as a daemon which interfaces multiple applications to mul-

tiple readers. An RFID application which uses the services of SmartRF through

AAL typically performs the following operations.

• Get the list of readers connected to SmartRF

• Create / delete the channels.

• Read / write tags through the channels.

• Modify channel con�guration parameters such as �ltering speci�cations, time

window for duplicate removal etc.



CHAPTER 4. SMARTRF IMPLEMENTATION 40

Figure 4.4: SmartRF � Application Interaction

SmartRF supports all these operations by providing the application with a set of

APIs. The applications and SmartRF are separate processes which may even run on

di�erent systems communicating through a socket interface. SmartRF provides the

application writer with a library which interprets the API calls and passes them to

the SmartRF middleware server (�gure 4.4). The general �ow of an RFID application

when it needs the services of SmartRF is as follows.

1. Connect to the SmartRF daemon.

2. Use services through the APIs provided by SmartRF to con�gure/access de-

vices.

3. Close the connection with SmartRF (optional).

4.4.1 AAL API Speci�cation

The following is the API which is provided to the applications by SmartRF to use

its services.

4.4.1.1 Connect to Middleware

The connect_app function is used by the application to establish a connection with

SmartRF. The input argument to this function are the IP address with the port



CHAPTER 4. SMARTRF IMPLEMENTATION 41

(speci�ed as a single argument � `IP:port') on which SmartRF listens for incoming

connections and a pointer to the connection descriptor variable that holds the in-

formation about the type of connection. The function returns a success code if the

connection is successful or an error code when it is unsuccessful.

Prototype:

int connect_app(string ip_address_port, Connection_descriptor *mwCon-

nection)

4.4.1.2 Get Reader List

The Get_Reader_List function is used by the application to get the list of readers

connected to the SmartRF. The input arguments to this function are the connection

descriptor identifying the connection and a pointer to memory where the list of

readers is returned that are connected to the SmartRF. The function call returns the

total number of readers connected to SmartRF. If the function fails, an error code is

returned.

Prototype

int Get_Reader_List(Connection_descriptor mwConnection, Reader_Info

**Reader_list )

4.4.1.3 Create Channel

The Create_Channel function is used by the application to create a channel. The

input arguments to this function call are the connection descriptor identifying the

connection, a list of data streams to be a part of the channel and the operation

type (read / write) of the channel. The function returns a channel ID if the channel

creation is successful or an error code specifying the error. The application then uses

this channel ID for any subsequent communication related to this channel.

Prototype

int Create_Channel(Connection_descriptor mwConnection, string Chan-

nel_name, Reader_antennas* Data_streams, int Operation_type)



CHAPTER 4. SMARTRF IMPLEMENTATION 42

Parameter ID Type Description

PARAM_NUM_BYTES integer Maximum number of bytes which can be

read by the Read_data function call

PARAM_DUPLICATE_TIME integer Duplicate window time in seconds

PARAM_MASK_VALUE string Mask value for the channel �lter

PARAM_FILTER_VALUE string Filter value for the channel �lter

PARAM_DATA_REPLACE integer Data replacement policy used by the

middleware for the channel bu�er over�ow.

The policies are described in section 4.3.

Table 4.1: Channel Parameters

4.4.1.4 Change Channel Con�guration

The channel_con�g function is used by the application to change the existing chan-

nel con�guration. Several parameters are available for the channel, each of which

may be changed through this function call. The table 4.1 lists the parameters for

the channel and their meaning.

The input argument to this function are the channel handle identifying the chan-

nel and a structure specifying the list of parameters to be changed. The function

returns a success code or an error code depending upon whether the requested set

of parameters are changed successfully or not.

Prototype

int channel_con�g(int Channel_Handle, Channel_Param Params)

4.4.1.5 Get Channel Con�guration

The Read_Con�g function is used by the application to get the values of parameters

for a channel from SmartRF. The table 4.1 gives the list of parameters whose values

are returned by SmartRF through this function call. The input arguments to this

function are the channel handle and a pointer to the memory where the list of channel

parameters is returned. The function returns a success code if the call is successful

or an error code when it is unsuccessful.

Prototype

int Read_Con�g(int channel_handle,Channel_Info **con�g_info)



CHAPTER 4. SMARTRF IMPLEMENTATION 43

4.4.1.6 Destroy Channel

The Destroy_Channel function is used by the application to delete the speci�ed chan-

nel from SmartRF. After the channel is destroyed, its corresponding data streams are

available to become part of another channel. The input argument to this function

is the channel handle which identi�es the channel. This function returns a success

code if the speci�ed channel is deleted or an error code which speci�es the error.

Prototype

int Destroy_Channel(int Channel_handle)

4.4.1.7 Read Data

The Read_data function is used by the application to read data from SmartRF.

The input arguments to this function are the channel handle that identi�es the

channel, a pointer to memory where the tag data read is returned, another pointer

to the memory where the time stamp of the data read is returned. In addition, this

function also takes another argument as the type of the read operation � blocking or

non-blocking. In blocking read, SmartRF returns to the application only when the

valid data is available. Whereas, in non-blocking read, SmartRF returns immediately

either with data if it is available or without data if it is not available. This function

returns the size of data (which may be 0 if no data is available) or an error code in

case of a read failure.

Prototype

int Read_data( int Channel_handle, unsigned char *bu�er, ssize_t *time_data,

int read_type)

4.4.1.8 Write data

The Write_data function is used by the application to write data to a selected

tag. The input arguments to this function are the channel handle that identi�es

the channel, the tag ID value which partially or fully identi�es the unique tag to

be written to, and, the data to be written to the tag. SmartRF �rst checks for the



CHAPTER 4. SMARTRF IMPLEMENTATION 44

tag IDs present in the range of the selected channel. If a unique tag matches the

speci�ed tag ID value, then the data is written to that tag. If more than one or

no tags match the given tag ID, an error code is returned. The function returns a

success code if the data is successfully written to the tag.

Prototype

intWrite_data(int Channel_handle, unsigned char *partial_tag_id, int tag_id_length,

unsigned char *data, int data_length)

4.4.1.9 Exit Application

The Exit_Application function is used by the application to close its connection

with SmartRF. The input argument for this function is the connection descriptor

that identi�es the application. SmartRF upon receiving this call deletes channels

created by this application. The use of this function is optional. The applications

when terminate without calling this function also result in the deletion of channels.

Prototype:

void Exit_Application(Connection_descriptor mwConnection)

4.5 Initialization of SmartRF

The initial con�guration of SmartRF is de�ned in an XML �le, a sample of which is

given in �gure 4.5. The con�guration �les gives information of all the readers which

are be connected to SmartRF. This �le has a hierarchical structure.

The `con�g_info' tag is the root level tag and encloses all information described

in the con�guration �le. The `con�g_info' tag contain one or more `reader' tags.

Each of these `reader' tags contain the reader speci�c information for one reader.

Thus, the number of readers in the system are equal to the number of `reader' tags

in the con�guration �le. The following are the list of tags de�ned inside the `reader'

tag.

1. manufacturer_name � This tag speci�es the manufacturer name of the reader.

In �gure 4.5 `ABCDEF' is the manufacturer name of the reader.



CHAPTER 4. SMARTRF IMPLEMENTATION 45

Parameter ID Possible Values Description

IP_ADDRESS Valid IP address of the form
x.x.x.x. Example �

<name>IP_ADDRESS</name>

<value>172.24.24.19</value>

IP address of the reader

BAUD_RATE Valid serial port baud rate.
Example �

<name>BAUD_RATE</name>

<value>115200</value>

Serial port baud rate

supported by the reader

Table 4.2: Reader port parameters

2. username � This tag speci�es the user name of the reader. Usually, this name

is the location at which the reader is placed. The applications identify the

readers through their name. In �gure 4.5, `CSE Lab' is the user name of the

reader.

3. port � This tag speci�es the port information on which the reader is connected

to the host system. The `port' tag contain one or more `param' tags, each of

which describes one port parameter. The tags `name' and `value' provide the

parameter information within the `param' tag. The table 4.2 provides informa-

tion regarding the various parameters and their possible values. In �gure 4.5,

the name of the parameter is `IP_ADDRESS' and its value is `172.27.22.36'.

4. antennas � This tag provides information regarding all the antennae connected

to the reader. A reader might have multiple antennae. Thus, there are mul-

tiple `antenna' tags each of which provide information regarding one antenna

connected to the reader. The antenna information such as the antenna number

of the antenna as identi�ed by the reader (antenna-id), the user de�ned name

of the antenna (username) and the port name of the reader on which the an-

tenna is connected (reader-port) are speci�ed within the `id', `username' and

`reader_port' tags respectively. In �gure 4.5, there is one antenna connected

to the reader whose id, user name and reader port are `1', `top' and `port1'

respectively.



CHAPTER 4. SMARTRF IMPLEMENTATION 46

5. association � This tag provides information regarding the antennae association.

The `association' tag contains the `operation_type' tag, which speci�es the op-

eration (read/write) for which the antenna association is valid. The associated

antennae are speci�ed inside the `operation' tag by the `transmitter' and `re-

ceiver' tags. In �gure 4.5, there is one association for the `write' operation. In

this association, the antenna `top' is both transmitter and receiver.

6. library � This tag speci�es the name of reader driver �le and its location on

the �le system. A reader may have one or more driver �les, each of which are

speci�ed in a `�le' tag. Thus, the `library' tag may de�ne one or more `�le'

tags. In �gure 4.5, `libx86m4.so' and `libmer.so' are the two driver �les.

7. protocol � This tag speci�es the protocol to be used by the reader to com-

municate with the tags. The list of protocols to be supported are speci�ed

by one or more `type' tags within the `protocol' tag. The protocols cur-

rently supported are PROTOCOL_ID_GEN2 (EPC Gen2 Protocol), PRO-

TOCOL_ID_ISO14443A (ISO1443A Protocol), PROTOCOL_ID_ISO15693

(ISO15693 Protocol), PROTOCOL_ID_EPC1 (EPC1 Protocol). In �gure

4.5, the supported protocol is `PROTOCOL_ID_GEN2'.

The following are the steps carried out during the initialization and working of

the readers by SmartRF.

1. The middleware con�guration �le is parsed and a list of readers is created

which are speci�ed in this �le. This reader-list stores all the reader speci�c

parameters such as antenna information, port information, etc., as speci�ed in

the con�guration �le.

2. For all the readers in the reader-list, their respective drivers are loaded from

the location speci�ed in the con�guration �le.

3. A connection is established with all the readers in the reader-list, whose drivers

were successfully loaded. The connection with each of the reader is identi�ed by



CHAPTER 4. SMARTRF IMPLEMENTATION 47

Figure 4.5: SmartRF Initial Con�guration File



CHAPTER 4. SMARTRF IMPLEMENTATION 48

a handle. This reader handle is then used for any subsequent communication

with this reader.

4. A high level reader-object is created for every reader in the reader-list. This

reader-object will be responsible for monitoring and handling all the requests

to the reader from the upper layers of SmartRF. The reader-object maintains

a reader-speci�c thread responsible for all reader communication.

5. For any reader speci�c call, the reader-object translates it to the HAL of the

speci�c reader. The HAL is then responsible for dynamically loading the re-

quired function and executing it. The reply is relayed back by the HAL to the

reader-object, which in-turn may forward it to the application.



Chapter 5

SmartRF Applications

RFID based auto-ID systems are being used extensively in various applications.

Di�erent applications have di�erent sets of requirements from the RFID system.

Based on these requirements the applications can be categorized into di�erent types.

5.1 Application Types

The set of applications based on asset tracking, movement tracking and supply chain

management require logic built in the application design. These kind of applications

identify items based on certain user-de�ned events. For example, consider an RFID

application to track the movement of items entering and leaving the warehouse.

This warehouse has multiple gates each of which could be used to enter or leave the

warehouse. In this case, the application would require a logic to determine the entry

or exit of an item based on the tag read by the RFID antennae placed at these gates.

One such logic could be built in the following manner. If the item is read by any

of the antennae for the �rst time, it is considered as an entry and if a previously

read tag is read the second time it is considered an exit. This would involve analysis

and processing of the tag data. There are many similar applications which require

complex data analysis. This processing gets complicated further considering the fact

that spurious reads and read-misses are also possible in the system.

The other set of applications like item theft management and access control, do

49



CHAPTER 5. SMARTRF APPLICATIONS 50

not require signi�cant processing or analysis of the tag data. These applications

simply use the tag-ID read by the RFID reader without its previous history. For

example, consider an RFID application for a departmental store which needs to

record all items which have left the store. This is easily done by placing an RFID

reader at the exit of the store. This reader records the items and reports them to

the application. The application just displays or stores this information.

The third set of applications, such as library management and toll collection,

require the tag data to be read, analyzed and written back. For example, consider

an RFID application for library management. Every student may be issued an RFID

tagged library card which stores information of the books borrowed by him. When

a student requests to borrow a book, his card is �rst checked if he is permitted to

borrow. Depending on the permissions, the application updates the card and the

internal database or rejects the request. These applications require to support read

and write operations to various memories in the tag.

5.2 Application development on SmartRF

The basic need of an RFID applications is its ability to track, locate or log a particular

object at a location and then provide this information to the end user or to other

enterprise applications. The applications are built using the support provided by

the middleware. Thus, the �exibility and robustness in the design of the middleware

plays an important role in the development and working of an application.

The hardware visualization and di�erent features provided by SmartRF can be

used e�ectively to build various kinds of applications. For this purpose a generic

application framework[39] is designed to build applications based on SmartRF. This

framework builds over the concept of data streams and channels to de�ne applica-

tion speci�c events. For example, an application may de�ne an event called EN-

TRY_WAREHOUSE to track items entering into a warehouse. This event signi�es

the entry of an item into the warehouse. The de�nition of this event is simple as

being �seen� by some channels. The events can be de�ned with regular expressions



CHAPTER 5. SMARTRF APPLICATIONS 51

where the alphabet denotes the �seen� by channels. A string accepted by this regular

expression speci�es that a tag data has been read in the channel order as speci�ed in

the expression. For example, consider a system with channels C1, C2, C3, C4 and

C5 con�gured by an application. Two events E1 and E2 are de�ned as following.

E1→ (C1 | C2) C3?

E2→ C4+C5

The event E1 is reported by the framework whenever a tag is read by any one of

the channel C1 or C2, followed by zero or more reads by channel C3. Similarly the

event E2, is reported when a tag is read one or more times by channel C4, followed

by reading exactly once by channel C5. A capability to de�ne events in such format

allows an application developer to infuse intelligence into the application and thus

build complex applications with little e�ort.

The advantages of using this framework are the following.

1. The ability of the application to specify di�erent regular expressions, provides

the �exibility to choose sequencing of tags through di�erent sets of channels

for identi�cation of an event.

2. Improvement in the robustness and e�ciency of the system, by providing the

ability to handle read misses by the reader. A regular expression allows di�erent

channel strings to be accepted as an event. This feature provides an ability to

handle missed reads by di�erent channels. In our example, event E1 is reported

when any one of the following channel strings are seen by the application.

• C1C3 � Tag seen by channel C1 followed by C3.

• C2C3 � Tag seen by channel C2 followed by C3.

• C1 � Tag seen by only C1.

• C2 � Tag seen by only C2.



CHAPTER 5. SMARTRF APPLICATIONS 52

Thus, even a read miss from channel C3 is identi�ed as an event.

The following features of SmartRF help in simplifying the application development.

1. The ability to select one or more or even a part of the reader as a channel

provides the application �exibility to de�ne logical data stream based on the

physical deployment. For example, consider the manifestation of an RFID gate

(�gure 5.1) using a single RFID reader. In this �gure, there is a reader R0 with

four antennae A0, A1, A2 and A3. Two channels C1, C2 are created, such that

the data streams R0-A0, R0-A1 are a part of the channel C1 and R0-A2, R0-

A3 are a part of the channel C2. This formation creates a gate, whose entry

event is de�ned when an RFID tag moving through this gate is �rst seen by

channel C1 and then by channel C2 (i.e. entry→ C1C2) and the exit event is

de�ned when the tag is �rst seen by channel C2 and then by channel C1 (i.e.

exit→ C2C1). This setup provides the application an easy way to determine

the entry and exit of an object.

2. The visualization of the tag as a stream of bytes allows the application to spec-

ify all the tag related operations like �ltering, writing to the tag, etc., with

little e�ort and in a technology-independent manner. For example, consider a

write data operation of the application. The following are some of the example

parameters provided by the applcation to the write data function.

Channel Handle (Value = 1)- Identi�es the channel.

Part / Full Tag ID (speci�ed as sequence of bytes, Value = 0x112233) � Iden-

ti�es a unique tag to be written irrespective of the tag protocol.

Data (sequence of bytes, Value = 0x223344) � New ID to be written to the

tag, whose original ID fully or partially matches the Tag ID (0x112233).

The above example shows the simplicity involved in accessing the tag data as

a sequence of bytes.

3. A abstraction of the hardware provided by SmartRF (data streams and chan-

nels) simpli�es application development. The channels are viewed and accessed



CHAPTER 5. SMARTRF APPLICATIONS 53

Figure 5.1: RFID Gate

in a manner similar to the �le streams and are identi�ed by a channel handle.

All functions provided by SmartRF take the channel handle as argument.

5.3 Postal Bag Tracking Application

SmartRF was used to build two RFID applications � the electronic �le tracking

system for the department of CSE IIT Kanpur and the postal bag tracking system

for speed post, India. Here, we give a brief description of the postal bag tracking

system.

The department of post is an organization under the Ministry of communication

and technology, India. One of the postal services called the speed post, links more

than 1200 towns in India. More than 10 million articles are carried by this postal

service every month. The current operation of this postal service takes place in the

following manner.

An article to be sent, is �rst collected at the local post o�ce. The local post

o�ces act as the customer-end interface and cater to small regions in the town. The

articles collected at these local post o�ces are then carried over to a mail sorting

o�ce of the town, known as speed post center (SPC). In the mail sorting o�ce,



CHAPTER 5. SMARTRF APPLICATIONS 54

all articles for a speci�c destination are put into a single bag. A packing list is

maintained for each bag. A paper tag specifying the destination is attached to this

bag. Hereon these paper tags are used to identify the bags. The bags from the SPC

are then carried over to the transit mail o�ce (TMO) for onward dispatch to the

TMO covering the respective destinations. The reverse process is carried out at the

destination TMO. In this existing system, the article is logged only at two points �

at the source SPC and at the �nal delivery to the end customer. The tracking of the

article is therefore very poor during its transit from the source to the destination.

In cases, where the bag moves through various transit o�ces, it becomes impossible

to track the exact location of the bag and thus the article. This incompetence may

lead to chaos, if a bag is lost during the transit.

We have developed an RFID based system to track the movement of these bags.

Every bag which is created at the mail sorting o�ce is RFID tagged with the following

information � bag-ID, source town, destination town, date and time of creation of the

bag. Information about the articles (article-ID) contained in the bag is maintained at

a central location due to the packaging list creation process. We decided to introduce

the RFID tracking points at the SPCs and TMOs. These are the places, where all the

bags visit and are aggregated/segregated according to the destination. The RFID

readers are placed at these tracking points. At the SPC, the reader antennae are

placed at the entry and exit. This helps to track the incoming and outgoing bags.

Mobile RFID readers are used at the TMO for the reasons of �exibility. These mobile

readers read the bags coming in or going out of the TMO. The middleware at each

of these location is connected to a central database to which all the tag reads are

updated periodically. The end user is provided with a web based interface to query

the article. The query uses the article-bag mapping from the central database and

displays the route history of the article.

An experimental prototype of this project was successfully developed and tested

in the Department of Computer Science, IIT Kanpur. The �gure 5.2 shows the

web portal displaying the postal bag tracking information. Here the SPC and TMO



CHAPTER 5. SMARTRF APPLICATIONS 55

correspond to mail sorting o�ce and mail transit points respectively.

Figure 5.2: Portal for the Bag Tacking Information

The various components involved in the development of this system are the fol-

lowing.

• RFID Tags - 96-bit EPC Gen2 tags from RafSec and Alien.

• RFID Readers - EPC Gen2 protocol supported readers from SmartID and

Thing Magic (Mercury).

• Software System - SmartRF as the RFID middleware and the generic applica-

tion framework[39] for the application development.

The experimental prototype was evaluated over a period of one month based on

di�erent hardware and software con�gurations. The important experiments that

were carried out with respect to the hardware were testing of the system with di�erent

tags, readers, antenna placement and orientations, tag packaging materials and tag

placements. The software based experiments included testing the system with and



CHAPTER 5. SMARTRF APPLICATIONS 56

Figure 5.3: Comparison between Tag A and Tag B

without using the regular expression speci�cation provided by the generic application

framework during application development.

An important observation made during the testing of the system was that the

read misses by the readers were quite signi�cant. The tracking percentage without

using regular expressions for event speci�cation was 70 - 100%. The read percentage

dropped signi�cantly with increasing number of bags being carried together. The

regular expression speci�cation provided by the application framework was very use-

ful and e�ective in capturing the events involving missed reads. The performance of

the system signi�cantly improved by including this feature.

The experiment was carried out by using tags with di�erent antenna designs. In

this experiment some tags performed better than the others, as shown in �gure 5.3.

The experiment results were insigni�cant when carried out with di�erent UHF RFID

readers. The packaging materials used for tags, played a signi�cant role. Thicker

packaging materials provided better results compared to thinner or no packaging

material. This was due to the fact that, thicker materials provided the tags with an

larger air gap and thus improved their performance.



Chapter 6

Performance and Results

6.1 Setup Environment

The SmartRF middleware server was run on a computer with Intel Pentium 4, 512

MB RAM, running the Windows XP operating system. This machine was put on

the network and connected to the following three RFID readers.

1. SmartID reader[26] � UHF RFID reader, 4 antennas, supports serial port as

the host-side communication interface.

2. Mercury 4 reader[21] � UHF RFID reader, 8 antennas, supports ethernet as

the host-side communication interface.

3. NXP Pegoda reader[35] � HF RFID reader, 1 antenna, supports USB as the

host-side communication interface.

The following RFID tags were placed in front of each of these readers.

1. RafSec tags[32] � UHF frequency, EPC Gen2 protocol, 96-bit UID and no user

memory.

2. Alien tags[10] � UHF frequency, EPC Gen2 protocol, 96-bit UID and no user

memory.

57



CHAPTER 6. PERFORMANCE AND RESULTS 58

3. MiFARE Standard 1K cards[36] � HF frequency, ISO14443A protocol, 4 byte

UID and 1K Byte memory.

Multiple RFID application clients were remotely connected to SmartRF via the

socket interface. These clients performed operations such as to create, delete, con-

�gure, read from and write to the channels.

6.2 Performance Parameters

The aim of the experiment was to measure the following performance parameters.

1. Initial boot time of SmartRF � This is the total boot time taken by SmartRF.

This time interval includes the time taken for all the initial con�guration made

by SmartRF such as creating a list of the readers connected to the system,

initialization of the internal bu�ers, mutex and semaphores, and setting up a

socket based interface.

2. Response time of SmartRF � The response time is the time taken by SmartRF

to execute an API when requested by a client application. For example, the

response time for the Create_Channel API is the time di�erence between the

call by the client application to this API and the return code from SmartRF.

3. Memory usage of SmartRF � The memory usage includes the runtime and peak

memory utilized by SmartRF during the test run. The peak memory usage is

de�ned as the maximum memory utilized by SmartRF during the test and the

runtime memory is the average memory utilized by SmartRF during multiple

test runs.

6.3 Test Speci�cations

As discussed earlier, SmartRF was connected to di�erent readers through various

communication interfaces (Serial Port, Ethernet, USB). The test was carried out on



CHAPTER 6. PERFORMANCE AND RESULTS 59

three computer systems. One system ran the SmartRF RFID middleware and the

other two systems were the application clients.

The timing measurements of the tests were carried out using the standard APIs

� QueryPerformanceTimer and QueryPerformanceFrequncy provided by the Win-

dows operating system. These APIs provide a microsecond granularity for timing

measurements.

A number of readings were taken over a week at di�erent times with di�erent

loads to measure various test parameters. The initialization time of SmartRF was

calculated by taking an average of the initialization time of SmartRF in various

reader con�gurations. The response time of SmartRF was calculated by measuring

the average time taken to execute various SmartRF APIs. The peak memory usage

was calculated by measuring the maximum memory utilized by SmartRF during a

test which lasted over 24 hours.

6.4 Performance Results

6.4.1 Initialization Time

The timing values below (table 6.1) are the average initialization time (in millisec-

onds) of SmartRF when connected with 1, 2 and 3 RFID readers.

1 Reader 2 Readers 3 Readers

318.76 663.149 1046.017

Table 6.1: Initialization time in milliseconds of SmartRF

The timing values indicate that the time taken for the initialization of SmartRF

increases as the number of RFID readers connected to the system increases.

6.4.2 Response Time

The timing values shown in table 6.2 are the average response time of various APIs

supported by SmartRF. The values speci�ed here are in milliseconds.



CHAPTER 6. PERFORMANCE AND RESULTS 60

API Name 2 Readers 3 Readers

Get_ReaderInfo() 0.0443 0.047

Create_Channel() 4.556 8.871

Read_ChannelData() 0.021 0.021

Table 6.2: Response time in milliseconds of SmartRF

Following are some of the important observations.

1. In Get_ReaderInfo(), the time taken remains constant irrespective of the num-

ber of readers connected to the system. This is because there is no data pro-

cessing involved in this API call. SmartRF, executes this API by replying with

the list of readers connected to the system.

2. In Create_Channel(), the overall time time taken is greater than the execution

time of the other APIs. This is because this call �rst checks if the list of reader-

antenna pairs provided by the client are a valid set or not. It then starts the

read operation of the selected reader and �nally creates a data structure to

store and manage all channel speci�c information. There is also a substantial

di�erence between the timing values, when two and three RFID readers are

connected because of the increase in time for the reader-antenna pair validation.

3. In Read_ChannelData(), the execution time taken is constant irrespective of

the number of readers connected to the system. This function call involves

reading data from the channel bu�er, applying the �lter if speci�ed and re-

turning data to the application.

6.4.3 Runtime and Peak Memory Usage

The graph representing the runtime memory usage of SmartRF over a period of 1

hour is shown in the �gure 6.1. At the start of execution the memory utilized by

SmartRF is high due the processing involved in initialization of the RFID readers.

After the initialization of SmartRF, the memory usage drops drastically. Then it

slowly increases as more and more data is processed by SmartRF and sent to the

applications. The memory usage comes down as and when the applications consume



CHAPTER 6. PERFORMANCE AND RESULTS 61

Figure 6.1: Runtime memory usage of SmartRF

the data freeing up the bu�er space of the middleware. The average runtime memory

utilized by SmartRF in this experimental setup was found to be 2148 KB.

For the calculation of the peak memory utilized, the load on SmartRF was in-

creased by connecting it to 3 di�erent clients simultaneously and increasing the

number of tags in the vicinity of the readers. This setup was run continuously over a

period of 24 hours. The peak memory utilized by SmartRF during this experiment

was found to be 24568 KB.



Chapter 7

Conclusion

In this chapter, we present a comparison of the features and design of SmartRF with

respect to the other middleware solutions. The following are some of the salient

features of SmartRF.

1. Tag Abstraction � SmartRF provides the view of tag data as a stream of bytes.

This abstraction gives an independence from various tag characteristics like

protocols, air-interface and thus, allowing various kinds of tags to be supported

by SmartRF. Many middlewares implement a protocol speci�c access to the

tag. Thus, increasing the complexity of the applications by forcing them to

understand the tag protocol speci�cations.

2. Reader abstraction � The reader abstraction provides a common interface to

access the RFID hardware devices having di�erent characteristics such as pro-

tocols, host-side communication interface, etc. This abstraction exposes simple

functions like open, close, read, write, etc. to accomplish complex operations

of the readers. This is done in SmartRF by providing a HAL wrapper which

exposes the manufacturer-speci�c device APIs of the reader as a simple set of

APIs.

3. SmartRF has provisions to handle device speci�c limitations such as antenna

associations, which is not supported by any of the other known middlewares.

62



CHAPTER 7. CONCLUSION 63

SmartRF handles these limitations internally rather than making the appli-

cations aware of it, as is done by most other middlewares. This reduces the

complexity of the application and helps in a device-neutral development of the

application.

4. Di�erent middlewares available today consider a single reader as an individual

source of data, which cannot be further subdivided. This prevents multiple

applications to access and con�gure a single reader. Thus, reducing the �exi-

bility of the system. SmartRF allows each reader-antenna pair (data stream)

to be viewed as a data source. This allows applications to interact with one or

more or even with a part of the reader using channel abstraction. This feature

allows �exibility in the middleware con�guration.

5. SmartRF presents to the application an e�cient and simple method to specify

the data processing speci�cations like the �lter masks, duplicate time window.

As the tags are viewed as a stream of bytes, the �lter speci�cations are provided

by the application as a set of consecutive bytes. Thus, the applications have a

complete independence from various tag protocol formats. Various other mid-

dlewares use protocol speci�c �lter speci�cations. For example, the Microsoft

RFID Biztalk middleware uses EPCGlobal de�ned �lter speci�cation[27].

6. In the development of an RFID application on SmartRF, an application de-

veloper makes no assumptions regarding the underlying hardware on which

the application is to run. Whereas, in most other middlewares, the appli-

cation developer is exposed to the hardware internals and limitations which

must be considered while developing applications. SmartRF insulates the ap-

plication developer from any hardware details. This helps in a device-neutral,

technology-independent design and development of the applications.

7. The modular design and open-source development of SmartRF helps in easy

understanding of the middleware. It also facilitates the development and inte-

gration of newer features with little e�ort. The other commercial middleware



CHAPTER 7. CONCLUSION 64

provide no such ability to extend the existing set of features of the middleware.

8. The runtime support softwares required by SmartRF are very few and are

readily available. This makes SmartRF a light and portable RFID middleware.

The support software required by SmartRF are the XML library required by

SmartRF during initialization, MySQL database required for internal storage

and the QT library for the middleware management interface. These support

software integrate into SmartRF easily. Whereas, the proprietary middlewares

like Biztalk (Microsoft) are heavily dependent on their own proprietary support

software for their runtime operation. This makes the middleware bulky, costly

and non-portable.

9. The runtime memory utilized by SmartRF under heavy load conditions is low

as compared to the other middleware solutions which utilize very high memory

at runtime due to the bulky support software required by them.

Future Work

We propose the following future extensions to our work.

• Performance improvement of SmartRF by reducing on the response time of

the APIs and improving the memory utilization. Thorough testing of the

middleware to make it more robust.

• Inclusion of additional reader con�gurable parameters and to develop HAL

wrappers for other existing readers.

• Extend SmartRF to support EPCglobal standard and thus, making is EPC

compliant.

Summary

The primary objective of this thesis was to develop an RFID middleware which allows

device-neutral and technology-independent development of the RFID applications.



CHAPTER 7. CONCLUSION 65

The developed system, `SmartRF' is a simple, light-weight, and portable RFID mid-

dleware which provides all the generic capabilities and functionality required to be

supported by a fully functional middleware. The ability of SmartRF to support mul-

tiple applications to simultaneously interact with one or more or even a part of the

RFID reader provides applications �exibility and robustness compared to the other

middlewares.

The postal bag tracking application is an example RFID system built with the

help of SmartRF and a supporting application framework. Thus, SmartRF with its

supporting application framework can be used to built complex applications with

little e�ort.



Bibliography

[1] Pharmaceutical Product Tampering News Media Factsheet. HDMA, April 2004.

[2] ISO 14443-3. Identi�cation Cards - Contactless Integrated Circuit Cards - Prox-

imity Cards, Part 3: Initialization and Anticollision. February 2001.

[3] ISO 15693-3. Identi�cation Cards - Contactless Integrated Circuit Cards - Vicin-

ity Cards, Part 3: Anticollision and Transmission Protocol. April 2001.

[4] Z. Asif and M. Mandviwalla. Integrating the Supply Chain with RFID: A Tech-

nical and Business Analysis. Communications of the Association for Information

Systems, Volume 15:393�427, 2005.

[5] P. Blythe. RFID for Road Tolling, Road-use Pricing and Vehicle Access Control.

IEE Colloquium on RFID Technology (Ref. No. 1999/123), Volume 1:8/1�8/16,

1999.

[6] R.W. Boss and American Library Association. RFID Technology for Libraries.

American Library Association, 2003.

[7] J.H. Bowers and T.J. Clare. Inventory System Using Articles with RFID Tags,

1999. US Patent 5,963,134.

[8] A. Brewer, N. Sloan, and T.L. Landers. Intelligent Tracking in Manufacturing.

Journal of Intelligent Manufacturing, 10:245�250, March 1999.

[9] Federal Trade Commision. Radio Frequency Identi�cation: Applications and

Implications for Consumers. Technical report, Federal Trade Commision, March

2005.

66



BIBLIOGRAPHY 67

[10] Alien Techcology Corporation. Alien Family of EPC Gen 2 RFID Inlays, Octo-

ber 2007.

[11] W.J. Eradus and M.B. Jansen. Animal Identi�cation and Monitoring. Comput-

ers and Electronics in Agriculture, 24:91�98, November 1999.

[12] K. Finkenzeller. RFID handbook. Wiley Hoboken, NJ, 2003.

[13] C. Floerkemeier, C. Roduner, and M. Lampe. RFID Application Development

with the Accada Middleware Platform. IEEE Systems Journal, Special Issue on

RFID Technology, Volume 10, December 2007.

[14] EPC Class 1 Gen2. EPCglobal Tag Data Standards Version 1.3. March 2006.

[15] R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressler, V. Gutnik, C. Ha-

gen, D. Hara, T. Hass, T. Humes, et al. Design of ultra-low-cost UHF RFID Tags

for Supply Chain Applications. Communications Magazine, IEEE, 42(8):140�

151, 2004.

[16] B. Glover and H. Bhatt. RFID Essentials. O'Reilly, 2006.

[17] P.M. Goodrum, M.A. McLaren, and A. Durfee. The Application of Active

Radio Frequency Identi�cation Technology for Tool Tracking on Construction

Job Sites. Automation in Construction, 15:292�302, March 2006.

[18] EPCglobal Inc. Lower Level Reader Protocol (LLRP) 1.0.1 Speci�cation. Au-

gust 2007.

[19] EPCglobal Inc. EPC Information Services Version 1.0.1 Speci�cation.

Septermber 2007.

[20] Sun Microsystems Inc. Sun Microsystems Inc. Sun Java System RFID Software.

February, 2006. http://www.sun.com/ software/ products/ r�d/ index.xml.

[21] ThingMagic Inc. Mercury 4 Datasheet. 2006.



BIBLIOGRAPHY 68

[22] M. Karkkainen. Increasing E�ciency in the Supply Chain for Short Shelf Life

Goods using RFID Tagging. International Journal of Retail & Distribution

Management, 31:529�536, October 2003.

[23] Frank Knifsend. Oracle Fusion Middleware and Microsoft Interoperabil-

ity:Addressing Enterprise-wide Needs. Technical report, January 2005.

[24] R. Koh, E.W. Schuster, I. Chackrabarti, and A. Bellman. Securing the Pharma-

ceutical Supply Chain. Auto-ID Center MIT, White Paper, September, 2003.

[25] C.J. Li, L. Liu, S.Z. Chen, C.C. Wu, C.H. Huang, and X.M. Chen. Mobile

Healthcare Service System using RFID. IEEE International Conference on Net-

working, Sensing and Control, 2004, Volume 2:1014�1019, March 2004.

[26] SmartID Technology Pte Ltd. SM112 Datasheet. 2007.

[27] Microsoft. BizTalk Server 2006 Developer Productivity Study. January 2007.

www.microsoft.com/biztalk/en/us/r�d.aspx.

[28] PV Nikitin, KVS Rao, SF Lam, V. Pillai, R. Martinez, and H. Heinrich. Power

Re�ection Coe�cient Analysis for Complex Impedances in RFID Tag Design.

Microwave Theory and Techniques, IEEE Transactions on, 53(9):2721�2725,

2005.

[29] J.H. Park, J.H. Park, and B.H. Lee. RFID Application System for Postal Logis-

tics. Portland International Center for Management of Engineering and Tech-

nology, pages 2345�2352, August 2007.

[30] Christy Pettey. Gartner Says Worldwide RFID Spending to Surpass USD 3

Billion in 2010. Technical report, Gartner, Inc, December 2005.

[31] BS Prabhu, X. Su, H. Ramamurthy, C.H.I.C. Chu, and R. Gadh. WinRFID: A

Middleware for the Enablement of Radiofrequency Identi�cation (RFID)-Based

Applications. Mobile, Wireless, and Sensor Networks: Technology, Applications,

and Future Directions, 2006.



BIBLIOGRAPHY 69

[32] UPM Ra�atac. UPM Ra�atac UHF Family Products, 2006.

[33] M.R. Rieback, G.N. Gaydadjiev, B. Crispo, R.F.H. Hofman, and A.S. Tanen-

baum. A Platform for RFID Security and Privacy Administration. Proceedings

of the 20th conference on Large Installation System Administration Conference-

Volume 20, pages 89�102, December 2006.

[34] S.E. Sarma, S.A. Weis, and D.W. Engels. RFID Systems and Security and Pri-

vacy Implications. Workshop on Cryptographic Hardware and Embedded Sys-

tems, 2523:454�470, 2002.

[35] Philip Semiconductors. mifare MF RC500 Highly Integrated ISO14443A Reader

IC Revison 2.0. January 2002.

[36] Philip Semiconductors. mifare Standard 4K Byte Card IC MF1 IC S70 Func-

tional Speci�cation. November 2002.

[37] S. Waters and S. Rahman. RFID and supply chain performance: adoption issues

in the retail supply chain. International Journal of Internet Protocol Technology,

2(3):190�198, 2007.

[38] R. Weinstein. RFID: A Technical Overview and its Application to the Enter-

prise. IT Professional, Volume 7:27�33, May 2005.

[39] Zuber, A. Ghayal, and R. Moona. A Generic RFID Application Framework,

May 2008.



Appendix A

Hardware Abstraction Layer

(HAL) APIs of SmartRF

This chapter of the appendix gives a description of the set of APIs which are a part

of the device driver of a RFID reader. These APIs are intended to be used by the

software developer to build device driver. The developer must have knowledge of the

reader functionality and a general overview of the �SmartRF � RFID Middleware�.

These device drivers are provided as DLLs (Windows) or shared objects (Unix).

A.1 Introduction

�SmartRF � The RFID Middleware� provides the RFID application an interface

to the RFID hardware. In SmartRF, the access to the hardware is carried out

by the hardware abstraction layer (HAL). All the reader devices have their device

speci�c APIs (device drivers) provided as DLLs or shared objects. For any reader

to be accessible through SmartRF, it must implement the set of APIs de�ned by

SmartRF. In the case of SmartRF, these APIs are implemented as wrappers over

the manufacturer-provided reader APIs. This chapter gives a detailed description of

these APIs.

In the next section we provide the system architecture and in the �nal section

we give a list of APIs which are to be the part of the device driver.

70



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF71

Figure A.1: RFID System Architecture (hardware)

A.2 System Architecture

The �gure A.1 gives the overview of the RFID system. It also explicitly speci�es

the hardware interaction with the middleware. The readers have their own device

drivers and these drivers are included in the middleware as a part of the hardware

abstraction layer. This layer (HAL) is responsible for all the communication with

the hardware. The APIs which are described here are the reader device drivers

(example � Reader 1 device driver, Reader 2 device driver in the above �gure A.1).

Any command from the application needing an access to the RFID hardware travels

through to the HAL and based on the reader handle the speci�c device driver HAL

function is called.



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF72

A.3 API Speci�cation

A.3.1 Open Reader

The Device_Open_Reader function is used by SmartRF to initialize a connection

with the reader.

Syntax

void * Device_Open_Reader(char *Connection_Identi�er)

Input

1. Connection_Identi�er � This speci�es connection type of the reader. The value

for this variable must be of the form `connection type:connection value'. For

example � �IP:172.26.89.19�, �COM:COM1�, �USB:USB1�.

Return value

Reader handle � Handle to the reader is connection is successful.

NULL � Reader is not accessible.

Description

This API checks if the speci�ed reader exists. It returns with a handle if the reader

is present. The device driver must internally have a structure to map the handle

and the corresponding con�guration in which the reader (Serial, USB, Ethernet) is

con�gured.

A.3.2 Close Reader

The Device_Close_Reader function is used by SmartRF to close the connection with

the reader.

Syntax

int Device_Close_Reader(void* Reader_Handle)



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF73

Input

1. Reader_Handle � Handle of the reader.

Return value

DEVICE_CMD_SUCCESS � Reader connection is successfully closed

DEVICE_CMD_FAILED � Reader connection cannot be closed.

Description

This API closes the connection with the speci�ed reader. If the function call is

successful the reader handle is no more valid.

A.3.3 Con�gure Reader

The Device_Con�gure_Reader function is used by SmartRF to set the reader spe-

ci�c parameters like the power level of operation, antenna operation speci�cations,

etc.

Syntax

int Device_Con�gure_Reader(void * Reader_Handle, struct Con�g_Params

Con�g)

Input

struct Con�g_Params {

int Num_params;

struct Reader_Params *Params ;

}

struct Reader_params {

int param_type;

int param_size;

void *param_value;



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF74

}

1. Reader_Handle � Handle of the reader.

2. struct Con�g_Params � List of reader parameters.

a) struct Reader_Params � Array of Structure which give set of parameters to

be con�gured.

b) Num_Params � Number of parameters de�ned in the struct Reader_Params.

Return Value

DEVICE_CMD_SUCCESS � Reader is con�gured successfully.

DEVICE_CMD_FAILED � Reader con�guration fails.

A.3.4 Start Read Operation

The Device_Start_Read function is used by SmartRF to start the read operation

at the reader.

Syntax

int Device_Start_Read (void * Reader_Handle, struct Read_Param Params)

Input

struct Read_Param {

int size_of_data;

int Read_Protocol;

}

1. Reader_Handle � Handle of the reader.

2. struct Read_Param Params � Structure speci�es the read parameters.

a) size_of_data � Size of data to be read by the reader

b) Read_Protocol � Reader protocol to be used for the read operation. The

following protocols can be speci�ed.



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF75

PROTOCOL_ID_EPC1 � 0x1

PROTOCOL_ID_ISO15693 � 0x2

PROTOCOL_ID_ISO14443 � 0x4

PROTOCOL_ID_EPC0 � 0x8

PROTOCOL_ID_GEN2 � 0x10

Return Value

DEVICE_CMD_SUCCESS � Reader read starts successfully.

DEVICE_CMD_FAILED � Reader fails to start read operation.

Note

The size_of_data parameter in the Read_Param structure de�nes the following.

size_of_data = unique ID (based on the protocol) + user data.

Based on the size of data to be read and the protocol supported, the API de-

cides the size of unique ID and user data, and internally calls functions to access

these memory banks separately. For example, if the size_of_data = 20 bytes and

Read_Protocol = PROTOCOL_ID_GEN2 then, unique ID = 12 bytes and user

data = 8 bytes.

A.3.5 Get Read Data

The function Device_Get_Data is used by SmartRF to read data from the driver

bu�er.

Syntax

intDevice_Get_Data(void * Reader_Handle, struct Get_Read_Info *Params)

Input

struct Get_Read_Info {

int data_valid;



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF76

int antenna_id;

char *data;

int Protocol_Read;

}

1. Reader_Handle � Handle of the reader.

2. struct Get_Params *Params

a) data_valid � Indicates the validity of the data.

b) antenna_id � Antenna ID of the antenna which has read the data.

c) data � Pointer in memory which is used to return the read tag data.

d) Protocol_Read � Reader protocol used to communicate with the tag.

Return Value

Size of data � Read is successful.

DEVICE_CMD_FAILED � Operation fails.

A.3.6 Stop Reader Read

The function Device_Stop_Read is used by SmartRF to stop the read operation of

the reader.

Syntax

int Device_Stop_Read(void * Reader_Handle)

Input

1. Reader_Handle � Handle identifying the reader.

Return Value

DEVICE_CMD_SUCCESS � Reader read operation is successfully stopped.

DEVICE_CMD_FAILED � Reader read operation cannot be stopped.



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF77

A.3.7 Number of tags available

The Device_Num_Tags function returns the number of tags available in the reader

bu�er which are not yet read by SmartRF.

Syntax

int Device_Num_Tags(void * Reader_Handle)

Input

1. Reader_Handle � Handle of the reader.

Return Value

Number of tags � Function call executed successfully.

DEVICE_CMD_FAILED � Function fails.

A.3.8 Write Data

The Device_Write function is used by SmartRF to write data to the speci�ed tag.

Syntax

int Device_Write (void * Reader_Handle, struct Write_Params *Params)

Input

struct Read_Params {

char *Tag_ID ;

char *Tag_Data;

int data_length;

int Protocol_Write;

}

1. Reader_Handle � Handle of the reader.



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF78

2. struct Write_Params *Params �

a) Tag_ID � Tag ID of the tag which is to be written to.

b) Tag_Data � Data which is to be written to the tag.

c) data_length � Length of data to be written to the tag (length of Tag_Data).

data_length = Tag ID (UID) + user data.

if(data_length < UID) � Tag_Data value is the new UID. Bytes of old UID

replaced with Tag_Data.

if(data_length > UID) � Tag_Data value is the new UID + user data.

if(data_length = UID) � Tag_Data value is the new UID.

d) Protocol � Reader protocol to be used for writing to the tag.

Return Value

DEVICE_CMD_SUCCESS � Write to tag is successful.

DEVICE_CMD_FAILED � Write to tag has failed.

A.3.9 Select Antenna

The Device_Select_Antenna function is used by SmartRF to power up the antennas

of the reader.

Syntax

int Device_Select_Antenna(void * Reader_Handle, int Selected_Antennas[], int

Num_Antennas)

Input

1. Reader_Handle � Handle of the reader.

2. Selected_Antennas � Array of antenna numbers for a speci�c reader device

which are to be powered on.

3. Num_Antennas � Number of valid entries in the `Selected_Antennas' array.



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF79

Return Value

DEVICE_CMD_SUCCESS �Antennas successfully selected.

DEVICE_CMD_FAILED � Antennas selection failed.

A.3.10 Set Associations

The Device_Set_Association function is used by SmartRF to set associations be-

tween antennas of a reader.

Syntax

int Device_Set_Association(void * Reader_Handle, struct Associations Asso-

ciate)

Input

struct Associations {

int Transmitter_Antennas[];

int Num_Transmitter;

int Receiver_Antennas[];

int Num_Receiver;

}

1. Reader_Handle � Handle of the reader

2. struct Associations � Structure speci�es the association information.

a) Transmitter_Antenna[] � Array of antenna numbers to be selected as trans-

mitters for an association.

b) Num_Transmitter � Number of valid entries in the Transmitter_Antenna

array.

c) Receiver_Antenna[] � Array of antenna numbers to be selected as receivers



APPENDIX A. HARDWARE ABSTRACTION LAYER (HAL) APIS OF SMARTRF80

for an association.

d) Num_ Receiver � Number of valid entries in the Receiver _Antenna array.

Return Value

DEVICE_CMD_SUCCESS � Antennae are successfully associated

DEVICE_CMD_FAILED � Antennae association failed.

A.3.11 Check Reader Connectivity

The Device_Check _Connected function is used by SmartRF to check if the reader

device is connected to the system.

Syntax

int Device_Check _Connected(void * Reader_Handle)

Input

1. Reader_Handle � Handle of the reader.

Return value

DEVICE_CMD_SUCCESS �Device is connected.

DEVICE_CMD_FAILED � Device is not connected.



Appendix B

Application Abstraction Layer

(AAL) APIs of SmartRF

B.1 Introduction

`SmartRF' is an RFID middleware which provides the application a device-neutral

interface to access the hardware. The applications running over SmartRF perform a

number of operations, some of which are the following.

• Reading and writing data to the tags .

• Con�guring the middleware data processing features such as �ltering, duplicate

time window, etc.

• Add and delete readers to the middleware.

SmartRF provides the application with APIs to perform all the above speci�ed oper-

ations. These APIs are provided as a part of the application abstraction layer (AAL)

of SmartRF. In this chapter of the appendix, we provide a list of all the APIs which

are provided to the application by SmartRF.

SmartRF is implemented as a daemon which interfaces multiple applications with

multiple readers. The application and SmartRF are separate processes which may

be running on di�erent systems and communicating via the socket interface. The

81



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF82

following is the general �ow of an RFID application when it needs the services of

SmartRF.

1. Connect to the SmartRF daemon.

2. Use services (APIs provided) by SmartRF to con�gure/access devices.

3. Close the connection with SmartRF.

In the next section, we give a the system architecture and in the �nal section we

provide a list of all the APIs.

B.2 System Architecture

Figure B.1: RFID System Architecture (applications)

The �gure B.1 gives an overview of the RFID system architecture. Multiple appli-

cations communicate with SmartRF using the available APIs. The application ab-



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF83

straction layer (AAL) of SmartRF is responsible for handling all the communication

with the applications. The AAL interprets the call from the application and passes

on the required information to the lower layers of SmartRF, which are responsible

for accessing and con�guring the hardware.

B.3 API Speci�cation

B.3.1 Connect to the middleware

The connect_app function is used by the application to establish a connection with

SmartRF.

Syntax

int connect_app(string ip_address_port, Connection_descriptor *mwConnec-

tion)

Input

1. ip_address_port � IP address and the port of the middleware server. This

value is speci�ed as IP_address:port_value. For example `172.24.24.19:11002'.

2. mwConnection � Address of the variable which holds the information about

the type of connection made with the middleware.

Return Value

SMARTRF_SUCCESS � Application connects to SmartRF.

SMARTRF_FAIL � Application fails to connect to SmartRF.

B.3.2 Get reader list

The Get_Reader_List function is used by the application to get the list of readers

connected to the SmartRF.



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF84

Syntax

intGet_Reader_List(Connection_descriptormwConnection, Reader_Info **Reader_list

)

Input

struct Reader_Info{

string Manufacturer_Name;

string Userde�ned_Name;

string Port_Type;

string Port_Location;

int Num_Port_Params;

Generic_Params *Port_Params;

int Num_Antennas;

string Antenna_Name[];

int Num_Protocols;

string Protocol[];

}

struct Generic_Params {

ssize_t Param_Type;

int Param_Size;

void *Param_Value;

}

1. mwConnection � the variable which holds the information about the type of

connection made with the middleware.

2. Reader_list � Pointer to memory where the list of readers is returned by the

function call.

a) Manufacturer_Name � Manufacturer name of the reader.

b) Userde�ned_Name � User de�ned name of the reader.



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF85

c) Port_Type � Host system port information. (IP / USB / COM).

d) Port_Location � Location of the port where reader is connected. (IP /

COM1 / COM2).

e) Num_Port_Params � Number of port parameters.

f) Port_Params � Port parameter values. The parameters are BAUD_RATE,

IP_ADDRESS, etc.

g) Num_Antennas � Number of entries in the `Antenna_Name' array.

h) Antenna_Name � Array of user names of all the antennae connected to the

reader.

i) Num_Protocol � Number of entries in the `Protocol' array.

j) Protocol � Array of all the protocols supported by the reader.

Return Value

Number of readers � Function is successful.

SMARTRF_FAIL � Function fails.

B.3.3 Create Channel

The Create_Channel function is used by the application to create a channel.

Syntax

int Create_Channel(Connection_descriptormwConnection ,Channel_Create

Channel)

Input

struct Channel_Create {

int Operation_Type;

string Channel_Name;

int Num_Streams;

Data_Stream *Streams;



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF86

}

struct Data_Stream {

string Reader_Name;

string Antenna_Name;

}

1. mwConnection � Variable to store the connection type with SmartRF.

2. struct Channel_Create � Structure specifying the channel information.

a)Operation_Type � Operation for which the channel is to be used (read /

write).

b)Channel_Name � Name of the channel to be created.

c)Num_Streams � Number of entries in the Stream array.

d)Stream � Array of reader-antenna pairs which are to be a part of the channel.

Return Value

Channel Handle � Channel created successfully.

SMARTRF_FAIL � Channel creation fails.

B.3.4 Change channel con�guration

The channel_con�g function is used by the application to change the existing channel

con�guration. Several parameters are available for the channel, each of which may

be changed through this function call. Table 4.1 provides a list of all con�gurable

channel parameters.

Syntax

int channel_con�g(int Channel_Handle, Channel_Param Params)

Input

struct Channel_Param {



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF87

int Num_Params;

list<Generic_Params *> Ch_Param;

}

1. Channel_Handle � Handle of the channel that is to be con�gured.

2. struct Channel_Param � Structure with a list of parameters to be con�gured.

a) Num_Params � Number of entries in the `Ch_Param' list.

b) Ch_Param � List of parameters to be con�gured.

Return Value

SMARTRF_SUCCESS � Channel parameters con�gured.

SMARTRF_FAIL � Channel parameter con�guration failed.

B.3.5 Get channel con�guration

The Read_Con�g function is used by the application to get the values of parameters

for a channel from SmartRF. Table 4.1 provides a list of all channel parameters.

Syntax

int Read_Con�g(int Channel_Handle, Channel_Info **Con�g_info)

Input

struct Channel_Info{

int Channel_Handle;

int Operation_Type;

string Channel_Name;

int Num_Streams;

Data_Stream Streams[];

Channel_Param Params;

}



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF88

1. Channel_Handle � Handle of the channel.

2. Con�g_info � Pointer to memory location which returns the channel parame-

ters.

a)Channel_Handle � Handle of the channel.

b)Operation_Type � Operation type of the channel (read/write).

c)Channel_Name � User de�ned name of the channel.

d)Num_Streams � Number of entries in the Data_Stream array.

e) Data_Stream � Array of the reader-antenna pairs.

f) Params � Array of channel parameters.

Return Value

SMARTRF_SUCCESS � Channel parameters are successfully returned.

SMARTRF_FAIL � Function fails.

B.3.6 Destroy Channel

The Destroy_Channel function is used by the application to delete the speci�ed

channel from SmartRF.

Syntax

int Destroy_Channel(int Channel_handle)

Input

1. Channel_handle � Handle of the channel that is to be destroyed.

Return Value

SMARTRF_SUCCESS � Channel successfully destroyed.

SMARTRF_FAIL � Channel delete failed.



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF89

B.3.7 Read data

The Read_data function is used by the application to read data from SmartRF.

Syntax

int Read_data( int Channel_Handle, unsigned char *bu�er, ssize_t *time_data,

int read_type)

Input

1. Channel_Handle - Handle of the channel.

2. bu�er � Pointer to memory where the data is read by the function.

3. time_data � Pointer to memory where the time is read by the function.

4. read_type � Type of read operation (blocking / non-blocking).

Return Value

SMARTRF_FAIL � Read was unsuccessful.

Number of bytes read by SmartRF � Read was successful.

B.3.8 Write data

The Write_data function is used by the application to write data to a selected tag.

Syntax

intWrite_data(int Channel_Handle, unsigned char *partial_tag_id, int tag_id_length,

unsigned char *data, int data_length)

Input

1. Channel_Handle- - Handle of the channel

2. partial_tag_id � Partial tag IS which identi�es the tag which is to be written

to.



APPENDIX B. APPLICATION ABSTRACTION LAYER (AAL) APIS OF SMARTRF90

3. tag_id_length � Length of partial_tag_id.

4. data � Data that is to be written to the tag.

5. data_length - Length of the data to be written.

Return Value

SMARTRF_SUCCESS � Write to tag is successful

SMARTRF_FAIL � Write to tag fails.

B.3.9 Exit application

The Exit_Application function is used by the application to close its connection

with SmartRF

Syntax

void Exit_Application(Connection_descriptor mwConnection)

Input

1. mwConnection � Connection descriptor that identi�es the application.

Return Value

void


